ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUECurrent Topics/Persp...Current Topics/PerspectivesNEXT

Advances in Determination of a High-Resolution Three-Dimensional Structure of Rhodopsin, a Model of G-Protein-Coupled Receptors (GPCRs),

View Author Information
Departments of Ophthalmology, Pharmacology, Chemistry, Biochemistry, and Biological Structure and Biomolecular Structure Center, University of Washington, Seattle, Washington 98195
Cite this: Biochemistry 2001, 40, 26, 7761–7772
Publication Date (Web):April 14, 2001
https://doi.org/10.1021/bi0155091
Copyright © 2001 American Chemical Society

    Article Views

    1713

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This research was supported by NIH Grant EY-09339, awards from Research to Prevent Blindness, Inc. (RPB), to the Department of Ophthalmology at the University of Washington, the Foundation Fighting Blindness, the Ruth and Milton Steinbach Fund, and the E. K. Bishop Foundation. K.P. is a RPB Senior Investigator.

     The coordinates have been deposited in the Protein Data Bank as entry 1HZX.

    *

     To whom correspondence should be addressed:  Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195-7350. Phone:  (206) 543-1756. Fax:  (206) 685-1792. E-mail:  [email protected].

    §

     Department of Biochemistry.

     Biomolecular Structure Center.

     Department of Ophthalmology.

    #

     Present address:  Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.$ Present address:  Emerald Biostructures, Bainbridge Island, WA 98110.

    @

     Department of Pharmacology.% Department of Chemistry.& Department of Biological Structure.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Tabular listing of the following topics:  tilt of the helices, bends within helices, possible hydrogen bonds between helices, closest atoms to the 11-cis-retinal, retinal atoms closest to these protein atoms, and torsion angles for the chromophore. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 516 publications.

    1. Kazuhiro J. Fujimoto, Fumika Minowa, Michiya Nishina, Shunta Nakamura, Sayaka Ohashi, Kota Katayama, Hideki Kandori, Takeshi Yanai. Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment. The Journal of Physical Chemistry Letters 2023, 14 (7) , 1784-1793. https://doi.org/10.1021/acs.jpclett.2c03619
    2. Linus Scholz, Johannes Neugebauer. Protein Response Effects on Cofactor Excitation Energies from First Principles: Augmenting Subsystem Time-Dependent Density-Functional Theory with Many-Body Expansion Techniques. Journal of Chemical Theory and Computation 2021, 17 (10) , 6105-6121. https://doi.org/10.1021/acs.jctc.1c00551
    3. Hongda Liu, Dawei Wang, Qiangmin Zhang, Yang Zhao, Tatyana Mamonova, Lei Wang, Cheng Zhang, Sheng Li, Peter A. Friedman, Kunhong Xiao. Parallel Post-Translational Modification Scanning Enhancing Hydrogen–Deuterium Exchange-Mass Spectrometry Coverage of Key Structural Regions. Analytical Chemistry 2019, 91 (11) , 6976-6980. https://doi.org/10.1021/acs.analchem.9b01410
    4. Motoshi Kamiya and Shigehiko Hayashi . Photoactivation Intermediates of a G-Protein Coupled Receptor Rhodopsin Investigated by a Hybrid Molecular Simulation. The Journal of Physical Chemistry B 2017, 121 (15) , 3842-3852. https://doi.org/10.1021/acs.jpcb.6b13050
    5. He Tian, Alexandre Fürstenberg, and Thomas Huber . Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chemical Reviews 2017, 117 (1) , 186-245. https://doi.org/10.1021/acs.chemrev.6b00084
    6. Amber M. Jones Brunette, Abhinav Sinha, Larry David, and David L. Farrens . Evidence that the Rhodopsin Kinase (GRK1) N-Terminus and the Transducin Gα C-Terminus Interact with the Same “Hydrophobic Patch” on Rhodopsin TM5. Biochemistry 2016, 55 (22) , 3123-3135. https://doi.org/10.1021/acs.biochem.6b00328
    7. Anirudh Ranganathan, Ron O. Dror, and Jens Carlsson . Insights into the Role of Asp792.50 in β2 Adrenergic Receptor Activation from Molecular Dynamics Simulations. Biochemistry 2014, 53 (46) , 7283-7296. https://doi.org/10.1021/bi5008723
    8. Margarita Morillo, Darwin Toledo, Juan Jesús Pérez, Eva Ramon, and Pere Garriga . Mercury-Induced Dark-State Instability and Photobleaching Alterations of the Visual G-Protein Coupled Receptor Rhodopsin. Chemical Research in Toxicology 2014, 27 (7) , 1219-1226. https://doi.org/10.1021/tx500114s
    9. Philip D. Kiser, Marcin Golczak, and Krzysztof Palczewski . Chemistry of the Retinoid (Visual) Cycle. Chemical Reviews 2014, 114 (1) , 194-232. https://doi.org/10.1021/cr400107q
    10. Omar Valsson, Pablo Campomanes, Ivano Tavernelli, Ursula Rothlisberger, and Claudia Filippi . Rhodopsin Absorption from First Principles: Bypassing Common Pitfalls. Journal of Chemical Theory and Computation 2013, 9 (5) , 2441-2454. https://doi.org/10.1021/ct3010408
    11. Emanuele Coccia, Daniele Varsano, and Leonardo Guidoni . Protein Field Effect on the Dark State of 11-cis Retinal in Rhodopsin by Quantum Monte Carlo/Molecular Mechanics. Journal of Chemical Theory and Computation 2013, 9 (1) , 8-12. https://doi.org/10.1021/ct3007502
    12. Eeva-Liisa Karjalainen and Andreas Barth . Vibrational Coupling between Helices Influences the Amide I Infrared Absorption of Proteins: Application to Bacteriorhodopsin and Rhodopsin. The Journal of Physical Chemistry B 2012, 116 (15) , 4448-4456. https://doi.org/10.1021/jp300329k
    13. Jan S. Frähmcke, Marius Wanko, and Marcus Elstner . Building a Model of the Blue Cone Pigment Based on the Wild Type Rhodopsin Structure with QM/MM Methods. The Journal of Physical Chemistry B 2012, 116 (10) , 3313-3321. https://doi.org/10.1021/jp2086472
    14. Bjoern E. S. Olausson, Alan Grossfield, Michael C. Pitman, Michael F. Brown, Scott E. Feller, and Alexander Vogel . Molecular Dynamics Simulations Reveal Specific Interactions of Post-translational Palmitoyl Modifications with Rhodopsin in Membranes. Journal of the American Chemical Society 2012, 134 (9) , 4324-4331. https://doi.org/10.1021/ja2108382
    15. Ville R. I. Kaila, Robert Send, and Dage Sundholm . The Effect of Protein Environment on Photoexcitation Properties of Retinal. The Journal of Physical Chemistry B 2012, 116 (7) , 2249-2258. https://doi.org/10.1021/jp205918m
    16. Sylvain Bussières, Line Cantin, Bernard Desbat, and Christian Salesse . Binding of a Truncated Form of Lecithin:Retinol Acyltransferase and Its N- and C-Terminal Peptides to Lipid Monolayers. Langmuir 2012, 28 (7) , 3516-3523. https://doi.org/10.1021/la203896n
    17. Francesca Fanelli and Pier G. De Benedetti . Update 1 of: Computational Modeling Approaches to Structure–Function Analysis of G Protein-Coupled Receptors. Chemical Reviews 2011, 111 (12) , PR438-PR535. https://doi.org/10.1021/cr100437t
    18. Min-Hsuan Chen, Daniel J. Sandberg, Kunnel R. Babu, Jose Bubis, Arjun Surya, Lavoisier S. Ramos, Heidi J. Zapata, Jhenny F. Galan, Megan N. Sandberg, Robert R. Birge, and Barry E. Knox . Conserved Residues in the Extracellular Loops of Short-Wavelength Cone Visual Pigments. Biochemistry 2011, 50 (32) , 6763-6773. https://doi.org/10.1021/bi101557m
    19. Igor Schapiro, Mikhail Nikolaevich Ryazantsev, Luis Manuel Frutos, Nicolas Ferré, Roland Lindh, and Massimo Olivucci . The Ultrafast Photoisomerizations of Rhodopsin and Bathorhodopsin Are Modulated by Bond Length Alternation and HOOP Driven Electronic Effects. Journal of the American Chemical Society 2011, 133 (10) , 3354-3364. https://doi.org/10.1021/ja1056196
    20. Soo-Kyung Kim, Youyong Li, Ravinder Abrol, Jiyoung Heo, and William A. Goddard, III . Predicted Structures and Dynamics for Agonists and Antagonists Bound to Serotonin 5-HT2B and 5-HT2C Receptors. Journal of Chemical Information and Modeling 2011, 51 (2) , 420-433. https://doi.org/10.1021/ci100375b
    21. Shiho Kawamura, Alejandro T. Colozo, Daniel J. Müller, and Paul S.-H. Park . Conservation of Molecular Interactions Stabilizing Bovine and Mouse Rhodopsin. Biochemistry 2010, 49 (49) , 10412-10420. https://doi.org/10.1021/bi101345x
    22. Jan S. Frähmcke, Marius Wanko, Prasad Phatak, Maria Andrea Mroginski and Marcus Elstner. The Protonation State of Glu181 in Rhodopsin Revisited: Interpretation of Experimental Data on the Basis of QM/MM Calculations. The Journal of Physical Chemistry B 2010, 114 (34) , 11338-11352. https://doi.org/10.1021/jp104537w
    23. Qi Gao, Satoshi Yokojima, Dmitri G. Fedorov, Kazuo Kitaura, Minoru Sakurai and Shinichiro Nakamura. Fragment-Molecular-Orbital-Method-Based ab Initio NMR Chemical-Shift Calculations for Large Molecular Systems. Journal of Chemical Theory and Computation 2010, 6 (4) , 1428-1444. https://doi.org/10.1021/ct100006n
    24. Ivet Bahar, Timothy R. Lezon, Ahmet Bakan and Indira H. Shrivastava. Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of Membrane Proteins. Chemical Reviews 2010, 110 (3) , 1463-1497. https://doi.org/10.1021/cr900095e
    25. Tadeusz Andruniów and Massimo Olivucci . How Does the Relocation of Internal Water Affect Resonance Raman Spectra of Rhodopsin? An Insight from CASSCF/Amber Calculations. Journal of Chemical Theory and Computation 2009, 5 (11) , 3096-3104. https://doi.org/10.1021/ct900071c
    26. Ahmet Altun, Shozo Yokoyama and Keiji Morokuma . Color Tuning in Short Wavelength-Sensitive Human and Mouse Visual Pigments: Ab initio Quantum Mechanics/Molecular Mechanics Studies. The Journal of Physical Chemistry A 2009, 113 (43) , 11685-11692. https://doi.org/10.1021/jp902754p
    27. Juan Carlos Mobarec, Roberto Sanchez and Marta Filizola. Modern Homology Modeling of G-Protein Coupled Receptors: Which Structural Template to Use?. Journal of Medicinal Chemistry 2009, 52 (16) , 5207-5216. https://doi.org/10.1021/jm9005252
    28. Laura Rivado-Casas, Diego Sampedro, Pedro J. Campos, Stefania Fusi, Vinicio Zanirato and Massimo Olivucci . Fluorenylidene−Pyrroline Biomimetic Light-Driven Molecular Switches. The Journal of Organic Chemistry 2009, 74 (13) , 4666-4674. https://doi.org/10.1021/jo802792j
    29. Gaia Tomasello, Gloria Olaso-González, Piero Altoè, Marco Stenta, Luis Serrano-Andrés, Manuela Merchán, Giorgio Orlandi, Andrea Bottoni and Marco Garavelli . Electrostatic Control of the Photoisomerization Efficiency and Optical Properties in Visual Pigments: On the Role of Counterion Quenching. Journal of the American Chemical Society 2009, 131 (14) , 5172-5186. https://doi.org/10.1021/ja808424b
    30. Guo Li, Lindsey C. Aschenbach, Jianyang Chen, Michael P. Cassidy, David L. Stevens, Bichoy H. Gabra, Dana E. Selley, William L. Dewey, Richard B. Westkaemper and Yan Zhang . Design, Synthesis, and Biological Evaluation of 6α- and 6β-N-Heterocyclic Substituted Naltrexamine Derivatives as μ Opioid Receptor Selective Antagonists. Journal of Medicinal Chemistry 2009, 52 (5) , 1416-1427. https://doi.org/10.1021/jm801272c
    31. Pär Söderhjelm, Charlotte Husberg, Angela Strambi, Massimo Olivucci and Ulf Ryde. Protein Influence on Electronic Spectra Modeled by Multipoles and Polarizabilities. Journal of Chemical Theory and Computation 2009, 5 (3) , 649-658. https://doi.org/10.1021/ct800459t
    32. Scott Gleim, Aleksandar Stojanovic, Eric Arehart, Daniel Byington and John Hwa. Conserved Rhodopsin Intradiscal Structural Motifs Mediate Stabilization: Effects of Zinc. Biochemistry 2009, 48 (8) , 1793-1800. https://doi.org/10.1021/bi800968w
    33. Guo Li, Kendra M. Haney, Glen E. Kellogg and Yan Zhang. Comparative Docking Study of Anibamine as the First Natural Product CCR5 Antagonist in CCR5 Homology Models. Journal of Chemical Information and Modeling 2009, 49 (1) , 120-132. https://doi.org/10.1021/ci800356a
    34. David Salom, Nan Wu, Wenyu Sun, Zhiqian Dong, Krzysztof Palczewski, Steven Jordan and John A. Salon . Heterologous Expression and Purification of the Serotonin Type 4 Receptor from Transgenic Mouse Retina. Biochemistry 2008, 47 (50) , 13296-13307. https://doi.org/10.1021/bi8018527
    35. Irina G. Tikhonova, Robert B. Best, Stanislav Engel, Marvin C. Gershengorn, Gerhard Hummer and Stefano Costanzi . Atomistic Insights into Rhodopsin Activation from a Dynamic Model. Journal of the American Chemical Society 2008, 130 (31) , 10141-10149. https://doi.org/10.1021/ja0765520
    36. Daniel S. Han, Simon X. Wang and Harel Weinstein. Active State-like Conformational Elements in the β2-AR and a Photoactivated Intermediate of Rhodopsin Identified by Dynamic Properties of GPCRs. Biochemistry 2008, 47 (28) , 7317-7321. https://doi.org/10.1021/bi800442g
    37. Ahmet Altun, Shozo Yokoyama and Keiji Morokuma . Spectral Tuning in Visual Pigments: An ONIOM(QM:MM) Study on Bovine Rhodopsin and its Mutants. The Journal of Physical Chemistry B 2008, 112 (22) , 6814-6827. https://doi.org/10.1021/jp709730b
    38. Sebastian Radestock, Tanja Weil and Steffen Renner . Homology Model-Based Virtual Screening for GPCR Ligands Using Docking and Target-Biased Scoring. Journal of Chemical Information and Modeling 2008, 48 (5) , 1104-1117. https://doi.org/10.1021/ci8000265
    39. Gennaro Pescitelli, Narasimha Sreerama, Piero Salvadori, Koji Nakanishi, Nina Berova and Robert W. Woody. Inherent Chirality Dominates the Visible/Near-Ultraviolet CD Spectrum of Rhodopsin. Journal of the American Chemical Society 2008, 130 (19) , 6170-6181. https://doi.org/10.1021/ja711009y
    40. Gregory V. Nikiforovich, Garland R. Marshall and Thomas J. Baranski . Modeling Molecular Mechanisms of Binding of the Anaphylatoxin C5a to the C5a Receptor. Biochemistry 2008, 47 (10) , 3117-3130. https://doi.org/10.1021/bi702321a
    41. Kamonchanok Sansuk, Crina I. A. Balog, Anne M. van der Does, Raymond Booth, Willem J. de Grip, André M. Deelder, Remko A. Bakker, Rob Leurs, and Paul J. Hensbergen . GPCR Proteomics: Mass Spectrometric and Functional Analysis of Histamine H1 Receptor after Baculovirus-Driven and in Vitro Cell Free Expression. Journal of Proteome Research 2008, 7 (2) , 621-629. https://doi.org/10.1021/pr7005654
    42. Ksenia Bravaya,, Anastasia Bochenkova,, Alexander Granovsky, and, Alexander Nemukhin. An Opsin Shift in Rhodopsin:  Retinal S0−S1 Excitation in Protein, in Solution, and in the Gas Phase. Journal of the American Chemical Society 2007, 129 (43) , 13035-13042. https://doi.org/10.1021/ja0732126
    43. Arnau Cordomí and, Juan J. Perez. Molecular Dynamics Simulations of Rhodopsin in Different One-Component Lipid Bilayers. The Journal of Physical Chemistry B 2007, 111 (25) , 7052-7063. https://doi.org/10.1021/jp0707788
    44. Kazuhiro Fujimoto,, Shigehiko Hayashi,, Jun-ya Hasegawa, and, Hiroshi Nakatsuji. Theoretical Studies on the Color-Tuning Mechanism in Retinal Proteins. Journal of Chemical Theory and Computation 2007, 3 (2) , 605-618. https://doi.org/10.1021/ct6002687
    45. Francesca Fanelli and, Pier G. De Benedetti. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chemical Reviews 2005, 105 (9) , 3297-3351. https://doi.org/10.1021/cr000095n
    46. Alessandro Cembran,, Remedios González-Luque,, Piero Altoè,, Manuela Merchán,, Fernando Bernardi,, Massimo Olivucci, and, Marco Garavelli. Structure, Spectroscopy, and Spectral Tuning of the Gas-Phase Retinal Chromophore:  The β-Ionone “Handle” and Alkyl Group Effect. The Journal of Physical Chemistry A 2005, 109 (29) , 6597-6605. https://doi.org/10.1021/jp052068c
    47. Julia Hufen,, Minoru Sugihara, and, Volker Buss. How the Counterion Affects Ground- and Excited-State Properties of the Rhodopsin Chromophore. The Journal of Physical Chemistry B 2004, 108 (52) , 20419-20426. https://doi.org/10.1021/jp046147k
    48. Minoru Sugihara,, Volker Buss,, Peter Entel, and, Jürgen Hafner. The Nature of the Complex Counterion of the Chromophore in Rhodopsin. The Journal of Physical Chemistry B 2004, 108 (11) , 3673-3680. https://doi.org/10.1021/jp0362786
    49. Xiangyang Liang,, John A. Parkinson,, Michael Weishäupl,, Robert O. Gould,, Stephen J. Paisey,, Hye-seo Park,, Tina M. Hunter,, Claudia A. Blindauer,, Simon Parsons, and, Peter J. Sadler. Structure and Dynamics of Metallomacrocycles:  Recognition of Zinc Xylyl-Bicyclam by an HIV Coreceptor. Journal of the American Chemical Society 2002, 124 (31) , 9105-9112. https://doi.org/10.1021/ja0260723
    50. Éva Bertalan, Matthew Joseph Rodrigues, Gebhard F. X. Schertler, Ana‐Nicoleta Bondar. Graph‐based algorithms to dissect long‐distance water‐mediated H‐bond networks for conformational couplings in GPCRs. British Journal of Pharmacology 2024, 55 https://doi.org/10.1111/bph.16387
    51. Kamalesh Damodaran, Taushif Khan, David Bickel, Sreeshma Jaya, Wim F. Vranken, Chinnappan Sudandiradoss. New simulation insights on the structural transition mechanism of bovine rhodopsin activation. Proteins: Structure, Function, and Bioinformatics 2023, 91 (6) , 771-780. https://doi.org/10.1002/prot.26465
    52. Jin Feng, Baofeng Li, Xinlu Wang, Xinlong Mao, Tengfei Ma, Dapeng Zhang, Siwei Bi. Relationship between the structural characteristics of retinal and its visual function—a theoretical study. New Journal of Chemistry 2023, 15 https://doi.org/10.1039/D3NJ01929B
    53. Martiniano Bello. Molecular Basis of Inhibitory Mechanism of Naltrexone and Its Metabolites through Structural and Energetic Analyses. Molecules 2022, 27 (15) , 4919. https://doi.org/10.3390/molecules27154919
    54. Wesley B. Asher, Daniel S. Terry, G. Glenn A. Gregorio, Alem W. Kahsai, Alessandro Borgia, Bing Xie, Arnab Modak, Ying Zhu, Wonjo Jang, Alekhya Govindaraju, Li-Yin Huang, Asuka Inoue, Nevin A. Lambert, Vsevolod V. Gurevich, Lei Shi, Robert J. Lefkowitz, Scott C. Blanchard, Jonathan A. Javitch. GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision. Cell 2022, 185 (10) , 1661-1675.e16. https://doi.org/10.1016/j.cell.2022.03.042
    55. Laura Pedraza-González, Leonardo Barneschi, Daniele Padula, Luca De Vico, Massimo Olivucci. Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol. Topics in Current Chemistry 2022, 380 (3) https://doi.org/10.1007/s41061-022-00374-w
    56. Francesca Picarazzi, Fabrizio Manetti, Valeria Marigo, Mattia Mori. Conformational insights into the C-terminal mutations of human rhodopsin in retinitis pigmentosa. Journal of Molecular Graphics and Modelling 2022, 110 , 108076. https://doi.org/10.1016/j.jmgm.2021.108076
    57. Francesca Fanelli, Angelo Felline, Valeria Marigo. Structural aspects of rod opsin and their implication in genetic diseases. Pflügers Archiv - European Journal of Physiology 2021, 473 (9) , 1339-1359. https://doi.org/10.1007/s00424-021-02546-x
    58. Hongjie Wu, Huajing Ling, Lei Gao, Qiming Fu, Weizhong Lu, Yijie Ding, Min Jiang, Haiou Li. Empirical Potential Energy Function Toward ab Initio Folding G Protein-Coupled Receptors. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2021, 18 (5) , 1752-1762. https://doi.org/10.1109/TCBB.2020.3008014
    59. Stephanie G. Pitch, Weekie Yao, Istvan Szundi, Jonathan Fay, Eefei Chen, Anthony Shumate, David S. Kliger, David L. Farrens. Functional integrity of membrane protein rhodopsin solubilized by styrene-maleic acid copolymer. Biophysical Journal 2021, 120 (16) , 3508-3515. https://doi.org/10.1016/j.bpj.2021.05.008
    60. Minseon Kim, Soyeon Jo, Ji-Ho Jeong, Yongae Kim. Optimized High-Yield Purification of Obesity-Associated Melanocortin 4 Receptor. Protein & Peptide Letters 2021, 28 (1) , 63-73. https://doi.org/10.2174/0929866527666200525162928
    61. Laura Pedraza-González, María del Carmen Marín, Luca De Vico, Xuchun Yang, Massimo Olivucci. On the Automatic Construction of QM/MM Models for Biological Photoreceptors: Rhodopsins as Model Systems. 2021, 1-75. https://doi.org/10.1007/978-3-030-57721-6_1
    62. Chiemela S. Odoemelam, Benita Percival, Helen Wallis, Ming-Wei Chang, Zeeshan Ahmad, Dawn Scholey, Emily Burton, Ian H. Williams, Caroline Lynn Kamerlin, Philippe B. Wilson. G-Protein coupled receptors: structure and function in drug discovery. RSC Advances 2020, 10 (60) , 36337-36348. https://doi.org/10.1039/D0RA08003A
    63. Barbara Zarzycka, Saheem A. Zaidi, Bryan L. Roth, Vsevolod Katritch, . Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacological Reviews 2019, 71 (4) , 571-595. https://doi.org/10.1124/pr.119.017863
    64. Tatiana B. Feldman, Oleksandr I. Ivankov, Alexander I. Kuklin, Tatiana N. Murugova, Marina A. Yakovleva, Olga A. Smitienko, Irina B. Kolchugina, Adam Round, Valentin I. Gordeliy, Alexander V. Belushkin, Mikhail A. Ostrovsky. Small-angle neutron and X-ray scattering analysis of the supramolecular organization of rhodopsin in photoreceptor membrane. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019, 1861 (10) , 183000. https://doi.org/10.1016/j.bbamem.2019.05.022
    65. Anju Sharma, Rajnish Kumar, Imlimaong Aier, Rahul Semwal, Pankaj Tyagi, Pritish Varadwaj. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Current Neuropharmacology 2019, 17 (9) , 891-911. https://doi.org/10.2174/1570159X17666181206095626
    66. Lee H. Wink, Daniel L. Baker, Judith A. Cole, Abby L. Parrill. A benchmark study of loop modeling methods applied to G protein-coupled receptors. Journal of Computer-Aided Molecular Design 2019, 33 (6) , 573-595. https://doi.org/10.1007/s10822-019-00196-x
    67. Bhawana Sahu, Sanchi Shah, Kaushiki Prabhudesai, Alessandro Contini, Susan Idicula-Thomas. Discovery of small molecule binders of human FSHR(TMD) with novel structural scaffolds by integrating structural bioinformatics and machine learning algorithms. Journal of Molecular Graphics and Modelling 2019, 89 , 156-166. https://doi.org/10.1016/j.jmgm.2019.02.001
    68. Arundhati Banerjee, Sujay Ray. Molecular interactions and mutational impact upon rhodopsin (G90→D90) for hindering dark adaptation of eye: A comparative structural level outlook for signaling mechanism in night blindness. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2019, 814 , 7-14. https://doi.org/10.1016/j.mrfmmm.2019.01.001
    69. Jingwen Xia, Li Yang, Liang Dong, Mengjie Niu, Shengli Zhang, Zhiwei Yang, Gulinuer Wumaier, Ying Li, Xiaomin Wei, Yi Gong, Ning Zhu, Shengqing Li. Cefminox, a Dual Agonist of Prostacyclin Receptor and Peroxisome Proliferator-Activated Receptor-Gamma Identified by Virtual Screening, Has Therapeutic Efficacy against Hypoxia-Induced Pulmonary Hypertension in Rats. Frontiers in Pharmacology 2018, 9 https://doi.org/10.3389/fphar.2018.00134
    70. Suchithranga M. D. C. Perera, Xiaolin Xu, Trivikram R. Molugu, Andrey V. Struts, Michael F. Brown. Solid-State Deuterium NMR Spectroscopy of Rhodopsin. 2018, 1251-1270. https://doi.org/10.1007/978-3-319-28388-3_144
    71. Mark P. Krebs, Gayle B. Collin, Wanda L. Hicks, Minzhong Yu, Jeremy R. Charette, Lan Ying Shi, Jieping Wang, Jürgen K. Naggert, Neal S. Peachey, Patsy M. Nishina, . Mouse models of human ocular disease for translational research. PLOS ONE 2017, 12 (8) , e0183837. https://doi.org/10.1371/journal.pone.0183837
    72. Pengfei Zhang, Robert J. Zawadzki, Mayank Goswami, Phuong T. Nguyen, Vladimir Yarov-Yarovoy, Marie E. Burns, Edward N. Pugh. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors. Proceedings of the National Academy of Sciences 2017, 114 (14) https://doi.org/10.1073/pnas.1620572114
    73. Saravana Prakash Thirumuruganandham, Edgar A. Gomez, Shanmugamurthy Lakshmanan, Michael R. Hamblin. Terahertz Spectroscopy to Determine Cold Shock Protein Stability Upon Solvation and Evaporation—A Molecular Dynamics Study. IEEE Transactions on Terahertz Science and Technology 2017, 7 (2) , 131-143. https://doi.org/10.1109/TTHZ.2016.2637380
    74. Daniele Varsano, Stefano Caprasecca, Emanuele Coccia. Theoretical description of protein field effects on electronic excitations of biological chromophores. Journal of Physics: Condensed Matter 2017, 29 (1) , 013002. https://doi.org/10.1088/0953-8984/29/1/013002
    75. Igor Schapiro, Patrick Zakhia El-Khoury, Massimo Olivucci. Ab Initio Investigation of Photochemical Reaction Mechanisms: From Isolated Molecules to Complex Environments. 2017, 1943-1994. https://doi.org/10.1007/978-3-319-27282-5_39
    76. Suchithranga M.D.C. Perera, Xiaolin Xu, Trivikram R. Molugu, Andrey V. Struts, Michael F. Brown. Solid-State Deuterium NMR Spectroscopy of Rhodopsin. 2017, 1-20. https://doi.org/10.1007/978-3-319-28275-6_144-1
    77. Samantha B. Gacasan, Daniel L. Baker, Abby L. Parrill, . G protein-coupled receptors: the evolution of structural insight. AIMS Biophysics 2017, 4 (3) , 491-527. https://doi.org/10.3934/biophy.2017.3.491
    78. Soo-Kyung Kim, William A. Goddard III. Molecular-Docking-Based Drug Design and Discovery. 2017, 656-682. https://doi.org/10.4018/978-1-5225-1762-7.ch025
    79. Joong-Youn Shim, Leepakshi Khurana, Debra A. Kendall. Computational analysis of the CB1 carboxyl-terminus in the receptor-G protein complex. Proteins: Structure, Function, and Bioinformatics 2016, 84 (4) , 532-543. https://doi.org/10.1002/prot.24999
    80. A. V. Struts, A. V. Barmasov, M. F. Brown. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods. Optics and Spectroscopy 2016, 120 (2) , 286-293. https://doi.org/10.1134/S0030400X16010197
    81. Jae Wan Jang, Nam‐Chul Cho, Sun‐Joon Min, Yong Seo Cho, Ki Duk Park, Seon Hee Seo, Kyoung Tai No, Ae Nim Pae. Novel Scaffold Identification of mG lu1 Receptor Negative Allosteric Modulators Using a Hierarchical Virtual Screening Approach. Chemical Biology & Drug Design 2016, 87 (2) , 239-256. https://doi.org/10.1111/cbdd.12654
    82. Soo-Kyung Kim, William A. Goddard III. Molecular-Docking-Based Drug Design and Discovery. 2016, 158-185. https://doi.org/10.4018/978-1-5225-0362-0.ch006
    83. Igor Schapiro, Patrick Zakhia El-Khoury, Massimo Olivucci. Ab Initio Investigation of Photochemical Reaction Mechanisms: From Isolated Molecules to Complex Environments. 2016, 1-52. https://doi.org/10.1007/978-94-007-6169-8_39-2
    84. T. B. Feldman, O. I. Ivankov, T. N. Murugova, A. I. Kuklin, P. V. Shelyakin, M. A. Yakovleva, V. I. Gordeliy, A. V. Belushkin, M. A. Ostrovsky. Study of visual pigment rhodopsin supramolecular organization in photoreceptor membrane by small-angle neutron scattering method with contrast variation. Doklady Biochemistry and Biophysics 2015, 465 (1) , 420-423. https://doi.org/10.1134/S1607672915060186
    85. Tatini Rakshit, Subhadip Senapati, Satyabrata Sinha, A. M. Whited, Paul S.-H. Park, . Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis. PLOS ONE 2015, 10 (10) , e0141114. https://doi.org/10.1371/journal.pone.0141114
    86. Anamika Singh, Carrie Haskell‐Luevano. Peptide Design Strategies for G‐Protein Coupled Receptors (GPCR). 2015, 75-112. https://doi.org/10.1002/9781118995303.ch3
    87. A. V. Struts, A. V. Barmasov, M. F. Brown. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy. Optics and Spectroscopy 2015, 118 (5) , 711-717. https://doi.org/10.1134/S0030400X15050240
    88. Zaheer Ul-Haq, Maria Saeed, Sobia Ahsan Halim, Waqasuddin Khan, . 3D Structure Prediction of Human β1-Adrenergic Receptor via Threading-Based Homology Modeling for Implications in Structure-Based Drug Designing. PLOS ONE 2015, 10 (4) , e0122223. https://doi.org/10.1371/journal.pone.0122223
    89. Dalibor Milić, Dmitry B. Veprintsev. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Frontiers in Pharmacology 2015, 6 https://doi.org/10.3389/fphar.2015.00066
    90. Erik Malmerberg, Petra H. M. Bovee-Geurts, Gergely Katona, Xavier Deupi, David Arnlund, Cecilia Wickstrand, Linda C. Johansson, Sebastian Westenhoff, Elena Nazarenko, Gebhard F. X. Schertler, Andreas Menzel, Willem J. de Grip, Richard Neutze. Conformational activation of visual rhodopsin in native disc membranes. Science Signaling 2015, 8 (367) https://doi.org/10.1126/scisignal.2005646
    91. Tania C. Córdova-Sintjago, Yue Liu, Raymond G. Booth. Molecular interactions of agonist and inverse agonist ligands at serotonin 5-HT 2C G protein-coupled receptors: computational ligand docking and molecular dynamics studies validated by experimental mutagenesis results. Molecular Physics 2015, 113 (3-4) , 348-358. https://doi.org/10.1080/00268976.2014.952695
    92. Martha E. Sommer, Matthias Elgeti, Peter W. Hildebrand, Michal Szczepek, Klaus Peter Hofmann, Patrick Scheerer. Structure-Based Biophysical Analysis of the Interaction of Rhodopsin with G Protein and Arrestin. 2015, 563-608. https://doi.org/10.1016/bs.mie.2014.12.014
    93. Allison M. Whited, Paul S.-H. Park. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2015, 1848 (1) , 26-34. https://doi.org/10.1016/j.bbamem.2014.10.007
    94. Lukas Hofmann, Krzysztof Palczewski. The G Protein-Coupled Receptor Rhodopsin: A Historical Perspective. 2015, 3-18. https://doi.org/10.1007/978-1-4939-2330-4_1
    95. Andrey V. Struts, Udeep Chawla, Suchithranga M. D. C. Perera, Michael F. Brown. Investigation of Rhodopsin Dynamics in Its Signaling State by Solid-State Deuterium NMR Spectroscopy. 2015, 133-158. https://doi.org/10.1007/978-1-4939-2330-4_10
    96. Soo-Kyung Kim, William A. Goddard. Predicted 3D structures of olfactory receptors with details of odorant binding to OR1G1. Journal of Computer-Aided Molecular Design 2014, 28 (12) , 1175-1190. https://doi.org/10.1007/s10822-014-9793-4
    97. Katsuyuki Miyaguchi. Direct imaging electron microscopy (EM) methods in modern structural biology: Overview and comparison with X‐ray crystallography and single‐particle cryo‐EM reconstruction in the studies of large macromolecules. Biology of the Cell 2014, 106 (10) , 323-345. https://doi.org/10.1111/boc.201300081
    98. Francesco Tavanti, Valentina Tozzini. A Multi-Scale–Multi-Stable Model for the Rhodopsin Photocycle. Molecules 2014, 19 (9) , 14961-14978. https://doi.org/10.3390/molecules190914961
    99. Soo‐Kyung Kim, William A. Goddard, Kyu Yang Yi, Byung Ho Lee, Chae Jo Lim, Bartosz Trzaskowski. Predicted Ligands for the Human Urotensin‐II G Protein‐Coupled Receptor with Some Experimental Validation. ChemMedChem 2014, 9 (8) , 1732-1743. https://doi.org/10.1002/cmdc.201402087
    100. Benjamin G. Tehan, Andrea Bortolato, Frank E. Blaney, Malcolm P. Weir, Jonathan S. Mason. Unifying Family A GPCR Theories of Activation. Pharmacology & Therapeutics 2014, 143 (1) , 51-60. https://doi.org/10.1016/j.pharmthera.2014.02.004
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect