ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

The Role of the Specificity-Determining Loop of the Integrin β Subunit I-like Domain in Autonomous Expression, Association with the α Subunit, and Ligand Binding

View Author Information
The Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
Cite this: Biochemistry 2002, 41, 13, 4339–4347
Publication Date (Web):March 8, 2002
https://doi.org/10.1021/bi016047u
Copyright © 2002 American Chemical Society

    Article Views

    655

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Integrin β subunits contain a highly conserved I-like domain that is known to be important for ligand binding. Unlike integrin I domains, the I-like domain requires integrin α and β subunit association for optimal folding. Pactolus is a novel gene product that is highly homologous to integrin β subunits but lacks associating α subunits [Chen, Y., Garrison, S., Weis, J. J., and Weis, J. H. (1998) J. Biol. Chem.273, 8711−8718] and a ∼30 amino acid segment corresponding to the specificity-determining loop (SDL) in the I-like domain. We find that the SDL is responsible for the defects in integrin β subunit expression and folding in the absence of α subunits. When transfected in the absence of α subunits into cells, extracellular domains of mutant β subunits lacking SDL, but not wild-type β subunits, were well secreted and contained immunoreactive I-like domains. The purified recombinant soluble β1 subunit with the SDL deletion showed an elongated shape in electron microscopy, consistent with its structure in αβ complexes. The SDL segment is not required for formation of α5β1, α4β1, αVβ3, and α6β4 heterodimers, but is essential for fomation of α6β1, αVβ1, and αLβ2 heterodimers, suggesting that usage of subunit interface residues is variable among integrins. The β1 SDL is required for ligand binding and for the formation of the epitope for the α5 monoclonal antibody 16 that maps to loop segments connecting blades 2 and 3 of β-propeller domain of α5, but is not essential for nearby β-propeller epitopes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by National Institutes of Health Grant HL48675.

    *

     To whom correspondence should be addressed. Phone:  (617) 278-3205, Fax:  (617) 278-3232, E-mail:  [email protected].

     Harvard Medical School.

    §

     Duke University Medical Center.

    Cited By

    This article is cited by 56 publications.

    1. Luciana Marinelli,, Kay-E. Gottschalk,, Axel Meyer,, Ettore Novellino, and, Horst Kessler. Human Integrin αvβ5:  Homology Modeling and Ligand Binding. Journal of Medicinal Chemistry 2004, 47 (17) , 4166-4177. https://doi.org/10.1021/jm030635j
    2. Nicole M. Mattson, Anthony K. N. Chan, Kazuya Miyashita, Elizaveta Mukhaleva, Wen-Han Chang, Lu Yang, Ning Ma, Yingyu Wang, Sheela Pangeni Pokharel, Mingli Li, Qiao Liu, Xiaobao Xu, Renee Chen, Priyanka Singh, Leisi Zhang, Zeinab Elsayed, Bryan Chen, Denise Keen, Patrick Pirrotte, Steven. T. Rosen, Jianjun Chen, Mark A. LaBarge, John E. Shively, Nagarajan Vaidehi, Russell C. Rockne, Mingye Feng, Chun-Wei Chen. A novel class of inhibitors that disrupts the stability of integrin heterodimers identified by CRISPR-tiling-instructed genetic screens. Nature Structural & Molecular Biology 2024, 7 https://doi.org/10.1038/s41594-024-01211-y
    3. Jeevan B. Gc, Justin Chen, Swechha M. Pokharel, Indira Mohanty, Charles Mariasoosai, Peter Obi, Paul Panipinto, Smarajit Bandyopadhyay, Santanu Bose, Senthil Natesan. Molecular basis for the recognition of 24-(S)-hydroxycholesterol by integrin αvβ3. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-36040-4
    4. Yanlun Gu, Bingqi Dong, Xu He, Zhiwei Qiu, Juqi Zhang, Mo Zhang, Haitao Liu, Xiaocong Pang, Yimin Cui. The challenges and opportunities of αvβ3-based therapeutics in cancer: From bench to clinical trials. Pharmacological Research 2023, 189 , 106694. https://doi.org/10.1016/j.phrs.2023.106694
    5. Dragana Nešić, Yixiao Zhang, Aleksandar Spasic, Jihong Li, Davide Provasi, Marta Filizola, Thomas Walz, Barry S. Coller. Cryo-Electron Microscopy Structure of the αIIbβ3-Abciximab Complex. Arteriosclerosis, Thrombosis, and Vascular Biology 2020, 40 (3) , 624-637. https://doi.org/10.1161/ATVBAHA.119.313671
    6. Daiji Kiyozumi, Itsuko Nakano, Ryoko Sato-Nishiuchi, Satoshi Tanaka, Kiyotoshi Sekiguchi. Laminin is the ECM niche for trophoblast stem cells. Life Science Alliance 2020, 3 (2) , e201900515. https://doi.org/10.26508/lsa.201900515
    7. Swechha M. Pokharel, Niraj K. Shil, Jeevan B. GC, Zachary T. Colburn, Su-Yu Tsai, Jesus A. Segovia, Te-Hung Chang, Smarajit Bandyopadhyay, Senthil Natesan, Jonathan C. R. Jones, Santanu Bose. Integrin activation by the lipid molecule 25-hydroxycholesterol induces a proinflammatory response. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09453-x
    8. Benoit Guillet, Sophie Bayart, Xavier Pillois, Paquita Nurden, Jacques P. Caen, Alan T. Nurden. A Glanzmann thrombasthenia family associated with a TUBB1‐related macrothrombocytopenia. Journal of Thrombosis and Haemostasis 2019, 17 (12) , 2211-2215. https://doi.org/10.1111/jth.14622
    9. Kamila Bledzka, Jun Qin, Edward F. Plow. Integrin αIIbβ3. 2019, 227-241. https://doi.org/10.1016/B978-0-12-813456-6.00012-6
    10. Darren G. Woodside, Peter Vanderslice. Inflammation and Regulation by Integrin Cell Adhesion Antagonists. 2019, 43-68. https://doi.org/10.1016/B978-0-12-813832-8.00003-0
    11. Daiji Kiyozumi, Yukimasa Taniguchi, Itsuko Nakano, Junko Toga, Emiko Yagi, Hidetoshi Hasuwa, Masahito Ikawa, Kiyotoshi Sekiguchi. Laminin γ1 C-terminal Glu to Gln mutation induces early postimplantation lethality. Life Science Alliance 2018, 1 (5) , e201800064. https://doi.org/10.26508/lsa.201800064
    12. Aye Myat Myat Thinn, Zhengli Wang, Dongwen Zhou, Yan Zhao, Brian R. Curtis, Jieqing Zhu. Autonomous conformational regulation of β 3 integrin and the conformation-dependent property of HPA-1a alloantibodies. Proceedings of the National Academy of Sciences 2018, 115 (39) https://doi.org/10.1073/pnas.1806205115
    13. Dongwen Zhou, Aye Myat Myat Thinn, Yan Zhao, Zhengli Wang, Jieqing Zhu. Structure of an extended β3 integrin. Blood 2018, 132 (9) , 962-972. https://doi.org/10.1182/blood-2018-01-829572
    14. Catherine G. Galbraith, Michael W. Davidson, James A. Galbraith. Coupling integrin dynamics to cellular adhesion behaviors. Biology Open 2018, 7 (8) https://doi.org/10.1242/bio.036806
    15. Lingyun Wang, Di Pan, Qi Yan, Yuhua Song. Activation mechanisms of αVβ3 integrin by binding to fibronectin: A computational study. Protein Science 2017, 26 (6) , 1124-1137. https://doi.org/10.1002/pro.3163
    16. Joel S. Bennett. αIIbβ3 (GPIIb/IIIa) Structure and Function. 2017, 99-112. https://doi.org/10.1007/978-3-319-47462-5_8
    17. Norihisa Nishimichi, Nagako Kawashima, Yasuyuki Yokosaki. Epitopes in α8β1 and other RGD-binding integrins delineate classes of integrin-blocking antibodies and major binding loops in α subunits. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep13756
    18. Daiji Kiyozumi, Ryoko Sato‐Nishiuchi, Kiyotoshi Sekiguchi. In Situ Detection of Integrin Ligands. Current Protocols in Cell Biology 2014, 65 (1) https://doi.org/10.1002/0471143030.cb0907s65
    19. Daiji Kiyozumi, Ryoko Sato-Nishiuchi, Kiyotoshi Sekiguchi. In Situ Detection of Integrin Ligands. 2014, 10.19.1-10.19.17. https://doi.org/10.1002/0471143030.cb1019s65
    20. Xianchi Dong, Nathan E Hudson, Chafen Lu, Timothy A Springer. Structural determinants of integrin β-subunit specificity for latent TGF-β. Nature Structural & Molecular Biology 2014, 21 (12) , 1091-1096. https://doi.org/10.1038/nsmb.2905
    21. Weiming Bu, Luis M. Pereira, Roderic G. Eckenhoff, Koichi Yuki, . Stereoselectivity of Isoflurane in Adhesion Molecule Leukocyte Function-Associated Antigen-1. PLoS ONE 2014, 9 (5) , e96649. https://doi.org/10.1371/journal.pone.0096649
    22. Xian-Wei Wang, Xiao-Fan Zhao, Jin-Xing Wang. C-type Lectin Binds to β-Integrin to Promote Hemocytic Phagocytosis in an Invertebrate. Journal of Biological Chemistry 2014, 289 (4) , 2405-2414. https://doi.org/10.1074/jbc.M113.528885
    23. Younis Skaik, Anja Battermann, Oliver Hiller, Oliver Meyer, Constanca Figueiredo, Abdulgabar Salama, Rainer Blasczyk. Development of a single-antigen magnetic bead assay (SAMBA) for the sensitive detection of HPA-1a alloantibodies using tag-engineered recombinant soluble β3 integrin. Journal of Immunological Methods 2013, 391 (1-2) , 72-80. https://doi.org/10.1016/j.jim.2013.02.011
    24. Kamila Bledzka, Michelle M. Pesho, Yan-Qing Ma, Edward F. Plow. Integrin αIIbβ3. 2013, 233-248. https://doi.org/10.1016/B978-0-12-387837-3.00012-2
    25. Koichi Yuki, Weiming Bu, Jin Xi, Mehmet Sen, Motomu Shimaoka, Roderic G. Eckenhoff. Isoflurane binds and stabilizes a closed conformation of the leukocyte function‐associated antigen‐1. The FASEB Journal 2012, 26 (11) , 4408-4417. https://doi.org/10.1096/fj.12-212746
    26. Yoshinobu Kariya, Jianguo Gu, . N-Glycosylation of ß4 Integrin Controls the Adhesion and Motility of Keratinocytes. PLoS ONE 2011, 6 (11) , e27084. https://doi.org/10.1371/journal.pone.0027084
    27. YouDong Pan, Kun Zhang, JunPeng Qi, Jiao Yue, Timothy A. Springer, JianFeng Chen. Cation-π interaction regulates ligand-binding affinity and signaling of integrin α 4 β 7. Proceedings of the National Academy of Sciences 2010, 107 (50) , 21388-21393. https://doi.org/10.1073/pnas.1015487107
    28. M E Behrens, P M Grandgenett, J M Bailey, P K Singh, C-H Yi, F Yu, M A Hollingsworth. The reactive tumor microenvironment: MUC1 signaling directly reprograms transcription of CTGF. Oncogene 2010, 29 (42) , 5667-5677. https://doi.org/10.1038/onc.2010.327
    29. Louise Carstensen Gjelstrup, Thomas Boesen, Tue Wenzel Kragstrup, Annette Jørgensen, Nigel J. Klein, Steffen Thiel, Bent Winding Deleuran, Thomas Vorup-Jensen. Shedding of Large Functionally Active CD11/CD18 Integrin Complexes from Leukocyte Membranes during Synovial Inflammation Distinguishes Three Types of Arthritis through Differential Epitope Exposure. The Journal of Immunology 2010, 185 (7) , 4154-4168. https://doi.org/10.4049/jimmunol.1000952
    30. Di Pan, Yuhua Song. Role of Altered Sialylation of the I-Like Domain of β1 Integrin in the Binding of Fibronectin to β1 Integrin: Thermodynamics and Conformational Analyses. Biophysical Journal 2010, 99 (1) , 208-217. https://doi.org/10.1016/j.bpj.2010.03.063
    31. Tomoya Isaji, Yuya Sato, Tomohiko Fukuda, Jianguo Gu. N-Glycosylation of the I-like Domain of β1 Integrin Is Essential for β1 Integrin Expression and Biological Function. Journal of Biological Chemistry 2009, 284 (18) , 12207-12216. https://doi.org/10.1074/jbc.M807920200
    32. Soshana Svendsen, Chad Zimprich, Mark G McDougall, Dieter H Klaubert, Georgyi V Los. Spatial separation and bidirectional trafficking of proteins using a multi-functional reporter. BMC Cell Biology 2008, 9 (1) https://doi.org/10.1186/1471-2121-9-17
    33. Brent A Knack, Akira Iguchi, Chuya Shinzato, David C Hayward, Eldon E Ball, David J Miller. Unexpected diversity of cnidarian integrins: expression during coral gastrulation. BMC Evolutionary Biology 2008, 8 (1) https://doi.org/10.1186/1471-2148-8-136
    34. Yuemin Liu, Di Pan, Susan L. Bellis, Yuhua Song. Effect of altered glycosylation on the structure of the I‐like domain of β1 integrin: A molecular dynamics study. Proteins: Structure, Function, and Bioinformatics 2008, 73 (4) , 989-1000. https://doi.org/10.1002/prot.22126
    35. Prachi Stafford, Stephen F. Garner, Angela Rankin, Riitta Kekomaki, Nicholas A. Watkins, Willem H. Ouwehand. A single‐nucleotide polymorphism in the human ITGB3 gene is associated with the platelet‐specific alloantigen Va a (HPA‐17bw) involved in fetal maternal alloimmune thrombocytopenia. Transfusion 2008, 48 (7) , 1432-1438. https://doi.org/10.1111/j.1537-2995.2008.01737.x
    36. Kristina Kligys, Kevin Hamill, Jonathan C. R. Jones. Hemidesmosomes and their Components: Adhesion versus Signaling in Health and Disease. 2008, 109-133. https://doi.org/10.1002/9783527622092.ch6
    37. P. STAFFORD, S. F. GARNER, E. HUISKES, C. KAPLAN, R. KEKOMAKI, S. SANTOSO, N. H. TSUNO, N. A. WATKINS, W. H. OUWEHAND. Three novel β3 domain-deletion peptides for the sensitive and specific detection of HPA-4 and six low frequency β3-HPA antibodies. Journal of Thrombosis and Haemostasis 2008, 6 (2) , 376-383. https://doi.org/10.1111/j.1538-7836.2007.02843.x
    38. P. STAFFORD, S.F. GARNER, E. HUISKES, C. KAPLAN, R. KEKOMAKI, S. SANTOSO, N.H. TSUNO, N.A. WATKINS, W.H. OUWEHAND. Three novel β3 domain-deletion peptides for the sensitive and specific detection of HPA-4 and six low frequency β3-HPA antibodies. Journal of Thrombosis and Haemostasis 2008, 6 (2) , 376-383. https://doi.org/10.1111/j.1538-7836.2008.02843.x
    39. P. STAFFORD, C. GHEVAERT, K. CAMPBELL, C. PROULX, G. SMITH, L.M. WILLIAMSON, E. RANASINGHE, N.A. WATKINS, J.A. HUNTINGTON, W.H. OUWEHAND. Immunologic and structural analysis of eight novel domain-deletion β3 integrin peptides designed for detection of HPA-1 antibodies. Journal of Thrombosis and Haemostasis 2008, 6 (2) , 366-375. https://doi.org/10.1111/j.1538-7836.2008.02858.x
    40. Chong-Xiu Sun, Ping Chen, Wei Lu, Jian-Ning Liu. Tyr178 of β3 is critical for αIIb maturation and macromolecular ligand binding to αIIbβ3. Thrombosis Research 2008, 122 (2) , 203-210. https://doi.org/10.1016/j.thromres.2007.11.003
    41. Deng-Feng Li, Ming-Chang Zhang, Hai-Jie Yang, Yan-Bing Zhu, Xun Xu. β-integrin mediates WSSV infection. Virology 2007, 368 (1) , 122-132. https://doi.org/10.1016/j.virol.2007.06.027
    42. Mehmet Sen, Glen B. Legge. Pactolus I‐domain: Functional switching of the Rossmann fold. Proteins: Structure, Function, and Bioinformatics 2007, 68 (3) , 626-635. https://doi.org/10.1002/prot.21458
    43. Ana Kasirer‐Friede, Mark L. Kahn, Sanford J. Shattil. Platelet integrins and immunoreceptors. Immunological Reviews 2007, 218 (1) , 247-264. https://doi.org/10.1111/j.1600-065X.2007.00532.x
    44. Ming Cheng, Shen-Yun Foo, Min-Long Shi, Ren-Hong Tang, Le-Sheng Kong, S.K. Alex Law, Suet-Mien Tan. Mutation of a Conserved Asparagine in the I-like Domain Promotes Constitutively Active Integrins αLβ2 and αIIbβ3. Journal of Biological Chemistry 2007, 282 (25) , 18225-18232. https://doi.org/10.1074/jbc.M701386200
    45. Edward F. Plow, Michelle M. Pesho, Yan-Qing Ma. Integrin αIIbβ3. 2007, 165-178. https://doi.org/10.1016/B978-012369367-9/50770-9
    46. A Paul Mould, Jennifer A McLeish, Julie Huxley-Jones, Alexander C Goonesinghe, Adam FL Hurlstone, Raymond P Boot-Handford, Martin J Humphries. Identification of multiple integrin β1 homologs in zebrafish (Danio rerio). BMC Cell Biology 2006, 7 (1) https://doi.org/10.1186/1471-2121-7-24
    47. Nobuaki Akakura, Case Hoogland, Yoko K. Takada, Jun Saegusa, Xiaojing Ye, Fu-Tong Liu, Anthony Tze-Wai Cheung, Yoshikazu Takada. The COOH-Terminal Globular Domain of Fibrinogen γ Chain Suppresses Angiogenesis and Tumor Growth. Cancer Research 2006, 66 (19) , 9691-9697. https://doi.org/10.1158/0008-5472.CAN-06-1686
    48. Ryoko Nishiuchi, Junichi Takagi, Maria Hayashi, Hiroyuki Ido, Yoshiko Yagi, Noriko Sanzen, Tsutomu Tsuji, Masashi Yamada, Kiyotoshi Sekiguchi. Ligand-binding specificities of laminin-binding integrins: A comprehensive survey of laminin–integrin interactions using recombinant α3β1, α6β1, α7β1 and α6β4 integrins. Matrix Biology 2006, 25 (3) , 189-197. https://doi.org/10.1016/j.matbio.2005.12.001
    49. M.A. Arnaout, B. Mahalingam, J.-P. Xiong. INTEGRIN STRUCTURE, ALLOSTERY, AND BIDIRECTIONAL SIGNALING. Annual Review of Cell and Developmental Biology 2005, 21 (1) , 381-410. https://doi.org/10.1146/annurev.cellbio.21.090704.151217
    50. Dmitry A. Solovjov, Elzbieta Pluskota, Edward F. Plow. Distinct Roles for the α and β Subunits in the Functions of Integrin αMβ2. Journal of Biological Chemistry 2005, 280 (2) , 1336-1345. https://doi.org/10.1074/jbc.M406968200
    51. Andrea Artoni, JiHong Li, Beau Mitchell, Jian Ruan, Junichi Takagi, Timothy A. Springer, Deborah L. French, Barry S. Coller. Integrin β3 regions controlling binding of murine mAb 7E3: Implications for the mechanism of integrin αIIbβ3 activation. Proceedings of the National Academy of Sciences 2004, 101 (36) , 13114-13120. https://doi.org/10.1073/pnas.0404201101
    52. Thomas A Bunch, Steven W Miller, Danny L Brower. Analysis of the Drosophila βPS subunit indicates that regulation of integrin activity is a primal function of the C8–C9 loop. Experimental Cell Research 2004, 294 (1) , 118-129. https://doi.org/10.1016/j.yexcr.2003.11.002
    53. Mossaad Abdel-Ghany, Hung-Chi Cheng, Randolph C. Elble, Haiqun Lin, John DiBiasio, Bendicht U. Pauli. The Interacting Binding Domains of the β4 Integrin and Calcium-activated Chloride Channels (CLCAs) in Metastasis. Journal of Biological Chemistry 2003, 278 (49) , 49406-49416. https://doi.org/10.1074/jbc.M309086200
    54. Daisuke Tsuruta, Susan B. Hopkinson, Kimberly D. Lane, Michael E. Werner, Vincent L. Cryns, Jonathan C.R. Jones. Crucial Role of the Specificity-determining Loop of the Integrin β4 Subunit in the Binding of Cells to Laminin-5 and Outside-in Signal Transduction. Journal of Biological Chemistry 2003, 278 (40) , 38707-38714. https://doi.org/10.1074/jbc.M301637200
    55. Charles A. Whittaker, Richard O. Hynes, . Distribution and Evolution of von Willebrand/Integrin A Domains: Widely Dispersed Domains with Roles in Cell Adhesion and Elsewhere. Molecular Biology of the Cell 2002, 13 (10) , 3369-3387. https://doi.org/10.1091/mbc.e02-05-0259
    56. Junichi Takagi, Timothy A. Springer. Integrin activation and structural rearrangement. Immunological Reviews 2002, 186 (1) , 141-163. https://doi.org/10.1034/j.1600-065X.2002.18613.x

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect