ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUECurrent Topics/Persp...Current Topics/PerspectivesNEXT

Intrinsic Disorder and Protein Function

View Author Information
School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Center for Information Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
Cite this: Biochemistry 2002, 41, 21, 6573–6582
Publication Date (Web):May 1, 2002
https://doi.org/10.1021/bi012159+
Copyright © 2002 American Chemical Society

    Article Views

    7822

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This research was funded by Molecular Kinetics, Inc., by NSF-CSE-IIS-9711532 and NSF-IIS-0196237 to Z.O. and A.K.D, and by NIH-1R01-LM06916 to A.K.D. and Z.O.

    *

     Corresponding author:  A. Keith Dunker. School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660; Telephone:  (509) 335-5322. Facsimile:  (509) 335-9688. E-mail:  [email protected].

     Washington State University.

    §

     Temple University.

    Cited By

    This article is cited by 1329 publications.

    1. Angela Paterna, Pamela Santonicola, Giulia Di Prima, Estella Rao, Samuele Raccosta, Giuseppina Zampi, Claudio Russo, Oscar Moran, Mauro Manno, Elia Di Schiavi, Fabio Librizzi, Rita Carrotta. αS1-Casein-Loaded Proteo-liposomes as Potential Inhibitors in Amyloid Fibrillogenesis: In Vivo Effects on a C. elegans Model of Alzheimer’s Disease. ACS Chemical Neuroscience 2023, 14 (21) , 3894-3904. https://doi.org/10.1021/acschemneuro.3c00239
    2. Nitin Kumar Singh, Pratyasha Bhardwaj, Mithun Radhakrishna. Hydrophobicity─A Single Parameter for the Accurate Prediction of Disordered Regions in Proteins. Journal of Chemical Information and Modeling 2023, 63 (16) , 5375-5383. https://doi.org/10.1021/acs.jcim.3c00592
    3. Surajit Kalita, Hagai Bergman, Kshatresh Dutta Dubey, Sason Shaik. How Can Static and Oscillating Electric Fields Serve in Decomposing Alzheimer’s and Other Senile Plaques?. Journal of the American Chemical Society 2023, 145 (6) , 3543-3553. https://doi.org/10.1021/jacs.2c12305
    4. Haley I. Merritt, Nicholas Sawyer, Andrew M. Watkins, Paramjit S. Arora. Anchor Residues Govern Binding and Folding of an Intrinsically Disordered Domain. ACS Chemical Biology 2022, 17 (10) , 2723-2727. https://doi.org/10.1021/acschembio.2c00619
    5. Jordan A. P. McIvor, Danaé S. Larsen, Davide Mercadante. Simulating Polyproline II-Helix-Rich Peptides with the Latest Kirkwood–Buff Force Field: A Direct Comparison with AMBER and CHARMM. The Journal of Physical Chemistry B 2022, 126 (40) , 7833-7846. https://doi.org/10.1021/acs.jpcb.2c03837
    6. Guy Mayer, Zohar Shpilt, Hadar Kowalski, Edit Y. Tshuva, Assaf Friedler. Targeting Protein Interaction Hotspots Using Structured and Disordered Chimeric Peptide Inhibitors. ACS Chemical Biology 2022, 17 (7) , 1811-1823. https://doi.org/10.1021/acschembio.2c00177
    7. Alexsandra N. Corrigan, Justin A. Lemkul. Electronic Polarization at the Interface between the p53 Transactivation Domain and Two Binding Partners. The Journal of Physical Chemistry B 2022, 126 (26) , 4814-4827. https://doi.org/10.1021/acs.jpcb.2c02268
    8. Kim E. van Adrichem, Thomas L. C. Jansen. AIM: A Mapping Program for Infrared Spectroscopy of Proteins. Journal of Chemical Theory and Computation 2022, 18 (5) , 3089-3098. https://doi.org/10.1021/acs.jctc.2c00113
    9. Lolita Piersimoni, Panagiotis L. Kastritis, Christian Arlt, Andrea Sinz. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein–Protein Interactions─A Method for All Seasons. Chemical Reviews 2022, 122 (8) , 7500-7531. https://doi.org/10.1021/acs.chemrev.1c00786
    10. Priyanka Dogra, Shruti Arya, Avinash K. Singh, Anindya Datta, Samrat Mukhopadhyay. Conformational and Solvation Dynamics of an Amyloidogenic Intrinsically Disordered Domain of a Melanosomal Protein. The Journal of Physical Chemistry B 2022, 126 (2) , 443-452. https://doi.org/10.1021/acs.jpcb.1c09304
    11. John P. Stoppelman, Tracey T. Ng, Paul S. Nerenberg, Lee-Ping Wang. Development and Validation of AMBER-FB15-Compatible Force Field Parameters for Phosphorylated Amino Acids. The Journal of Physical Chemistry B 2021, 125 (43) , 11927-11942. https://doi.org/10.1021/acs.jpcb.1c07547
    12. Junxi Mu, Hao Liu, Jian Zhang, Ray Luo, Hai-Feng Chen. Recent Force Field Strategies for Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling 2021, 61 (3) , 1037-1047. https://doi.org/10.1021/acs.jcim.0c01175
    13. Daniela Sorrentino, Simona Ranallo, Francesco Ricci. Rational Control of the Activity of a Cu2+-Dependent DNAzyme by Re-engineering Purely Entropic Intrinsically Disordered Domains. ACS Applied Materials & Interfaces 2021, 13 (8) , 9300-9305. https://doi.org/10.1021/acsami.0c09472
    14. Samrat Mukhopadhyay. The Dynamism of Intrinsically Disordered Proteins: Binding-Induced Folding, Amyloid Formation, and Phase Separation. The Journal of Physical Chemistry B 2020, 124 (51) , 11541-11560. https://doi.org/10.1021/acs.jpcb.0c07598
    15. Remi Casier, Jean Duhamel. The Effect of Amino Acid Size on the Internal Dynamics and Conformational Freedom of Polypeptides. Macromolecules 2020, 53 (22) , 9811-9822. https://doi.org/10.1021/acs.macromol.0c02153
    16. Nathan W. Van Bibber, Cornelia Haerle, Roy Khalife, Guy W. Dayhoff, II, Vladimir N. Uversky. Intrinsic Disorder in Human Proteins Encoded by Core Duplicon Gene Families. The Journal of Physical Chemistry B 2020, 124 (37) , 8050-8070. https://doi.org/10.1021/acs.jpcb.0c07676
    17. Raghavender Surya Upadhyayula. Computational Investigation of Structural Interfaces of Protein Complexes with Short Linear Motifs. Journal of Proteome Research 2020, 19 (8) , 3254-3263. https://doi.org/10.1021/acs.jproteome.0c00212
    18. Remi Casier, Jean Duhamel. Effect of Structure on Polypeptide Blobs: A Model Study Using Poly(l-lysine). Langmuir 2020, 36 (27) , 7980-7990. https://doi.org/10.1021/acs.langmuir.0c01347
    19. Jessica C. Bowman, Anton S. Petrov, Moran Frenkel-Pinter, Petar I. Penev, Loren Dean Williams. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chemical Reviews 2020, 120 (11) , 4848-4878. https://doi.org/10.1021/acs.chemrev.9b00742
    20. Ellen Rieloff, Marie Skepö. Phosphorylation of a Disordered Peptide—Structural Effects and Force Field Inconsistencies. Journal of Chemical Theory and Computation 2020, 16 (3) , 1924-1935. https://doi.org/10.1021/acs.jctc.9b01190
    21. Yangpeng Zhang, Hao Liu, Sheng Yang, Ray Luo, Hai-Feng Chen. Well-Balanced Force Field ff03CMAP for Folded and Disordered Proteins. Journal of Chemical Theory and Computation 2019, 15 (12) , 6769-6780. https://doi.org/10.1021/acs.jctc.9b00623
    22. Mitsuo Takayama. Estimation of Flexible and Rigid Residues of Disulfide-Bridged and Phosphorylated Proteins Using Matrix-Assisted Laser Desorption/Ionization in-Source Decay Mass Spectrometry. ACS Omega 2019, 4 (23) , 20308-20314. https://doi.org/10.1021/acsomega.9b02814
    23. Jana Pavlíková Přecechtělová, Arnošt Mládek, Vojtěch Zapletal, Jozef Hritz. Quantum Chemical Calculations of NMR Chemical Shifts in Phosphorylated Intrinsically Disordered Proteins. Journal of Chemical Theory and Computation 2019, 15 (10) , 5642-5658. https://doi.org/10.1021/acs.jctc.8b00257
    24. Xiaorong Liu, Jianhan Chen. Residual Structures and Transient Long-Range Interactions of p53 Transactivation Domain: Assessment of Explicit Solvent Protein Force Fields. Journal of Chemical Theory and Computation 2019, 15 (8) , 4708-4720. https://doi.org/10.1021/acs.jctc.9b00397
    25. Maud Chan-Yao-Chong, Dominique Durand, Tâp Ha-Duong. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles. Journal of Chemical Information and Modeling 2019, 59 (5) , 1743-1758. https://doi.org/10.1021/acs.jcim.8b00928
    26. Fan Jiang, Hao-Nan Wu, Wei Kang, Yun-Dong Wu. Developments and Applications of Coil-Library-Based Residue-Specific Force Fields for Molecular Dynamics Simulations of Peptides and Proteins. Journal of Chemical Theory and Computation 2019, 15 (5) , 2761-2773. https://doi.org/10.1021/acs.jctc.8b00794
    27. Ethan D. Evans, Zachary P. Gates, Zhen-Yu J. Sun, Alexander J. Mijalis, Bradley L. Pentelute. Conformational Stabilization and Rapid Labeling of a 29-Residue Peptide by a Small Molecule Reaction Partner. Biochemistry 2019, 58 (10) , 1343-1353. https://doi.org/10.1021/acs.biochem.8b00940
    28. Jerelle A. Joseph, David J. Wales. Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide. The Journal of Physical Chemistry B 2018, 122 (50) , 11906-11921. https://doi.org/10.1021/acs.jpcb.8b08371
    29. Bin Chong, Maodong Li, Tong Li, Miao Yu, Yugang Zhang, Zhirong Liu. Conservation of Potentially Druggable Cavities in Intrinsically Disordered Proteins. ACS Omega 2018, 3 (11) , 15643-15652. https://doi.org/10.1021/acsomega.8b02092
    30. Davide Mariottini, Andrea Idili, Minke A. D. Nijenhuis, Tom F. A. de Greef, Francesco Ricci. DNA-Based Nanodevices Controlled by Purely Entropic Linker Domains. Journal of the American Chemical Society 2018, 140 (44) , 14725-14734. https://doi.org/10.1021/jacs.8b07640
    31. Robert I. Cukier. Conformational Ensembles Exhibit Extensive Molecular Recognition Features. ACS Omega 2018, 3 (8) , 9907-9920. https://doi.org/10.1021/acsomega.8b00898
    32. Isabel Askenasy, Daniel T. Murray, Rachel M. Andrews, Vladimir N. Uversky, Huan He, M. Elizabeth Stroupe. Structure–Function Relationships in the Oligomeric NADPH-Dependent Assimilatory Sulfite Reductase. Biochemistry 2018, 57 (26) , 3764-3772. https://doi.org/10.1021/acs.biochem.8b00446
    33. Or Szekely, Gregory Lars Olsen, Isabella C. Felli, Lucio Frydman. High-Resolution 2D NMR of Disordered Proteins Enhanced by Hyperpolarized Water. Analytical Chemistry 2018, 90 (10) , 6169-6177. https://doi.org/10.1021/acs.analchem.8b00585
    34. Huan-Xiang Zhou and Xiaodong Pang . Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chemical Reviews 2018, 118 (4) , 1691-1741. https://doi.org/10.1021/acs.chemrev.7b00305
    35. Xiaorong Liu, Zhiguang Jia, and Jianhan Chen . Enhanced Sampling of Intrinsic Structural Heterogeneity of the BH3-Only Protein Binding Interface of Bcl-xL. The Journal of Physical Chemistry B 2017, 121 (39) , 9160-9168. https://doi.org/10.1021/acs.jpcb.7b06768
    36. Mohammed A. Al-Naqshabandi and David D. Weis . Quantifying Protection in Disordered Proteins Using Millisecond Hydrogen Exchange-Mass Spectrometry and Peptic Reference Peptides. Biochemistry 2017, 56 (31) , 4064-4072. https://doi.org/10.1021/acs.biochem.6b01312
    37. Veronica F. Busa, Maxwell J. Rector, and Rick Russell . The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates. Biochemistry 2017, 56 (28) , 3571-3578. https://doi.org/10.1021/acs.biochem.7b00362
    38. Yun Liu, Jiahui Wu, Nan Sun, Chengjian Tu, Xiaoying Shi, Hua Cheng, Simu Liu, Shuiming Li, Yong Wang, Yizhi Zheng, and Vladimir N. Uversky . Intrinsically Disordered Proteins as Important Players during Desiccation Stress of Soybean Radicles. Journal of Proteome Research 2017, 16 (7) , 2393-2409. https://doi.org/10.1021/acs.jproteome.6b01045
    39. Guanhua Zhu, Wuan Geok Saw, Anjaiah Nalaparaju, Gerhard Grüber, and Lanyuan Lu . Coarse-Grained Molecular Modeling of the Solution Structure Ensemble of Dengue Virus Nonstructural Protein 5 with Small-Angle X-ray Scattering Intensity. The Journal of Physical Chemistry B 2017, 121 (10) , 2252-2264. https://doi.org/10.1021/acs.jpcb.7b00051
    40. Ya Gao, Chaomin Zhang, John Z. H. Zhang, and Ye Mei . Evaluation of the Coupled Two-Dimensional Main Chain Torsional Potential in Modeling Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling 2017, 57 (2) , 267-274. https://doi.org/10.1021/acs.jcim.6b00589
    41. Asmit Bhowmick, David H. Brookes, Shane R. Yost, H. Jane Dyson, Julie D. Forman-Kay, Daniel Gunter, Martin Head-Gordon, Gregory L. Hura, Vijay S. Pande, David E. Wemmer, Peter E. Wright, and Teresa Head-Gordon . Finding Our Way in the Dark Proteome. Journal of the American Chemical Society 2016, 138 (31) , 9730-9742. https://doi.org/10.1021/jacs.6b06543
    42. Nicola Salvi, Anton Abyzov, and Martin Blackledge . Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molecular Simulation. The Journal of Physical Chemistry Letters 2016, 7 (13) , 2483-2489. https://doi.org/10.1021/acs.jpclett.6b00885
    43. Veronika Csizmok, Ariele Viacava Follis, Richard W. Kriwacki, and Julie D. Forman-Kay . Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chemical Reviews 2016, 116 (11) , 6424-6462. https://doi.org/10.1021/acs.chemrev.5b00548
    44. Wei Ye, Dingjue Ji, Wei Wang, Ray Luo, and Hai-Feng Chen . Test and Evaluation of ff99IDPs Force Field for Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling 2015, 55 (5) , 1021-1029. https://doi.org/10.1021/acs.jcim.5b00043
    45. David Winogradoff, Ignacia Echeverria, Davit A. Potoyan, and Garegin A. Papoian . The Acetylation Landscape of the H4 Histone Tail: Disentangling the Interplay between the Specific and Cumulative Effects. Journal of the American Chemical Society 2015, 137 (19) , 6245-6253. https://doi.org/10.1021/jacs.5b00235
    46. Theodore R. Keppel, David D. Weis. Mapping Residual Structure in Intrinsically Disordered Proteins at Residue Resolution Using Millisecond Hydrogen/Deuterium Exchange and Residue Averaging. Journal of the American Society for Mass Spectrometry 2015, 26 (4) , 547-554. https://doi.org/10.1007/s13361-014-1033-6
    47. Christina M. Payne, Brandon C. Knott, Heather B. Mayes, Henrik Hansson, Michael E. Himmel, Mats Sandgren, Jerry Ståhlberg, and Gregg T. Beckham . Fungal Cellulases. Chemical Reviews 2015, 115 (3) , 1308-1448. https://doi.org/10.1021/cr500351c
    48. Rebecca Beveridge, Sam Covill, Kamila J. Pacholarz, Jason M. D. Kalapothakis, Cait E. MacPhee, and Perdita E. Barran . A Mass-Spectrometry-Based Framework To Define the Extent of Disorder in Proteins. Analytical Chemistry 2014, 86 (22) , 10979-10991. https://doi.org/10.1021/ac5027435
    49. Trang Nhu Do, Wing-Yiu Choy, and Mikko Karttunen . Accelerating the Conformational Sampling of Intrinsically Disordered Proteins. Journal of Chemical Theory and Computation 2014, 10 (11) , 5081-5094. https://doi.org/10.1021/ct5004803
    50. Xia Xiao, Neville Kallenbach, and Yingkai Zhang . Peptide Conformation Analysis Using an Integrated Bayesian Approach. Journal of Chemical Theory and Computation 2014, 10 (9) , 4152-4159. https://doi.org/10.1021/ct500433d
    51. Anil K. Pandey, Krista M. Thomas, Christina R. Forbes, and Neal J. Zondlo . Tunable Control of Polyproline Helix (PPII) Structure via Aromatic Electronic Effects: An Electronic Switch of Polyproline Helix. Biochemistry 2014, 53 (32) , 5307-5314. https://doi.org/10.1021/bi500696k
    52. Anuradha Mittal, Nicholas Lyle, Tyler S. Harmon, and Rohit V. Pappu . Hamiltonian Switch Metropolis Monte Carlo Simulations for Improved Conformational Sampling of Intrinsically Disordered Regions Tethered to Ordered Domains of Proteins. Journal of Chemical Theory and Computation 2014, 10 (8) , 3550-3562. https://doi.org/10.1021/ct5002297
    53. Megha Subhash Deshpande, Partha Pratim Parui, Hironari Kamikubo, Masaru Yamanaka, Satoshi Nagao, Hirofumi Komori, Mikio Kataoka, Yoshiki Higuchi, and Shun Hirota . Formation of Domain-Swapped Oligomer of Cytochrome c from Its Molten Globule State Oligomer. Biochemistry 2014, 53 (28) , 4696-4703. https://doi.org/10.1021/bi500497s
    54. Ursula Jakob, Richard Kriwacki, and Vladimir N. Uversky . Conditionally and Transiently Disordered Proteins: Awakening Cryptic Disorder To Regulate Protein Function. Chemical Reviews 2014, 114 (13) , 6779-6805. https://doi.org/10.1021/cr400459c
    55. Johnny Habchi, Peter Tompa, Sonia Longhi, and Vladimir N. Uversky . Introducing Protein Intrinsic Disorder. Chemical Reviews 2014, 114 (13) , 6561-6588. https://doi.org/10.1021/cr400514h
    56. Robin van der Lee, Marija Buljan, Benjamin Lang, Robert J. Weatheritt, Gary W. Daughdrill, A. Keith Dunker, Monika Fuxreiter, Julian Gough, Joerg Gsponer, David T. Jones, Philip M. Kim, Richard W. Kriwacki, Christopher J. Oldfield, Rohit V. Pappu, Peter Tompa, Vladimir N. Uversky, Peter E. Wright, and M. Madan Babu . Classification of Intrinsically Disordered Regions and Proteins. Chemical Reviews 2014, 114 (13) , 6589-6631. https://doi.org/10.1021/cr400525m
    57. Bin Xue, David Blocquel, Johnny Habchi, Alexey V. Uversky, Lukasz Kurgan, Vladimir N. Uversky, and Sonia Longhi . Structural Disorder in Viral Proteins. Chemical Reviews 2014, 114 (13) , 6880-6911. https://doi.org/10.1021/cr4005692
    58. Francois-Xavier Theillet, Andres Binolfi, Tamara Frembgen-Kesner, Karan Hingorani, Mohona Sarkar, Ciara Kyne, Conggang Li, Peter B. Crowley, Lila Gierasch, Gary J. Pielak, Adrian H. Elcock, Anne Gershenson, and Philipp Selenko . Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs). Chemical Reviews 2014, 114 (13) , 6661-6714. https://doi.org/10.1021/cr400695p
    59. Vladimir N. Uversky, Vrushank Davé, Lilia M. Iakoucheva, Prerna Malaney, Steven J. Metallo, Ravi Ramesh Pathak, and Andreas C. Joerger . Pathological Unfoldomics of Uncontrolled Chaos: Intrinsically Disordered Proteins and Human Diseases. Chemical Reviews 2014, 114 (13) , 6844-6879. https://doi.org/10.1021/cr400713r
    60. Monika Fuxreiter, Ágnes Tóth-Petróczy, Daniel A. Kraut, Andreas T. Matouschek, Roderick Y. H. Lim, Bin Xue, Lukasz Kurgan, and Vladimir N. Uversky . Disordered Proteinaceous Machines. Chemical Reviews 2014, 114 (13) , 6806-6843. https://doi.org/10.1021/cr4007329
    61. K. Aurelia Ball, David E. Wemmer, and Teresa Head-Gordon . Comparison of Structure Determination Methods for Intrinsically Disordered Amyloid-β Peptides. The Journal of Physical Chemistry B 2014, 118 (24) , 6405-6416. https://doi.org/10.1021/jp410275y
    62. Baoxu Liu, Darius Chia, Veronika Csizmok, Patrick Farber, Julie D. Forman-Kay, and Claudiu C. Gradinaru . The Effect of Intrachain Electrostatic Repulsion on Conformational Disorder and Dynamics of the Sic1 Protein. The Journal of Physical Chemistry B 2014, 118 (15) , 4088-4097. https://doi.org/10.1021/jp500776v
    63. Marco Brucale, Benjamin Schuler, and Bruno Samorì . Single-Molecule Studies of Intrinsically Disordered Proteins. Chemical Reviews 2014, 114 (6) , 3281-3317. https://doi.org/10.1021/cr400297g
    64. Toshio Ando, Takayuki Uchihashi, and Simon Scheuring . Filming Biomolecular Processes by High-Speed Atomic Force Microscopy. Chemical Reviews 2014, 114 (6) , 3120-3188. https://doi.org/10.1021/cr4003837
    65. Belén Nieto-Ortega, José M. Hierrezuelo, Cristóbal Carnero Ruiz, Juan Teodomiro López Navarrete, Juan Casado, and Francisco J. Ramírez . Unfolding Pathway of a Globular Protein by Surfactants Monitored with Raman Optical Activity. The Journal of Physical Chemistry Letters 2014, 5 (1) , 8-13. https://doi.org/10.1021/jz402291s
    66. Paul Robustelli, Nikola Trbovic, Richard A. Friesner, and Arthur G. Palmer, III . Conformational Dynamics of the Partially Disordered Yeast Transcription Factor GCN4. Journal of Chemical Theory and Computation 2013, 9 (11) , 5190-5200. https://doi.org/10.1021/ct400654r
    67. Sanbo Qin and Huan-Xiang Zhou . Effects of Macromolecular Crowding on the Conformational Ensembles of Disordered Proteins. The Journal of Physical Chemistry Letters 2013, 4 (20) , 3429-3434. https://doi.org/10.1021/jz401817x
    68. Devrishi Goswami, Srikripa Devarakonda, Michael J. Chalmers, Bruce D. Pascal, Bruce M. Spiegelman, Patrick R. Griffin. Time Window Expansion for HDX Analysis of an Intrinsically Disordered Protein. Journal of the American Society for Mass Spectrometry 2013, 24 (10) , 1584-1592. https://doi.org/10.1007/s13361-013-0669-y
    69. Carlo Santambrogio, Paola Sperandeo, Riccardo Villa, Frank Sobott, Alessandra Polissi, Rita Grandori. LptA Assembles into Rod-Like Oligomers Involving Disorder-to-Order Transitions. Journal of the American Society for Mass Spectrometry 2013, 24 (10) , 1593-1602. https://doi.org/10.1007/s13361-013-0687-9
    70. Sushant Kumar, Scott A. Showalter, and William G. Noid . Native-Based Simulations of the Binding Interaction Between RAP74 and the Disordered FCP1 Peptide. The Journal of Physical Chemistry B 2013, 117 (11) , 3074-3085. https://doi.org/10.1021/jp310293b
    71. Paul J. Barrett, Jiang Chen, Min-Kyu Cho, Ji-Hun Kim, Zhenwei Lu, Sijo Mathew, Dungeng Peng, Yuanli Song, Wade D. Van Horn, Tiandi Zhuang, Frank D. Sönnichsen, and Charles R. Sanders . The Quiet Renaissance of Protein Nuclear Magnetic Resonance. Biochemistry 2013, 52 (8) , 1303-1320. https://doi.org/10.1021/bi4000436
    72. Francis Canon, Franck Paté, Véronique Cheynier, Pascale Sarni-Manchado, Alexandre Giuliani, Javier Pérez, Dominique Durand, Joaquim Li, and Bernard Cabane . Aggregation of the Salivary Proline-Rich Protein IB5 in the Presence of the Tannin EgCG. Langmuir 2013, 29 (6) , 1926-1937. https://doi.org/10.1021/la3041715
    73. Igor Drobnak, Natalie De Jonge, Sarah Haesaerts, Gorazd Vesnaver, Remy Loris, and Jurij Lah . Energetic Basis of Uncoupling Folding from Binding for an Intrinsically Disordered Protein. Journal of the American Chemical Society 2013, 135 (4) , 1288-1294. https://doi.org/10.1021/ja305081b
    74. Joseph M. Rogers, Annette Steward, and Jane Clarke . Folding and Binding of an Intrinsically Disordered Protein: Fast, but Not ‘Diffusion-Limited’. Journal of the American Chemical Society 2013, 135 (4) , 1415-1422. https://doi.org/10.1021/ja309527h
    75. Ali Ghavami, Erik van der Giessen, and Patrick R. Onck . Coarse-Grained Potentials for Local Interactions in Unfolded Proteins. Journal of Chemical Theory and Computation 2013, 9 (1) , 432-440. https://doi.org/10.1021/ct300684j
    76. Sophie R. Harvey, Massimiliano Porrini, Christiane Stachl, Derek MacMillan, Giovanna Zinzalla, and Perdita E. Barran . Small-Molecule Inhibition of c-MYC:MAX Leucine Zipper Formation Is Revealed by Ion Mobility Mass Spectrometry. Journal of the American Chemical Society 2012, 134 (47) , 19384-19392. https://doi.org/10.1021/ja306519h
    77. Barbara Spolaore, Samanta Raboni, Amparo Ramos Molina, Abhijeet Satwekar, Nunzio Damiano, and Angelo Fontana . Local Unfolding Is Required for the Site-Specific Protein Modification by Transglutaminase. Biochemistry 2012, 51 (43) , 8679-8689. https://doi.org/10.1021/bi301005z
    78. Yaqiang Wang, Laura A. Benton, Vishavpreet Singh, and Gary J. Pielak . Disordered Protein Diffusion under Crowded Conditions. The Journal of Physical Chemistry Letters 2012, 3 (18) , 2703-2706. https://doi.org/10.1021/jz3010915
    79. Valéry Ozenne, Robert Schneider, Mingxi Yao, Jie-rong Huang, Loïc Salmon, Markus Zweckstetter, Malene Ringkjøbing Jensen, and Martin Blackledge . Mapping the Potential Energy Landscape of Intrinsically Disordered Proteins at Amino Acid Resolution. Journal of the American Chemical Society 2012, 134 (36) , 15138-15148. https://doi.org/10.1021/ja306905s
    80. Alaina M. Brown and Neal J. Zondlo . A Propensity Scale for Type II Polyproline Helices (PPII): Aromatic Amino Acids in Proline-Rich Sequences Strongly Disfavor PPII Due to Proline–Aromatic Interactions. Biochemistry 2012, 51 (25) , 5041-5051. https://doi.org/10.1021/bi3002924
    81. Tomas Koudelka, Francis C. Dehle, Ian F. Musgrave, Peter Hoffmann, and John A. Carver . Methionine Oxidation Enhances κ-Casein Amyloid Fibril Formation. Journal of Agricultural and Food Chemistry 2012, 60 (16) , 4144-4155. https://doi.org/10.1021/jf205168t
    82. Vladimir N. Uversky and A. Keith Dunker . Multiparametric Analysis of Intrinsically Disordered Proteins: Looking at Intrinsic Disorder through Compound Eyes. Analytical Chemistry 2012, 84 (5) , 2096-2104. https://doi.org/10.1021/ac203096k
    83. Shigeyoshi Nakamura and Shun-ichi Kidokoro . Volumetric Properties of the Molten Globule State of Cytochrome c in the Thermal Three-State Transition Evaluated by Pressure Perturbation Calorimetry. The Journal of Physical Chemistry B 2012, 116 (6) , 1927-1932. https://doi.org/10.1021/jp209686e
    84. Koushik Ghosh and Jeffrey S. Moore . Foldamer Structuring by Covalently Bound Macromolecules. Journal of the American Chemical Society 2011, 133 (49) , 19650-19652. https://doi.org/10.1021/ja2087163
    85. Ágnes Zotter, Judit Oláh, Emma Hlavanda, Andrea Bodor, András Perczel, Krisztián Szigeti, Judit Fidy, and Judit Ovádi . Zn2+-Induced Rearrangement of the Disordered TPPP/p25 Affects Its Microtubule Assembly and GTPase Activity. Biochemistry 2011, 50 (44) , 9568-9578. https://doi.org/10.1021/bi201447w
    86. Theodore R. Keppel, Brent A. Howard, and David D. Weis . Mapping Unstructured Regions and Synergistic Folding in Intrinsically Disordered Proteins with Amide H/D Exchange Mass Spectrometry. Biochemistry 2011, 50 (40) , 8722-8732. https://doi.org/10.1021/bi200875p
    87. Tatiana N. Melnik, Tatiana V. Povarnitsyna, Anatoly S. Glukhov, Vladimir N. Uversky, and Bogdan S. Melnik . Sequential Melting of Two Hydrophobic Clusters within the Green Fluorescent Protein GFP-cycle3. Biochemistry 2011, 50 (36) , 7735-7744. https://doi.org/10.1021/bi2006674
    88. Kan Xiong, Matthew C. Zwier, Nataliya S. Myshakina, Virginia M. Burger, Sanford A. Asher, and Lillian T. Chong . Direct Observations of Conformational Distributions of Intrinsically Disordered p53 Peptides Using UV Raman and Explicit Solvent Simulations. The Journal of Physical Chemistry A 2011, 115 (34) , 9520-9527. https://doi.org/10.1021/jp112235d
    89. Cs. Szasz, A. Alexa, K. Toth, M. Rakacs, J. Langowski, and P. Tompa . Protein Disorder Prevails under Crowded Conditions. Biochemistry 2011, 50 (26) , 5834-5844. https://doi.org/10.1021/bi200365j
    90. Shigeyoshi Nakamura, Yasutaka Seki, Etsuko Katoh, and Shun-ichi Kidokoro . Thermodynamic and Structural Properties of the Acid Molten Globule State of Horse Cytochrome c. Biochemistry 2011, 50 (15) , 3116-3126. https://doi.org/10.1021/bi101806b
    91. Matthias Wiens, Heinz-C. Schröder, Xiaohong Wang, Thorben Link, Dominik Steindorf, and Werner E. G. Müller . Isolation of the Silicatein-α Interactor Silintaphin-2 by a Novel Solid-Phase Pull-Down Assay. Biochemistry 2011, 50 (12) , 1981-1990. https://doi.org/10.1021/bi101429x
    92. Vladimir N. Uversky. Flexible Nets of Malleable Guardians: Intrinsically Disordered Chaperones in Neurodegenerative Diseases. Chemical Reviews 2011, 111 (2) , 1134-1166. https://doi.org/10.1021/cr100186d
    93. Gabriela Vaz Meirelles, Daniel Carlos Ferreira Lanza, Júlio César da Silva, Jéssica Santana Bernachi, Adriana Franco Paes Leme, and Jörg Kobarg . Characterization of hNek6 Interactome Reveals an Important Role for Its Short N-Terminal Domain and Colocalization with Proteins at the Centrosome. Journal of Proteome Research 2010, 9 (12) , 6298-6316. https://doi.org/10.1021/pr100562w
    94. Shen Niu, Tao Huang, Kaiyan Feng, Yudong Cai, and Yixue Li . Prediction of Tyrosine Sulfation with mRMR Feature Selection and Analysis. Journal of Proteome Research 2010, 9 (12) , 6490-6497. https://doi.org/10.1021/pr1007152
    95. Loïc Salmon, Gabrielle Nodet, Valéry Ozenne, Guowei Yin, Malene Ringkjøbing Jensen, Markus Zweckstetter and Martin Blackledge . NMR Characterization of Long-Range Order in Intrinsically Disordered Proteins. Journal of the American Chemical Society 2010, 132 (24) , 8407-8418. https://doi.org/10.1021/ja101645g
    96. Ying Ding, Artem B. Mamonov and Daniel M. Zuckerman. Efficient Equilibrium Sampling of All-Atom Peptides Using Library-Based Monte Carlo. The Journal of Physical Chemistry B 2010, 114 (17) , 5870-5877. https://doi.org/10.1021/jp910112d
    97. Siddharth R. Vora, Ying Guo, Danielle N. Stephens, Erdjan Salih, Emile D. Vu, Kathrin H. Kirsch, Gail E. Sonenshein and Philip C. Trackman . Characterization of Recombinant Lysyl Oxidase Propeptide. Biochemistry 2010, 49 (13) , 2962-2972. https://doi.org/10.1021/bi902218p
    98. Yie Hui Yong and E. Allen Foegeding . Caseins: Utilizing Molecular Chaperone Properties to Control Protein Aggregation in Foods. Journal of Agricultural and Food Chemistry 2010, 58 (2) , 685-693. https://doi.org/10.1021/jf903072g
    99. Gabrielle Nodet, Loïc Salmon, Valéry Ozenne, Sebastian Meier, Malene Ringkjøbing Jensen and Martin Blackledge. Quantitative Description of Backbone Conformational Sampling of Unfolded Proteins at Amino Acid Resolution from NMR Residual Dipolar Couplings. Journal of the American Chemical Society 2009, 131 (49) , 17908-17918. https://doi.org/10.1021/ja9069024
    100. Xiaoyun Meng, Larissa A. Munishkina, Anthony L. Fink and Vladimir N. Uversky . Molecular Mechanisms Underlying the Flavonoid-Induced Inhibition of α-Synuclein Fibrillation. Biochemistry 2009, 48 (34) , 8206-8224. https://doi.org/10.1021/bi900506b
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect