ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Ivermectin and Nodulisporic Acid Receptors in Drosophila melanogaster Contain Both γ-Aminobutyric Acid-Gated Rdl and Glutamate-Gated GluClα Chloride Channel Subunits

View Author Information
Department of Parasite Biochemistry and Molecular Biology, Department of Drug Metabolism, Department of Basic Medicinal Chemistry, and Department of Ion Channels, Merck Research Laboratories, Rahway, New Jersey 07065
Cite this: Biochemistry 2002, 41, 20, 6548–6560
Publication Date (Web):April 23, 2002
Copyright © 2002 American Chemical Society

    Article Views





    Read OnlinePDF (175 KB)


    35S-labeled derivatives of the insecticides nodulisporic acid and ivermectin were synthesized and demonstrated to bind with high affinity to a population of receptors in Drosophila head membranes that were previously shown to be associated with a glutamate-gated chloride channel. Nodulisporic acid binding was modeled as binding to a single population of receptors. Ivermectin binding was composed of at least two kinetically distinct receptor populations, only one of which was associated with nodulisporic acid binding. The binding of these two ligands was modulated by glutamate, ivermectin, and antagonists of invertebrate γ-aminobutyric acid (GABA)ergic receptors. Because solubilized nodulisporic acid and ivermectin receptors comigrated as 230-kDa complexes by gel filtration, antisera specific for both the Drosophila glutamate-gated chloride channel subunit GluClα (DmGluClα) and the GABA-gated chloride channel subunit Rdl (DmRdl) proteins were generated and used to examine the possible coassembly of these two subunits within a single receptor complex. DmGluClα antibodies immunoprecipitated all of the ivermectin and nodulisporic acid receptors solubilized by detergent from Drosophila head membranes. DmRdl antibodies also immunoprecipitated all solubilized nodulisporic receptors, but only ∼70% of the ivermectin receptors. These data suggest that both DmGluClα and DmRdl are components of nodulisporic acid and ivermectin receptors, and that there also exists a distinct class of ivermectin receptors that contains the DmGluClα subunit but not the DmRdl subunit. This co-association of DmGluClα and DmRdl represents the first biochemical and immunological evidence of coassembly of subunits from two different subclasses of ligand-gated ion channel subunits.

     Department of Parasite Biochemistry and Molecular Biology.


     Department of Ion Channels.


     Department of Basic Medicinal Chemistry.

     Department of Drug Metabolism.


     To whom correspondence should be addressed at Merck Research Laboratories, R80N-31C, P.O. Box 2000, Rahway, NJ 07065. Phone:  (732) 594-7013. FAX:  (732) 594-3925. E-mail:  mchardy_smith@

    Cited By

    This article is cited by 87 publications.

    1. Amir E. Kaziem, Liupeng Yang, Yigang Lin, Yuting Tan, Zixia Song, Hanhong Xu, Zhixiang Zhang. Pest Invasion-Responsive Hollow Mesoporous Silica-Linked Carboxymethyl Starch Nanoparticles for Smart Abamectin Delivery. ACS Applied Nano Materials 2022, 5 (3) , 3458-3469.
    2. Qiu Tang Huang, Cheng Wang Sheng, Andrew K. Jones, Jie Jiang, Tao Tang, Zhao Jun Han, Chun Qing Zhao. Functional Characteristics of the Lepidopteran Ionotropic GABA Receptor 8916 Subunit Interacting with the LCCH3 or the RDL Subunit. Journal of Agricultural and Food Chemistry 2021, 69 (39) , 11582-11591.
    3. William P. Thomas, Sergey V. Pronin. New Methods and Strategies in the Synthesis of Terpenoid Natural Products. Accounts of Chemical Research 2021, 54 (6) , 1347-1359.
    4. Lovepreet Singh, Diana Fontinha, Denise Francisco, Antonio M. Mendes, Miguel Prudêncio, Kamaljit Singh. Molecular Design and Synthesis of Ivermectin Hybrids Targeting Hepatic and Erythrocytic Stages of Plasmodium Parasites. Journal of Medicinal Chemistry 2020, 63 (4) , 1750-1762.
    5. Nicole A. Godfrey, Devon J. Schatz, Sergey V. Pronin. Twelve-Step Asymmetric Synthesis of (−)-Nodulisporic Acid C. Journal of the American Chemical Society 2018, 140 (40) , 12770-12774.
    6. John E. Casida. Radioligand Recognition of Insecticide Targets. Journal of Agricultural and Food Chemistry 2018, 66 (13) , 3277-3290.
    7. Jennina Taylor-Wells Andrew K. Jones . Variations in the Insect GABA Receptor, RDL, and Their Impact on Receptor Pharmacology. 2017, 1-21.
    8. Yike Zou, Jason E. Melvin, Stephen S. Gonzales, Matthew J. Spafford, and Amos B. Smith, III . Total Synthesis of (−)-Nodulisporic Acid D. Journal of the American Chemical Society 2015, 137 (22) , 7095-7098.
    9. Ramin Faghih, Murali Gopalakrishnan and Clark A. Briggs. Allosteric Modulators of the α7 Nicotinic Acetylcholine Receptor. Journal of Medicinal Chemistry 2008, 51 (4) , 701-712.
    10. Amos B. Smith, III,, Akin H. Davulcu,, Young Shin Cho,, Kazuyuki Ohmoto,, László Kürti, and, Haruaki Ishiyama. Indole Diterpene Synthetic Studies. Total Synthesis of (+)-Nodulisporic Acid F and Construction of the Heptacyclic Cores of (+)-Nodulisporic Acids A and B and (−)-Nodulisporic Acid D. The Journal of Organic Chemistry 2007, 72 (13) , 4596-4610.
    11. Amos B. Smith, III,, László Kürti,, Akin H. Davulcu, and, Young Shin Cho. Development of a Scalable Synthesis of a Common Eastern Tricyclic Lactone for Construction of the Nodulisporic Acids. Organic Process Research & Development 2007, 11 (1) , 19-24.
    12. Amos B. Smith, III,, László Kürti, and, Akin H. Davulcu. A New Modular Indole Synthesis. Construction of the Highly Strained CDEF Parent Tetracycle of Nodulisporic Acids A and B. Organic Letters 2006, 8 (10) , 2167-2170.
    13. Amos B. Smith, III,, Akin H. Davulcu, and, László Kürti. Indole Diterpenoid Synthetic Studies. The Total Synthesis of (+)-Nodulisporic Acid F. Organic Letters 2006, 8 (8) , 1665-1668.
    14. Amos B. Smith, III,, Akin H. Davulcu, and, László Kürti. Indole Diterpenoid Synthetic Studies. Construction of the Heptacyclic Core of (−)-Nodulisporic Acid D. Organic Letters 2006, 8 (8) , 1669-1672.
    15. Sheo B. Singh,, John G. Ondeyka,, Hiranthi Jayasuriya,, Deborah L. Zink,, Sookhee N. Ha,, Arlene Dahl-Roshak,, Joyce Greene,, Jennifer A. Kim,, McHardy M. Smith,, Wesley Shoop, and, Jan S. Tkacz. Nodulisporic Acids D−F:  Structure, Biological Activities, and Biogenetic Relationships. Journal of Natural Products 2004, 67 (9) , 1496-1506.
    16. Marilou Vandenhole, Catherine Mermans, Berdien De Beer, Wenxin Xue, Yilan Zhao, Yoshihisa Ozoe, Genyan Liu, Wannes Dermauw, Thomas Van Leeuwen. A glutamate-gated chloride channel as the mite-specific target-site of dicofol and other diphenylcarbinol acaricides. Communications Biology 2023, 6 (1)
    17. Ernesto Villacis‐Perez, Wenxin Xue, Marilou Vandenhole, Berdien De Beer, Wannes Dermauw, Thomas Van Leeuwen. Intraspecific diversity in the mechanisms underlying abamectin resistance in a cosmopolitan pest. Evolutionary Applications 2023, 16 (4) , 863-879.
    18. Xi Sun, Wenjuan Hua, Bin Zhu, Pei Liang, Xiwu Gao. CRISPR / Cas9 ‐mediated D472N substitution in the Rdl1 of Plutella xylostella confers low resistance to abamectin. Pest Management Science 2023, 79 (2) , 741-747.
    19. Shivani Choudhary, Melanie Abongwa, Sudhanva S. Kashyap, Saurabh Verma, Gunnar R. Mair, Daniel Kulke, Richard J. Martin, Alan P. Robertson. Nodulisporic acid produces direct activation and positive allosteric modulation of AVR-14B, a glutamate-gated chloride channel from adult Brugia malayi. Proceedings of the National Academy of Sciences 2022, 119 (34)
    20. Marianna Stavrakaki, Aris Ilias, Panagiotis Ioannidis, John Vontas, Emmanouil Roditakis. Investigating mechanisms associated with emamectin benzoate resistance in the tomato borer Tuta absoluta. Journal of Pest Science 2022, 95 (3) , 1163-1177.
    21. Devon J. Schatz, Eric J. Kuenstner, David T. George, Sergey V. Pronin. Synthesis of rearranged indole diterpenes of the paxilline type. Natural Product Reports 2022, 39 (5) , 946-968.
    22. Li-Ping Chen, Xue-Jie Xing, Ke-Lai Kang, Wen-Yao Yang, Liang Luo, Yi-Jun Wu. Why are Drosophila larvae more sensitive to avermectin than adults?. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2022, 251 , 109197.
    23. Leily Daneshian, Caleb Schlachter, Luís Fernando Saraiva Macedo Timmers, Taylor Radford, Brenda Kapingidza, Travis Dias, Jana Liese, Raul Antonio Sperotto, Vojislava Grbic, Miodrag Grbic, Maksymilian Chruszcz. Delta class glutathione S-transferase (TuGSTd01) from the two-spotted spider mite Tetranychus urticae is inhibited by abamectin. Pesticide Biochemistry and Physiology 2021, 176 , 104873.
    24. Wenxin Xue, Catherine Mermans, Kyriaki‐Maria Papapostolou, Mantha Lamprousi, Iason‐Konstantinos Christou, Emre Inak, Vassilis Douris, John Vontas, Wannes Dermauw, Thomas Van Leeuwen. Untangling a G ordian knot: the role of a GluCl3 I321T mutation in abamectin resistance in Tetranychus urticae. Pest Management Science 2021, 77 (4) , 1581-1593.
    25. Christopher Henry, Thierry Cens, Pierre Charnet, Catherine Cohen‐Solal, Claude Collet, Juliette van‐Dijk, Janique Guiramand, Marie‐céleste de Jésus‐Ferreira, Claudine Menard, Nawfel Mokrane, Julien Roussel, Jean‐Baptiste Thibaud, Michel Vignes, Matthieu Rousset. Heterogeneous expression of GABA receptor‐like subunits LCCH3 and GRD reveals functional diversity of GABA receptors in the honeybee Apis mellifera . British Journal of Pharmacology 2020, 177 (17) , 3924-3940.
    26. Wenxin Xue, Simon Snoeck, Christine Njiru, Emre Inak, Wannes Dermauw, Thomas Van Leeuwen. Geographical distribution and molecular insights into abamectin and milbemectin cross‐resistance in European field populations of Tetranychus urticae. Pest Management Science 2020, 76 (8) , 2569-2581.
    27. Nuntanit Suraphan, Linfeng Fan, Baoxia Liu, Decheng Wu. Co-delivery of chlorantraniliprole and avermectin with a polylactide microcapsule formulation. RSC Advances 2020, 10 (43) , 25418-25425.
    28. Raquel Azevedo, António M. Mendes, Miguel Prudêncio. Inhibition of Plasmodium sporogonic stages by ivermectin and other avermectins. Parasites & Vectors 2019, 12 (1)
    29. Sebastian Molina-Obando, Juan Felipe Vargas-Fique, Miriam Henning, Burak Gür, T Moritz Schladt, Junaid Akhtar, Thomas K Berger, Marion Silies. ON selectivity in the Drosophila visual system is a multisynaptic process involving both glutamatergic and GABAergic inhibition. eLife 2019, 8
    30. Amir. E. Kaziem, Yunhao Gao, Yuan Zhang, Xueying Qin, Yanan Xiao, Yanhui Zhang, Hong You, Jianhong Li, Shun He. α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella. Journal of Hazardous Materials 2018, 359 , 213-221.
    31. Maria Riga, Sabina Bajda, Christos Themistokleous, Stavrini Papadaki, Maria Palzewicz, Wannes Dermauw, John Vontas, Thomas Van Leeuwen. The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae. Scientific Reports 2017, 7 (1)
    32. Hongxia Liu, Andrew S. French, Päivi H. Torkkeli. Expression of Cys‐loop receptor subunits and acetylcholine binding protein in the mechanosensory neurons, glial cells, and muscle tissue of the spider Cupiennius salei. Journal of Comparative Neurology 2017, 525 (5) , 1139-1154.
    33. Päivi H. Torkkeli, Hongxia Liu, Andrew S. French, . Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein. PLOS ONE 2015, 10 (9) , e0138068.
    34. Toshifumi Nakao, Shinichi Banba, Kangetsu Hirase. Comparison between the modes of action of novel meta-diamide and macrocyclic lactone insecticides on the RDL GABA receptor. Pesticide Biochemistry and Physiology 2015, 120 , 101-108.
    35. Muhammad Taha, Nor Hadiani Ismail, Muhammad Ali, Khalid M. Khan, Waqas Jamil, Syed Muhammad Kashif, Mohammad Asraf. Synthesis of indole-2-hydrazones in search of potential leishmanicidal agents. Medicinal Chemistry Research 2014, 23 (12) , 5282-5293.
    36. Mary J. Palmer, Jenni Harvey. Honeybee Kenyon cells are regulated by a tonic GABA receptor conductance. Journal of Neurophysiology 2014, 112 (8) , 2026-2035.
    37. Kristin Lees, Maria Musgaard, Siros Suwanmanee, Steven David Buckingham, Philip Biggin, David Sattelle, . Actions of Agonists, Fipronil and Ivermectin on the Predominant In Vivo Splice and Edit Variant (RDLbd, I/V) of the Drosophila GABA Receptor Expressed in Xenopus laevis Oocytes. PLoS ONE 2014, 9 (5) , e97468.
    38. Congfen Gao, Yu Chen, Yaoxue Dong, Jianya Su. Mechanism of Fipronil Resistance in Laodelphax striatellus (Hemiptera: Delphacidae). Journal of Entomological Science 2014, 49 (1) , 1-10.
    39. Lixia Tian, Jiaqiang Yang, Wenjie Hou, Baoyun Xu, Wen Xie, Shaoli Wang, Youjun Zhang, Xuguo Zhou, Qingjun Wu. Molecular Cloning and Characterization of a P-Glycoprotein from the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). International Journal of Molecular Sciences 2013, 14 (11) , 22891-22905.
    40. Yoshihisa Ozoe. γ-Aminobutyrate- and Glutamate-gated Chloride Channels as Targets of Insecticides. 2013, 211-286.
    41. Fabien Démares, Valérie Raymond, Catherine Armengaud. Expression and localization of glutamate-gated chloride channel variants in honeybee brain (Apis mellifera). Insect Biochemistry and Molecular Biology 2013, 43 (1) , 115-124.
    42. Roger Prichard, Cécile Ménez, Anne Lespine. Moxidectin and the avermectins: Consanguinity but not identity. International Journal for Parasitology: Drugs and Drug Resistance 2012, 2 , 134-153.
    43. Kevin C Kobylinski, Brian D Foy, Jason H Richardson. Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae. Malaria Journal 2012, 11 (1)
    44. Päivi H. Torkkeli, Shannon Meisner, Keram Pfeiffer, Andrew S. French. GABA and glutamate receptors have different effects on excitability and are differentially regulated by calcium in spider mechanosensory neurons. European Journal of Neuroscience 2012, 36 (12) , 3602-3614.
    45. Adrian J. Wolstenholme. Glutamate-gated Chloride Channels. Journal of Biological Chemistry 2012, 287 (48) , 40232-40238.
    46. Toshifumi Nakao, Atsuko Naoi, Masako Hama, Nobuyuki Kawahara, Kangetsu Hirase. Concentration-Dependent Effects of GABA on Insensitivity to Fipronil in the A2′S Mutant RDL GABA Receptor From Fipronil-Resistant Oulema oryzae (Coleoptera: Chrysomelidae). Journal of Economic Entomology 2012, 105 (5) , 1781-1788.
    47. Andrew J. Thompson, Ian McGonigle, Rujee Duke, Graham A. R. Johnston, Sarah C. R. Lummis. A single amino acid determines the toxicity of Ginkgo biloba extracts. The FASEB Journal 2012, 26 (5) , 1884-1891.
    48. Toshifumi Nakao, Masako Hama, Nobuyuki Kawahara, Kangetsu Hirase. Fipronil resistance in Sogatella furcifera: Molecular cloning and functional expression of wild-type and mutant RDL GABA receptor subunits. Journal of Pesticide Science 2012, 37 (1) , 37-44.
    49. Peter Jeschke, Ralf Nauen, Thomas C. Sparks, Michael R. Loso, Gerald B. Watson, Jonathan M. Babcock, Vincent J. Kramer, Yuanming Zhu, Benjamin M. Nugent, James D. Thomas, Gary D. Crouse, James E. Dripps, Clive Waldron, Vincent L. Salgado, Stefan Schnatterer, Keith A. Holmes, Thomas Pitterna. Nervous System. 2011, 1127-1326.
    50. Brian D. Foy, Kevin C. Kobylinski, Ines Marques da Silva, Jason L. Rasgon, Massamba Sylla. Endectocides for malaria control. Trends in Parasitology 2011, 27 (10) , 423-428.
    51. Dhana Raj Boina, Jeffrey R. Bloomquist. Blockage of chloride channels and anion transporters with pesticidal natural products and their synthetic analogs. Phytochemistry Reviews 2011, 10 (2) , 217-226.
    52. Toshifumi Nakao, Ayumi Kawase, Ayako Kinoshita, Reiko Abe, Masako Hama, Nobuyuki Kawahara, Kangetsu Hirase. The A2′N Mutation of the RDL γ-Aminobutyric Acid Receptor Conferring Fipronil Resistance in Laodelphax striatellus (Hemiptera: Delphacidae). Journal of Economic Entomology 2011, 104 (2) , 646-652.
    53. Adrian J. Wolstenholme. Recent progress in understanding the interaction between avermectins and ligand-gated ion channels: putting the pests to sleep. Invertebrate Neuroscience 2010, 10 (1) , 5-10.
    54. Toshifumi Nakao, Atsuko Naoi, Nobuyuki Kawahara, Kangetsu Hirase. Mutation of the GABA receptor associated with fipronil resistance in the whitebacked planthopper, Sogatella furcifera. Pesticide Biochemistry and Physiology 2010, 97 (3) , 262-266.
    55. Douglas C. Knipple, David M. Soderlund. The ligand-gated chloride channel gene family of Drosophila melanogaster. Pesticide Biochemistry and Physiology 2010, 97 (2) , 140-148.
    56. Xilong Zhao, Vincent L. Salgado. The role of GABA and glutamate receptors in susceptibility and resistance to chloride channel blocker insecticides. Pesticide Biochemistry and Physiology 2010, 97 (2) , 153-160.
    57. Shohei Sakuda, Makoto Kimura. Toxins of Microorganisms. 2010, 411-455.
    58. Julien Pierre Dupuis, Michaël Bazelot, Guillaume Stéphane Barbara, Sandrine Paute, Monique Gauthier, Valérie Raymond-Delpech. Homomeric RDL and Heteromeric RDL/LCCH3 GABA Receptors in the Honeybee Antennal Lobes: Two Candidates for Inhibitory Transmission in Olfactory Processing. Journal of Neurophysiology 2010, 103 (1) , 458-468.
    59. David B. Sattelle, Steven D. Buckingham, Miki Akamatsu, Kazuhiko Matsuda, Ilse Pienaar, Andrew K. Jones, Benedict M. Sattelle, Andrew Almond, Charles D. Blundell. Comparative pharmacology and computational modelling yield insights into allosteric modulation of human α7 nicotinic acetylcholine receptors. Biochemical Pharmacology 2009, 78 (7) , 836-843.
    60. Yoshihisa Ozoe, Makio Takeda, Kazuhiko Matsuda. γ-Aminobutyric Acid Receptors: A Rationale for Developing Selective Insect Pest Control Chemicals. 2009, 131-162.
    61. Kazuhiko Matsuda. 神経系イオンチャネルを標的とする殺虫剤の作用および選択性発現機構の研究. Journal of Pesticide Science 2009, 34 (2) , 119-126.
    62. Abdessalam Kacimi El Hassani, Martin Giurfa, Monique Gauthier, Catherine Armengaud. Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiology of Learning and Memory 2008, 90 (4) , 589-595.
    63. S. McCAVERA, T. K. WALSH, A. J. WOLSTENHOLME. Nematode ligand-gated chloride channels: an appraisal of their involvement in macrocyclic lactone resistance and prospects for developing molecular markers. Parasitology 2007, 134 (8) , 1111-1121.
    64. Daniel Janssen, Christian Derst, Roeland Buckinx, Jimmy Van den Eynden, Jean-Michel Rigo, Emmy Van Kerkhove. Dorsal Unpaired Median Neurons of Locusta migratoria Express Ivermectin- and Fipronil-Sensitive Glutamate-Gated Chloride Channels. Journal of Neurophysiology 2007, 97 (4) , 2642-2650.
    65. . Nervous System. 2007, 927-1088.
    66. Y. Eguchi, M. Ihara, E. Ochi, Y. Shibata, K. Matsuda, S. Fushiki, H. Sugama, Y. Hamasaki, H. Niwa, M. Wada, F. Ozoe, Y. Ozoe. Functional characterization of Musca glutamate‐ and GABA‐gated chloride channels expressed independently and coexpressed in Xenopus oocytes. Insect Molecular Biology 2006, 15 (6) , 773-783.
    67. Valérie Raymond-Delpech, Kazuhiko Matsuda, Benedict M. Sattelle, James J. Rauh, David B. Sattelle. Ion channels: molecular targets of neuroactive insecticides. Invertebrate Neuroscience 2005, 5 (3-4) , 119-133.
    68. Makoto Ihara, Chiharu Ishida, Hiroshi Okuda, Yoshihisa Ozoe, Kazuhiko Matsuda. Differential blocking actions of 4′-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) and γ-hexachlorocyclohexane (γ-HCH) on γ-aminobutyric acid- and glutamate-induced responses of American cockroach neurons. Invertebrate Neuroscience 2005, 5 (3-4) , 157-164.
    69. Steven David Buckingham, Philip Charles Biggin, Benedict Mark Sattelle, Laurence Andrew Brown, David Barry Sattelle. Insect GABA Receptors: Splicing, Editing, and Targeting by Antiparasitics and Insecticides. Molecular Pharmacology 2005, 68 (4) , 942-951.
    70. Guillaume Stephane Barbara, Christina Zube, Jürgen Rybak, Monique Gauthier, Bernd Grünewald. Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. Journal of Comparative Physiology A 2005, 191 (9) , 823-836.
    71. Gaëlle Le Goff, Alain Hamon, Jean‐Baptiste Bergé, Marcel Amichot. Resistance to fipronil in Drosophila simulans : influence of two point mutations in the RDL GABA receptor subunit. Journal of Neurochemistry 2005, 92 (6) , 1295-1305.
    72. D. Rugg, S.D. Buckingham, D.B. Sattelle, R.K. Jansson. The Insecticidal Macrocyclic Lactones. 2005, 25-52.
    73. V.L. Salgado, T.C. Sparks. The Spinosyns: Chemistry, Biochemistry, Mode of Action, and Resistance. 2005, 137-173.
    74. S.D. Buckingham, D.B. Sattelle. GABA Receptors of Insects. 2005, 107-142.
    75. Xilong Zhao, Vincent L. Salgado, Jay Z. Yeh, Toshio Narahashi. Kinetic and Pharmacological Characterization of Desensitizing and Non-desensitizing Glutamate-gated Chloride Channels in Cockroach Neurons. NeuroToxicology 2004, 25 (6) , 967-980.
    76. Joseph Simon, Hironobu Wakimoto, Norihisa Fujita, Marc Lalande, Eric A. Barnard. Analysis of the Set of GABAA Receptor Genes in the Human Genome. Journal of Biological Chemistry 2004, 279 (40) , 41422-41435.
    77. Mark W. Neff, Kathryn R. Robertson, Aaron K. Wong, Noa Safra, Karl W. Broman, Montgomery Slatkin, Katrina L. Mealey, Niels C. Pedersen. Breed distribution and history of canine mdr1-1Δ , a pharmacogenetic mutation that marks the emergence of breeds from the collie lineage. Proceedings of the National Academy of Sciences 2004, 101 (32) , 11725-11730.
    78. Xilong Zhao, Jay Z. Yeh, Vincent L. Salgado, Toshio Narahashi. Fipronil Is a Potent Open Channel Blocker of Glutamate-Activated Chloride Channels in Cockroach Neurons. Journal of Pharmacology and Experimental Therapeutics 2004, 310 (1) , 192-201.
    79. Annete I. Njue, Jon Hayashi, Lyle Kinne, Xiao‐Peng Feng, Roger K. Prichard. Mutations in the extracellular domains of glutamate‐gated chloride channel α3 and β subunits from ivermectin‐resistant Cooperia oncophora affect agonist sensitivity. Journal of Neurochemistry 2004, 89 (5) , 1137-1147.
    80. Günter Gisselmann, Justina Plonka, Hermann Pusch, Hanns Hatt. Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA‐gated cation channels. British Journal of Pharmacology 2004, 142 (3) , 409-413.
    81. Jeffrey R. Bloomquist. Chloride channels as tools for developing selective insecticides. Archives of Insect Biochemistry and Physiology 2003, 54 (4) , 145-156.
    82. William J. Blackhall, Roger K. Prichard, Robin N. Beech. Selection at a γ-aminobutyric acid receptor gene in Haemonchus contortus resistant to avermectins/milbemycins. Molecular and Biochemical Parasitology 2003, 131 (2) , 137-145.
    83. Darran M Yates, Virginia Portillo, Adrian J Wolstenholme. The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. International Journal for Parasitology 2003, 33 (11) , 1183-1193.
    84. Kevin J. Friesen, Reena Suri, W.Reuben Kaufman. Effects of the avermectin, MK-243, on ovary development and salivary gland degeneration in the ixodid tick, Amblyomma hebraeum. Pesticide Biochemistry and Physiology 2003, 76 (3) , 82-90.
    85. Heinrich J.G Matthies, Kendal Broadie. Techniques to Dissect Cellular and Subcellular Function in the Drosophila Nervous System. 2003, 195-265.
    86. Heather Sings, Sheo Singh. TREMORGENIC AND NONTREMORGENIC 2,3-FUSED INDOLE DITERPENOIDS. 2003, 51-163.
    87. Xiao‐Peng Feng, Jon Hayashi, Robin N. Beech, Roger K. Prichard. Study of the nematode putative GABA type‐A receptor subunits: evidence for modulation by ivermectin. Journal of Neurochemistry 2002, 83 (4) , 870-878.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect