ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

The Primary Structure and the Disulfide Links of the Bovine Relaxin-like Factor (RLF)

View Author Information
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, PO Box 250509, Charleston, South Carolina 29425
Cite this: Biochemistry 2002, 41, 1, 274–281
Publication Date (Web):December 11, 2001
https://doi.org/10.1021/bi0117302
Copyright © 2002 American Chemical Society

    Article Views

    275

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (120 KB)

    Abstract

    The relaxin-like factor (RLF), produced by the Leydig cells, is an essential link in the chain of events leading to the proper positioning of the testes during fetal development. The primary structure of RLF, as reported in the literature, is based solely upon cDNA sequences with chain lengths determined according to deduced processing sites and with relaxin-like cross-links. Biochemical characterization of bovine testicular RLF shows clearly that the endogenous hormone does consist of a 26 residue A chain and two forms of B chain, one containing 40 residues, the other 45. In addition, both B chains are 9 residues longer at the C terminus than the cDNA-deduced chain, and about 20% of the B chains have an additional 5 residue extension at the N terminus. Sequence analysis in combination with mass spectrometry and tryptic peptide mapping showed unambiguously that RLF is larger than previously assumed and that it has the relaxin-type disulfide bond distribution that makes it a bona fide member of the relaxin family of hormones.

     This work was supported by National Institutes of Health Grant 1-R01-HD40406-01 and by U.S. Department of Agriculture Grant SCR-1999-03614.

    *

     Correspondence should be addressed to this author. Phone:  (843) 792-9926; Fax:  (843) 792-4322; Email:  [email protected].

    Cited By

    This article is cited by 62 publications.

    1. Erika E. Büllesbach, Mathias A. S. Hass, Malene R. Jensen, D. Flemming Hansen, Søren M. Kristensen, Christian Schwabe and Jens J. Led . Solution Structure of a Conformationally Restricted Fully Active Derivative of the Human Relaxin-like Factor. Biochemistry 2008, 47 (50) , 13308-13317. https://doi.org/10.1021/bi801412w
    2. H.D.A. Wimalarathne, Y. Nakamura, K. Ishizaka, B.D.K. Silva, K. Sasakura, M. Shimada, M. Kibushi, M. Sakase, N. Kawate. Age-related changes in circulating INSL3 concentrations and their associations with ovarian conditions in Japanese Black beef cattle. Theriogenology 2023, 211 , 97-104. https://doi.org/10.1016/j.theriogenology.2023.08.007
    3. Hewage Dilhan Anuradha WIMALARATHNE, Hiroaki WAKO, Noritoshi KAWATE. Quantitative analyses of insulin-like peptide 3 and sex steroid hormones in dominant follicles and corpora lutea during the estrus cycle and in follicular cysts in beef heifers. Journal of Reproduction and Development 2022, 68 (5) , 324-329. https://doi.org/10.1262/jrd.2022-018
    4. Noritoshi Kawate. Insulin‐like peptide 3 in domestic animals with normal and abnormal reproductive functions, in comparison to rodents and humans. Reproductive Medicine and Biology 2022, 21 (1) https://doi.org/10.1002/rmb2.12485
    5. Orsolya Balogh, Bence Somoskői, Eszter Kollár, Mariusz P. Kowalewski, Aykut Gram, Iris M. Reichler, Ruth Klein, Noritoshi Kawate, László Mester, Beate Walter, Linda Müller. Anti-Müllerian hormone, testosterone, and insulin-like peptide 3 as biomarkers of Sertoli and Leydig cell function during deslorelin-induced testicular downregulation in the dog. Theriogenology 2021, 175 , 100-110. https://doi.org/10.1016/j.theriogenology.2021.08.017
    6. Peter L. Ryan, Federico G. Hoffmann. Endocrine and Exocrine Function of the Bovine Testes. 2021, 11-31. https://doi.org/10.1002/9781119602484.ch2
    7. Richard Ivell, Waleed Alhujaili, Tetsuya Kohsaka, Ravinder Anand-Ivell. Physiology and evolution of the INSL3/RXFP2 hormone/receptor system in higher vertebrates. General and Comparative Endocrinology 2020, 299 , 113583. https://doi.org/10.1016/j.ygcen.2020.113583
    8. Munkhtuul Tsogtgerel, Nao Komyo, Harutaka Murase, M.A. Hannan, Kenichi Watanabe, Tadatoshi Ohtaki, Shigehisa Tsumagari, Noritoshi Kawate, Yasuo Nambo. Serum concentrations and testicular expressions of insulin-like peptide 3 and Anti-Müllerian hormone in normal and cryptorchid male horses. Theriogenology 2020, 154 , 135-142. https://doi.org/10.1016/j.theriogenology.2020.05.026
    9. Jakob Albrethsen, Anders Juul, Anna-Maria Andersson. Mass Spectrometry Supports That the Structure of Circulating Human Insulin-Like Factor 3 Is a Heterodimer. Frontiers in Endocrinology 2020, 11 https://doi.org/10.3389/fendo.2020.00552
    10. Noritoshi KAWATE, Ryota KANUKI, M. A. HANNAN, Weerakoon W. P. N. WEERAKOON. Inhibitory effects of long-term repeated treatments of a sustainable GnRH antagonist, degarelix acetate, on caprine testicular functions. Journal of Reproduction and Development 2020, 66 (6) , 587-592. https://doi.org/10.1262/jrd.2020-035
    11. M.A. Hannan, Harutaka Murase, Fumio Sato, Munkhtuul Tsogtgerel, Noritoshi Kawate, Yasuo Nambo. Age related and seasonal changes of plasma concentrations of insulin-like peptide 3 and testosterone from birth to early-puberty in Thoroughbred male horses. Theriogenology 2019, 132 , 212-217. https://doi.org/10.1016/j.theriogenology.2019.04.014
    12. Praveen Praveen, Martina Kocan, Adam Valkovic, Ross Bathgate, Mohammed Akhter Hossain. Single chain peptide agonists of relaxin receptors. Molecular and Cellular Endocrinology 2019, 487 , 34-39. https://doi.org/10.1016/j.mce.2019.01.008
    13. Ravinder Anand-Ivell, Richard Ivell. Insulin-Like Peptide 3 (INSL3). 2019, 793-806. https://doi.org/10.1016/B978-0-12-801238-3.65735-5
    14. Richard Ivell, Ravinder Anand-Ivell. Insulin-like peptide 3 (INSL3) is a major regulator of female reproductive physiology. Human Reproduction Update 2018, 24 (6) , 639-651. https://doi.org/10.1093/humupd/dmy029
    15. Jakob Albrethsen, Hanne Frederiksen, Anna-Maria Andersson, Ravinder Anand-Ivell, Loa Nordkap, Anne Kirstine Bang, Niels Jørgensen, Anders Juul. Development and validation of a mass spectrometry-based assay for quantification of insulin-like factor 3 in human serum. Clinical Chemistry and Laboratory Medicine (CCLM) 2018, 56 (11) , 1913-1920. https://doi.org/10.1515/cclm-2018-0171
    16. I. Minagawa, Y. Murata, K. Terada, M. Shibata, E. Y. Park, H. Sasada, T. Kohsaka. Evidence for the role of INSL3 on sperm production in boars by passive immunisation. Andrologia 2018, 50 (6) , e13010. https://doi.org/10.1111/and.13010
    17. W.W.P.N. Weerakoon, M. Sakase, N. Kawate, M.A. Hannan, N. Kohama, H. Tamada. Plasma IGF-I, INSL3, testosterone, inhibin concentrations and scrotal circumferences surrounding puberty in Japanese Black beef bulls with normal and abnormal semen. Theriogenology 2018, 114 , 54-62. https://doi.org/10.1016/j.theriogenology.2018.03.006
    18. Tetsuya Kohsaka, Siqin, Itaru Minagawa, Hiroshi Sasada. Recent Advances in Research on the Hormone INSL3 in Male Goats. 2018https://doi.org/10.5772/intechopen.70079
    19. Mohammed Akhter Hossain, Ross A.D. Bathgate. Challenges in the design of insulin and relaxin/insulin-like peptide mimetics. Bioorganic & Medicinal Chemistry 2018, 26 (10) , 2827-2841. https://doi.org/10.1016/j.bmc.2017.09.030
    20. Mitsuhiro SAKASE, Keita KITAGAWA, Masahiko KIBUSHI, Noritoshi KAWATE, W. W. P. N. WEERAKOON, M. A. HANNAN, Namiko KOHAMA, Hiromichi TAMADA. Relationships of plasma insulin-like peptide 3, testosterone, inhibin, and insulin-like growth factor-I concentrations with scrotal circumference and testicular weight in Japanese Black beef bull calves. Journal of Reproduction and Development 2018, 64 (5) , 401-407. https://doi.org/10.1262/jrd.2018-034
    21. Takatsugu Miyazaki, Masaaki Ishizaki, Hideo Dohra, Sungjo Park, Andre Terzic, Tatsuya Kato, Tetsuya Kohsaka, Enoch Y. Park. Insulin-like peptide 3 expressed in the silkworm possesses intrinsic disulfide bonds and full biological activity. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-17707-1
    22. Nitin A Patil, K Johan Rosengren, Frances Separovic, John D Wade, Ross A D Bathgate, Mohammed Akhter Hossain. Relaxin family peptides: structure–activity relationship studies. British Journal of Pharmacology 2017, 174 (10) , 950-961. https://doi.org/10.1111/bph.13684
    23. M.A. Hannan, N. Kawate, Y. Fukami, W.W.P.N. Weerakoon, E.E. Büllesbach, T. Inaba, H. Tamada. Changes of plasma concentrations of insulin-like peptide 3 and testosterone, and their association with scrotal circumference during pubertal development in male goats. Theriogenology 2017, 92 , 51-56. https://doi.org/10.1016/j.theriogenology.2017.01.009
    24. M.L. Halls. Insulin-Like Peptide 3 (INSL3) ☆. 2017https://doi.org/10.1016/B978-0-12-801238-3.99369-3
    25. M.A. Hannan, N. Kawate, Y. Fukami, W.W.P.N. Weerakoon, E.E. Büllesbach, T. Inaba, H. Tamada. Effects of long-acting GnRH antagonist, degarelix acetate, on plasma insulin-like peptide 3, testosterone and luteinizing hormone concentrations, and scrotal circumference in male goats. Theriogenology 2017, 88 , 228-235. https://doi.org/10.1016/j.theriogenology.2016.09.032
    26. M. Kibushi, N. Kawate, Y. Kaminogo, M.A. Hannan, W.W.P.N. Weerakoon, M. Sakase, M. Fukushima, T. Seyama, T. Inaba, H. Tamada. Fetal gender prediction based on maternal plasma testosterone and insulin-like peptide 3 concentrations at midgestation and late gestation in cattle. Theriogenology 2016, 86 (7) , 1764-1773. https://doi.org/10.1016/j.theriogenology.2016.05.039
    27. M.A. Hannan, N. Kawate, Y. Fukami, I.N. Pathirana, E.E. Büllesbach, T. Inaba, H. Tamada. Acute regulation of plasma insulin-like peptide 3 concentrations by luteinizing hormone in male goats. Theriogenology 2016, 86 (3) , 749-756. https://doi.org/10.1016/j.theriogenology.2016.02.028
    28. M.A. Hannan, Y. Fukami, N. Kawate, M. Sakase, M. Fukushima, I.N. Pathirana, E.E. Büllesbach, T. Inaba, H. Tamada. Plasma insulin-like peptide 3 concentrations are acutely regulated by luteinizing hormone in pubertal Japanese Black beef bulls. Theriogenology 2015, 84 (9) , 1530-1535. https://doi.org/10.1016/j.theriogenology.2015.07.039
    29. Michelle L. Halls, Ross A. D. Bathgate, Steve W. Sutton, Thomas B. Dschietzig, Roger J. Summers, . International Union of Basic and Clinical Pharmacology. XCV. Recent Advances in the Understanding of the Pharmacology and Biological Roles of Relaxin Family Peptide Receptors 1–4, the Receptors for Relaxin Family Peptides. Pharmacological Reviews 2015, 67 (2) , 389-440. https://doi.org/10.1124/pr.114.009472
    30. Peter L. Ryan. Endocrine and Exocrine Function of the Bovine Testes. 2014, 11-25. https://doi.org/10.1002/9781118833971.ch2
    31. Siqin, Itaru Minagawa, Mitsutoshi Okuno, Kimihiko Yamada, Yasushi Sugawara, Yoshio Nagura, Koh-Ichi Hamano, Enoch Y. Park, Hiroshi Sasada, Tetsuya Kohsaka. The active form of goat insulin-like peptide 3 (INSL3) is a single-chain structure comprising three domains B-C-A, constitutively expressed and secreted by testicular Leydig cells. Biological Chemistry 2013, 394 (9) , 1181-1194. https://doi.org/10.1515/hsz-2012-0357
    32. Ulrike Hampel, Thomas Klonisch, Saadettin Sel, Ute Schulze, Friedrich P. Paulsen. Insulin-like Factor 3 Promotes Wound Healing at the Ocular Surface. Endocrinology 2013, 154 (6) , 2034-2045. https://doi.org/10.1210/en.2012-2201
    33. R. A. D. Bathgate, M. L. Halls, E. T. van der Westhuizen, G. E. Callander, M. Kocan, R. J. Summers. Relaxin Family Peptides and Their Receptors. Physiological Reviews 2013, 93 (1) , 405-480. https://doi.org/10.1152/physrev.00001.2012
    34. Indunil N. Pathirana, Noritoshi Kawate, Erika E. Büllesbach, Masahiro Takahashi, Shingo Hatoya, Toshio Inaba, Hiromichi Tamada. Insulin-like peptide 3 stimulates testosterone secretion in mouse Leydig cells via cAMP pathway. Regulatory Peptides 2012, 178 (1-3) , 102-106. https://doi.org/10.1016/j.regpep.2012.07.003
    35. Vinojini B. Nair, Chrishan S. Samuel, Frances Separovic, Mohammed Akhter Hossain, John D. Wade. Human relaxin-2: historical perspectives and role in cancer biology. Amino Acids 2012, 43 (3) , 1131-1140. https://doi.org/10.1007/s00726-012-1375-y
    36. I.N. Pathirana, H. Yamasaki, N. Kawate, M. Tsuji, E.E. Büllesbach, M. Takahashi, S. Hatoya, T. Inaba, H. Tamada. Plasma insulin-like peptide 3 and testosterone concentrations in male dogs: Changes with age and effects of cryptorchidism. Theriogenology 2012, 77 (3) , 550-557. https://doi.org/10.1016/j.theriogenology.2011.08.030
    37. Itaru Minagawa, Masafumi Fukuda, Hisako Ishige, Hiroshi Kohriki, Masatoshi Shibata, Enoch Y. Park, Tatsuo Kawarasaki, Tetsuya Kohsaka. Relaxin-like factor (RLF)/insulin-like peptide 3 (INSL3) is secreted from testicular Leydig cells as a monomeric protein comprising three domains B–C–A with full biological activity in boars. Biochemical Journal 2012, 441 (1) , 265-273. https://doi.org/10.1042/BJ20111107
    38. N. Kawate, A. Ohnari, I.N. Pathirana, M. Sakase, E.E. Büllesbach, M. Takahashi, T. Inaba, H. Tamada. Changes in plasma concentrations of insulin-like peptide 3 and testosterone from birth to pubertal age in beef bulls. Theriogenology 2011, 76 (9) , 1632-1638. https://doi.org/10.1016/j.theriogenology.2011.07.011
    39. Indunil N. Pathirana, Yukino Ashida, Noritoshi Kawate, Kakeru Tanaka, Makoto Tsuji, Masahiro Takahashi, Shingo Hatoya, Toshio Inaba, Hiromichi Tamada. Comparison of testosterone and insulin-like peptide 3 secretions in response to human chorionic gonadotropin in cultured interstitial cells from scrotal and retained testes in dogs. Animal Reproduction Science 2011, 124 (1-2) , 138-144. https://doi.org/10.1016/j.anireprosci.2011.02.014
    40. R. Ivell, M. Kotula-Balak, D. Glynn, K. Heng, R. Anand-Ivell. Relaxin family peptides in the male reproductive system--a critical appraisal. Molecular Human Reproduction 2011, 17 (2) , 71-84. https://doi.org/10.1093/molehr/gaq086
    41. Roy C.K. Kong, Patrick J. Shilling, Derek K. Lobb, Paul R. Gooley, Ross A.D. Bathgate. Membrane receptors: Structure and function of the relaxin family peptide receptors. Molecular and Cellular Endocrinology 2010, 320 (1-2) , 1-15. https://doi.org/10.1016/j.mce.2010.02.003
    42. R. Ivell, R. Anand-Ivell. Biology of insulin-like factor 3 in human reproduction. Human Reproduction Update 2009, 15 (4) , 463-476. https://doi.org/10.1093/humupd/dmp011
    43. Fazel Shabanpoor, Richard Hughes, Frances Separovic, John Wade. The Chemistry and Biology of Insulin-Like Peptide 3, a Novel Member of the Insulin Superfamily. 2009, 159-168. https://doi.org/10.1201/9781420061161-c7
    44. Michelle Halls. Insulin-Like Peptide 3 (INSL3). 2009, 1-9. https://doi.org/10.1016/B978-008055232-3.64020-6
    45. Katayoon Shirneshan, Stefan Binder, Detlef Böhm, Stephan Wolf, Ulrich Sancken, Andreas Meinhardt, Michael Schmid, Wolfgang Engel, Ibrahim M. Adham. Directed overexpression of insulin in Leydig cells causes a progressive loss of germ cells. Molecular and Cellular Endocrinology 2008, 295 (1-2) , 79-86. https://doi.org/10.1016/j.mce.2008.07.007
    46. Brahim El Houate, Hassan Rouba, Hicham Sibai, Abdelhamid Barakat, Abdelaziz Chafik, El bekkay Chadli, Laila Imken, Natalia V. Bogatcheva, Shu Feng, Alexander I. Agoulnik, Ken McElreavey. Novel Mutations Involving the INSL3 Gene Associated With Cryptorchidism. Journal of Urology 2007, 177 (5) , 1947-1951. https://doi.org/10.1016/j.juro.2007.01.002
    47. Robert Piotr Olinski, Carl Dahlberg, Mike Thorndyke, Finn Hallböök. Three insulin–relaxin-like genes in Ciona intestinalis. Peptides 2006, 27 (11) , 2535-2546. https://doi.org/10.1016/j.peptides.2006.06.008
    48. Erika E. Büllesbach, Christian Schwabe. The Mode of Interaction of the Relaxin-like Factor (RLF) with the Leucine-rich Repeat G Protein-activated Receptor 8. Journal of Biological Chemistry 2006, 281 (36) , 26136-26143. https://doi.org/10.1074/jbc.M601414200
    49. Ross A. Bathgate, Richard Ivell, Barbara M. Sanborn, O. David Sherwood, Roger J. Summers. International Union of Pharmacology LVII: Recommendations for the Nomenclature of Receptors for Relaxin Family Peptides. Pharmacological Reviews 2006, 58 (1) , 7-31. https://doi.org/10.1124/pr.58.1.9
    50. NICOLE NICHOLS, HILARY BINTA, PHILLIP A. FIELDS, MAARTEN DROST, SHOU-MEI CHANG, RICHARD IVELL, MICHAEL J. FIELDS. Immunohistochemical Localization of Relaxin-Like Factor/Insulin-Like Peptide-3 in the Bovine Corpus Luteum. Annals of the New York Academy of Sciences 2005, 1041 (1) , 506-509. https://doi.org/10.1196/annals.1282.075
    51. RICHARD IVELL, STEFAN HARTUNG, RAVINDER ANAND-IVELL. Insulin-Like Factor 3: Where Are We Now?. Annals of the New York Academy of Sciences 2005, 1041 (1) , 486-496. https://doi.org/10.1196/annals.1282.073
    52. Erika E. Büllesbach, Christian Schwabe. LGR8 Signal Activation by the Relaxin-like Factor. Journal of Biological Chemistry 2005, 280 (15) , 14586-14590. https://doi.org/10.1074/jbc.M414443200
    53. Masaki Tanaka, Norio Iijima, Yasumasa Miyamoto, Shoji Fukusumi, Yasuaki Itoh, Hitoshi Ozawa, Yasuhiko Ibata. Neurons expressing relaxin 3/INSL 7 in the nucleus incertus respond to stress. European Journal of Neuroscience 2005, 21 (6) , 1659-1670. https://doi.org/10.1111/j.1460-9568.2005.03980.x
    54. Feng Lin, Laszlo Otvos, Jin Kumagai, Geoffrey W. Tregear, Ross A. D. Bathgate, John D. Wade. Synthetic human insulin 4 does not activate the G‐protein‐coupled receptors LGR7 or LGR8. Journal of Peptide Science 2004, 10 (5) , 257-264. https://doi.org/10.1002/psc.521
    55. P. Fu, S. Layfield, T. Ferraro, H. Tomiyama, J. Hutson, L. Otvos, G.W. Tregear, R.A.D. Bathgate, J.D. Wade. Synthesis, conformation, receptor binding and biological activities of monobiotinylated human insulin‐like peptide 3*. The Journal of Peptide Research 2004, 63 (2) , 91-98. https://doi.org/10.1111/j.1399-3011.2003.00118.x
    56. Ping Fu, Ross A. D. Bathgate, Geoffrey W. Tregear, John D. Wade. Insulin 3: From chemical synthesis to biological function. International Journal of Peptide Research and Therapeutics 2003, 10 (5-6) , 387-391. https://doi.org/10.1007/s10989-004-2388-5
    57. Anne Truong, Natalia V. Bogatcheva, Claude Schelling, Gaudenz Dolf, Alexander I. Agoulnik. Isolation and Expression Analysis of the Canine Insulin-Like Factor 3 Gene1. Biology of Reproduction 2003, 69 (5) , 1658-1664. https://doi.org/10.1095/biolreprod.103.019166
    58. Ping Fu, Ross A. D. Bathgate, Geoffrey W. Tregear, John D. Wade. Insulin 3: From chemical synthesis to biological function. Letters in Peptide Science 2003, 10 (5-6) , 387-391. https://doi.org/10.1007/BF02442568
    59. Richard Ivell, Ross A.D. Bathgate. Reproductive Biology of the Relaxin-Like Factor (RLF/INSL3)1. Biology of Reproduction 2002, 67 (3) , 699-705. https://doi.org/10.1095/biolreprod.102.005199
    60. Tracey N. Wilkinson, Ross A. D. Bathgate. The Evolution of the Relaxin Peptide Family and Their Receptors. , 1-13. https://doi.org/10.1007/978-0-387-74672-2_1
    61. Christian Schwabe, Erika E. Büllesbach. Relaxin, the Relaxin-Like Factor and Their Receptors. , 14-25. https://doi.org/10.1007/978-0-387-74672-2_2
    62. Richard Ivell, Ross A. D. Bathgate. Insulin-Like Peptide 3 in Leydig Cells. , 279-289. https://doi.org/10.1007/978-1-59745-453-7_19

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect