ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Molecular Basis of the Pharmacological Difference between Rat and Human Bombesin Receptor Subtype-3 (BRS-3)

View Author Information
Department of Obesity and Metabolic Research, Merck Research Laboratories, Rahway, New Jersey 07065
Cite this: Biochemistry 2002, 41, 28, 8954–8960
Publication Date (Web):June 19, 2002
https://doi.org/10.1021/bi0202777
Copyright © 2002 American Chemical Society

    Article Views

    421

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    We cloned the gene and cDNA for rat bombesin receptor subtype-3 (BRS-3) and characterized its mRNA expression pattern and pharmacological properties. Despite the high degree of sequence similarity (80% identical), rat and human BRS-3 differ markedly in their pharmacological properties. Although the natural ligand for BRS-3 is still unknown, a synthetic peptide, dY-Q-W-A-V-(β-A)-H-F-Nle-amide (dY-bombesin), activates human BRS-3 with an EC50 of 1.2 nM. In contrast, dY-bombesin had a very poor potency for rat BRS-3 (EC50 = 2 μM). To understand the molecular basis of this pharmacological difference, we constructed chimeric receptors in which individual extracellular loops of rat BRS-3 were replaced with the corresponding human sequences. Switching the N-terminal region or the second extracellular loop did not significantly change receptor properties. However, switching the third extracellular loop (E3) in the rat BRS-3 resulted in a chimeric receptor (RB3-E3) that behaved almost identically to human BRS-3. RB3-E3 bound dY-bombesin with high affinity (Ki = 1.2 ± 0.7 nM), and was activated by dY-bombesin with high potency (EC50 = 1.8 ± 0.5 nM). Within the E3 loop, mutation of Y298E299S300 to S298Q299T300 (RB3-SQT) or of D306V307P308 to A306M307H308 (RB3-AMH) only partially mimicked the effect of switching the entire E3 loop, and mutation of A302E303 to V302D303 or of V310V311 to I310F311 had little effect on the dY-bombesin potency. These results indicate that the sequence variation in the E3 loop is responsible for the species difference between rat and human BRS-3, and multiple residues in the E3 loop are involved in interactions with the agonist dY-bombesin.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Current address:  AstraZeneca Inc., CRDL C246, 1800 Concord Pike, Wilmington, DE 19850-5437.

    *

     To whom correspondence should be addressed at Merck Research Laboratories, R80M-213, P.O. Box 2000, Rahway, NJ 07065. Tel.:  732-594-6711; fax:  732-594-3337; e-mail:  [email protected].

    Cited By

    This article is cited by 53 publications.

    1. Lehao Wu, Jiahua Cui, Chunxiao Zhao, Zeyuan Wang, Jihong Lu, Shaoshun Li, Jinping Jia, Hua Xiao, Yan Zhang. Discovery of Dimethyl Shikonin Oxime 5a, a Potent, Selective Bombesin Receptor Subtype-3 Agonist for the Treatment of Type 2 Diabetes Mellitus. Journal of Medicinal Chemistry 2023, 66 (12) , 8011-8029. https://doi.org/10.1021/acs.jmedchem.3c00323
    2. Dirk Weber,, Claudia Berger,, Peter Eickelmann,, Jochen Antel, and, Horst Kessler. Design of Selective Peptidomimetic Agonists for the Human Orphan Receptor BRS-3. Journal of Medicinal Chemistry 2003, 46 (10) , 1918-1930. https://doi.org/10.1021/jm0210921
    3. Allison S. Mogul, Colleen K. Hadley, Haley S. Province, Jordan Pauli, Oksana Gavrilova, Cuiying Xiao, Richard D. Palmiter, Ramón A. Piñol, Marc L. Reitman. Cre Recombinase Driver Mice Reveal Lineage-Dependent and -Independent Expression of Brs3 in the Mouse Brain. eneuro 2021, 8 (4) , ENEURO.0252-21.2021. https://doi.org/10.1523/ENEURO.0252-21.2021
    4. Irene Ramos-Alvarez, Lingaku Lee, Samuel A. Mantey, Robert T. Jensen. Development and Characterization of a Novel, High-Affinity, Specific, Radiolabeled Ligand for BRS-3 Receptors. Journal of Pharmacology and Experimental Therapeutics 2019, 369 (3) , 454-465. https://doi.org/10.1124/jpet.118.255141
    5. Huihao Tang, Chuanjun Shu, Haidi Chen, Xiaojing Zhang, Zhuqing Zang, Cheng Deng, . Constitutively active BRS3 is a genuinely orphan GPCR in placental mammals. PLOS Biology 2019, 17 (3) , e3000175. https://doi.org/10.1371/journal.pbio.3000175
    6. Ramón A. Piñol, Sebastian H. Zahler, Chia Li, Atreyi Saha, Brandon K. Tan, Vojtěch Škop, Oksana Gavrilova, Cuiying Xiao, Michael J. Krashes, Marc L. Reitman. Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake. Nature Neuroscience 2018, 21 (11) , 1530-1540. https://doi.org/10.1038/s41593-018-0249-3
    7. Minoru Maruyama, Natsu Hotta, Yasunori Nio, Kenichi Hamagami, Toshimi Nagi, Masaaki Funata, Junichi Sakamoto, Masanori Nakakariya, Nobuyuki Amano, Mayumi Nishida, Tomohiro Okawa, Yasuyoshi Arikawa, Shinobu Sasaki, Shizuo Kasai, Yasutaka Nagisa, Yugo Habata, Masaaki Mori. Bombesin receptor subtype‐3‐expressing neurons regulate energy homeostasis through a novel neuronal pathway in the hypothalamus. Brain and Behavior 2018, 8 (1) https://doi.org/10.1002/brb3.881
    8. Cuiying Xiao, Ramón A. Piñol, Jesse Lea Carlin, Cuiling Li, Chuxia Deng, Oksana Gavrilova, Marc L. Reitman. Bombesin-like receptor 3 ( Brs3 ) expression in glutamatergic, but not GABAergic, neurons is required for regulation of energy metabolism. Molecular Metabolism 2017, 6 (11) , 1540-1550. https://doi.org/10.1016/j.molmet.2017.08.013
    9. Taichi Nakamura, Irene Ramos-Álvarez, Tatiana Iordanskaia, Paola Moreno, Samuel A. Mantey, R.T. Jensen. Molecular basis for high affinity and selectivity of peptide antagonist, Bantag-1, for the orphan BB3 receptor. Biochemical Pharmacology 2016, 115 , 64-76. https://doi.org/10.1016/j.bcp.2016.06.013
    10. Yohei Kiyotsuka, Kousei Shimada, Shozo Kobayashi, Masanori Suzuki, Mayuko Akiu, Masayoshi Asano, Yoshitaka Sogawa, Takashi Hara, Masahiro Konishi, Rie Abe-Ohya, Masanori Izumi, Yoko Nagai, Kazuhiro Yoshida, Yasuyuki Abe, Hideo Takamori, Hisashi Takahashi. Synthesis and biological evaluation of novel imidazol-1-ylacetic acid derivatives as non-brain penetrant bombesin receptor subtype-3 (BRS-3) agonists. Bioorganic & Medicinal Chemistry Letters 2016, 26 (17) , 4205-4210. https://doi.org/10.1016/j.bmcl.2016.07.056
    11. Dalya M. Lateef, Cuiying Xiao, Robert J. Brychta, André Diedrich, Jurgen Schnermann, Marc L. Reitman. Bombesin-like receptor 3 regulates blood pressure and heart rate via a central sympathetic mechanism. American Journal of Physiology-Heart and Circulatory Physiology 2016, 310 (7) , H891-H898. https://doi.org/10.1152/ajpheart.00963.2015
    12. Irene Ramos-Álvarez, Taichi Nakamura, Samuel A. Mantey, Paola Moreno, Bernardo Nuche-Berenguer, Robert T. Jensen. Novel chiral-diazepines function as specific, selective receptor agonists with variable coupling and species variability in human, mouse and rat BRS-3 receptor cells. Peptides 2016, 75 , 8-17. https://doi.org/10.1016/j.peptides.2015.10.007
    13. Dalya M. Lateef, Cuiying Xiao, Marc L. Reitman, . Search for an Endogenous Bombesin-Like Receptor 3 (BRS-3) Ligand Using Parabiotic Mice. PLOS ONE 2015, 10 (11) , e0142637. https://doi.org/10.1371/journal.pone.0142637
    14. Irene Ramos-Álvarez, Paola Moreno, Samuel A. Mantey, Taichi Nakamura, Bernardo Nuche-Berenguer, Terry W. Moody, David H. Coy, Robert T. Jensen. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015, 72 , 128-144. https://doi.org/10.1016/j.peptides.2015.04.026
    15. Nieves González, Paola Moreno, Robert T Jensen. Bombesin receptor subtype 3 as a potential target for obesity and diabetes. Expert Opinion on Therapeutic Targets 2015, 19 (9) , 1153-1170. https://doi.org/10.1517/14728222.2015.1056154
    16. Yuichi Ikeda, Hidetoshi Kumagai, Hiroaki Okazaki, Mitsuhiro Fujishiro, Yoshihiro Motozawa, Seitaro Nomura, Norifumi Takeda, Haruhiro Toko, Eiki Takimoto, Hiroshi Akazawa, Hiroyuki Morita, Jun-ichi Suzuki, Tsutomu Yamazaki, Issei Komuro, Masashi Yanagisawa, . Monitoring β-arrestin recruitment via β-lactamase enzyme fragment complementation: purification of peptide E as a low-affinity ligand for mammalian bombesin receptors. PLOS ONE 2015, 10 (6) , e0127445. https://doi.org/10.1371/journal.pone.0127445
    17. Tetsuyoshi Matsufuji, Kousei Shimada, Shozo Kobayashi, Masanori Ichikawa, Asuka Kawamura, Teppei Fujimoto, Tsuyoshi Arita, Takashi Hara, Masahiro Konishi, Rie Abe-Ohya, Masanori Izumi, Yoshitaka Sogawa, Yoko Nagai, Kazuhiro Yoshida, Yasuyuki Abe, Takako Kimura, Hisashi Takahashi. Synthesis and biological evaluation of novel chiral diazepine derivatives as bombesin receptor subtype-3 (BRS-3) agonists incorporating an antedrug approach. Bioorganic & Medicinal Chemistry 2015, 23 (1) , 89-104. https://doi.org/10.1016/j.bmc.2014.11.018
    18. Tetsuyoshi Matsufuji, Kousei Shimada, Hisashi Takahashi. Discovery of bombesin receptor subtype-3(BRS-3)agonists incorporating an antedrug approach aimed at peripheral mechanism of anti-obesity action.. Drug Delivery System 2015, 30 (5) , 433-445. https://doi.org/10.2745/dds.30.433
    19. Tetsuyoshi Matsufuji, Kousei Shimada, Shozo Kobayashi, Asuka Kawamura, Teppei Fujimoto, Tsuyoshi Arita, Takashi Hara, Masahiro Konishi, Rie Abe-Ohya, Masanori Izumi, Yoshitaka Sogawa, Youko Nagai, Kazuhiro Yoshida, Hisashi Takahashi. Discovery of novel chiral diazepines as bombesin receptor subtype-3 (BRS-3) agonists with low brain penetration. Bioorganic & Medicinal Chemistry Letters 2014, 24 (3) , 750-755. https://doi.org/10.1016/j.bmcl.2013.12.106
    20. I. Ramos-Álvarez, Z. Moreno-Villegas, A. Martín-Duce, R. Sanz, C. Aparicio, S. Portal-Núñez, S.A. Mantey, R.T. Jensen, N. González. Human BRS-3 receptor: Functions/role in cell signaling pathways and glucose metabolism in obese or diabetic myocytes. Peptides 2014, 51 , 91-99. https://doi.org/10.1016/j.peptides.2013.11.002
    21. Paola Moreno, Samuel A. Mantey, Bernardo Nuche-Berenguer, Marc L. Reitman, Nieves González, David H. Coy, Robert T. Jensen. Comparative Pharmacology of Bombesin Receptor Subtype-3, Nonpeptide Agonist MK-5046, a Universal Peptide Agonist, and Peptide Antagonist Bantag-1 for Human Bombesin Receptors. Journal of Pharmacology and Experimental Therapeutics 2013, 347 (1) , 100-116. https://doi.org/10.1124/jpet.113.206896
    22. Li Zhang, Gregory S. Parks, Zhiwei Wang, Lien Wang, Michelle Lew, Olivier Civelli. Anatomical characterization of bombesin receptor subtype‐3 mRNA expression in the rodent central nervous system. Journal of Comparative Neurology 2013, 521 (5) , 1020-1039. https://doi.org/10.1002/cne.23216
    23. Ayman I. Sayegh. The Role of Bombesin and Bombesin-Related Peptides in the Short-term Control of Food Intake. 2013, 343-370. https://doi.org/10.1016/B978-0-12-386933-3.00010-8
    24. Hirotsugu Uehara, Simon J. Hocart, Nieves González, Samuel A. Mantey, Tomoo Nakagawa, Tatsuro Katsuno, David H. Coy, Robert T. Jensen. The molecular basis for high affinity of a universal ligand for human bombesin receptor (BnR) family members. Biochemical Pharmacology 2012, 84 (7) , 936-948. https://doi.org/10.1016/j.bcp.2012.07.010
    25. Marc L. Reitman, Victor Dishy, Allison Moreau, William S. Denney, Chengcheng Liu, Walter K. Kraft, Alex V. Mejia, Mark A. Matson, S. Aubrey Stoch, John A. Wagner, Eseng Lai. Pharmacokinetics and Pharmacodynamics of MK‐5046, a Bombesin Receptor Subtype‐3 (BRS‐3) Agonist, in Healthy Patients. The Journal of Clinical Pharmacology 2012, 52 (9) , 1306-1316. https://doi.org/10.1177/0091270011419854
    26. Ishita D. Majumdar, Horst C. Weber. Biology and pharmacology of bombesin receptor subtype-3. Current Opinion in Endocrinology, Diabetes & Obesity 2012, 19 (1) , 3-7. https://doi.org/10.1097/MED.0b013e32834ec77d
    27. Ishita Deb Majumdar, H. Christian Weber. Appetite-Modifying Effects of Bombesin Receptor Subtype-3 Agonists. 2012, 405-432. https://doi.org/10.1007/978-3-642-24716-3_19
    28. Xiaoqun Qin, Xiangping Qu, David Coy, H. Christian Weber. A Selective Human Bombesin Receptor Subtype-3 Peptide Agonist Mediates CREB Phosphorylation and Transactivation. Journal of Molecular Neuroscience 2012, 46 (1) , 88-99. https://doi.org/10.1007/s12031-011-9675-3
    29. BaoYong Sha, Wei Gao, ShuQi Wang, Feng Xu, TianJian Lu. Cytotoxicity of titanium dioxide nanoparticles differs in four liver cells from human and rat. Composites Part B: Engineering 2011, 42 (8) , 2136-2144. https://doi.org/10.1016/j.compositesb.2011.05.009
    30. Branimir Zogovic, Paul M. Pilowsky. Intrathecal bombesin is sympathoexcitatory and pressor in rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2011, 301 (5) , R1486-R1494. https://doi.org/10.1152/ajpregu.00297.2011
    31. Yue Feng, Xiao-Ming Guan, Jing Li, Joseph M. Metzger, Yonghua Zhu, Kirstine Juhl, Bei B. Zhang, Nancy A. Thornberry, Marc L. Reitman, Yun-Ping Zhou. Bombesin Receptor Subtype-3 (BRS-3) Regulates Glucose-Stimulated Insulin Secretion in Pancreatic Islets across Multiple Species. Endocrinology 2011, 152 (11) , 4106-4115. https://doi.org/10.1210/en.2011-1440
    32. Hirotsugu Uehara, Nieves González, Veronica Sancho, Samuel A. Mantey, Bernardo Nuche-Berenguer, Tapas Pradhan, David H. Coy, Robert T. Jensen. Pharmacology and selectivity of various natural and synthetic bombesin related peptide agonists for human and rat bombesin receptors differs. Peptides 2011, 32 (8) , 1685-1699. https://doi.org/10.1016/j.peptides.2011.06.017
    33. Michael M.-C. Lo, Harry R. Chobanian, Oksana Palyha, Yanqing Kan, Theresa M. Kelly, Xiao-Ming Guan, Marc L. Reitman, Jasminka Dragovic, Kathryn A. Lyons, Ravi P. Nargund, Linus S. Lin. Pyridinesulfonylureas and pyridinesulfonamides as selective bombesin receptor subtype-3 (BRS-3) agonists. Bioorganic & Medicinal Chemistry Letters 2011, 21 (7) , 2040-2043. https://doi.org/10.1016/j.bmcl.2011.02.011
    34. Ishita D Majumdar, Horst C Weber. Biology of mammalian bombesin-like peptides and their receptors. Current Opinion in Endocrinology, Diabetes & Obesity 2011, 18 (1) , 68-74. https://doi.org/10.1097/MED.0b013e328340ff93
    35. Xiao-Ming Guan, Joseph M. Metzger, Liming Yang, Kate A. Raustad, Sheng-Ping Wang, Stephanie K. Spann, Jennifer A. Kosinski, Hong Yu, Lauren P. Shearman, Terry D. Faidley, Oksana Palyha, Yanqing Kan, Theresa M. Kelly, Iyassu Sebhat, Linus S. Lin, Jasminka Dragovic, Kathy A. Lyons, Stephanie Craw, Ravi P. Nargund, Donald J. Marsh, Alison M. Strack, Marc L. Reitman. Antiobesity Effect of MK-5046, a Novel Bombesin Receptor Subtype-3 Agonist. Journal of Pharmacology and Experimental Therapeutics 2011, 336 (2) , 356-364. https://doi.org/10.1124/jpet.110.174763
    36. Joseph M. Metzger, Karen Gagen, Kate A. Raustad, Liming Yang, Amanda White, Sheng-Ping Wang, Stephanie Craw, Ping Liu, Thomas Lanza, Linus S. Lin, Ravi P. Nargund, Xiao-Ming Guan, Alison M. Strack, Marc L. Reitman. Body temperature as a mouse pharmacodynamic response to bombesin receptor subtype-3 agonists and other potential obesity treatments. American Journal of Physiology-Endocrinology and Metabolism 2010, 299 (5) , E816-E824. https://doi.org/10.1152/ajpendo.00404.2010
    37. Naoki Furutani, Mari Hondo, Natsuko Tsujino, Takeshi Sakurai. Activation of Bombesin Receptor Subtype-3 Influences Activity of Orexin Neurons by Both Direct and Indirect Pathways. Journal of Molecular Neuroscience 2010, 42 (1) , 106-111. https://doi.org/10.1007/s12031-010-9382-5
    38. Mark Hadden, Allan Goodman, Cheng Guo, Peter R. Guzzo, Alan J. Henderson, Kevin Pattamana, Megan Ruenz, Bruce J. Sargent, Brian Swenson, Larry Yet, Jian Liu, Shuwen He, Iyassu K. Sebhat, Linus S. Lin, Constantin Tamvakopoulos, Qianping Peng, Yanqing Kan, Oksana Palyha, Theresa M. Kelly, Xiao-Ming Guan, Joseph M. Metzger, Marc L. Reitman, Ravi P. Nargund. Synthesis and SAR of heterocyclic carboxylic acid isosteres based on 2-biarylethylimidazole as bombesin receptor subtype-3 (BRS-3) agonists for the treatment of obesity. Bioorganic & Medicinal Chemistry Letters 2010, 20 (9) , 2912-2915. https://doi.org/10.1016/j.bmcl.2010.03.028
    39. Cheng Guo, Peter R. Guzzo, Mark Hadden, Bruce J. Sargent, Larry Yet, Yanqing Kan, Oksana Palyha, Theresa M. Kelly, Xiaoming Guan, Kim Rosko, Karen Gagen, Joseph M. Metzger, Jasminka Dragovic, Kathryn Lyons, Linus S. Lin, Ravi P. Nargund. Synthesis of 7-benzyl-5-(piperidin-1-yl)-6,7,8,9-tetrahydro-3H-pyrazolo[3,4-c][2,7]naphthyridin-1-ylamine and its analogs as bombesin receptor subtype-3 agonists. Bioorganic & Medicinal Chemistry Letters 2010, 20 (9) , 2785-2789. https://doi.org/10.1016/j.bmcl.2010.03.065
    40. Shuwen He, Peter H. Dobbelaar, Jian Liu, Tianying Jian, Iyassu K. Sebhat, Linus S. Lin, Allan Goodman, Cheng Guo, Peter R. Guzzo, Mark Hadden, Alan J. Henderson, Megan Ruenz, Bruce J. Sargent, Larry Yet, Theresa M. Kelly, Oksana Palyha, Yanqing Kan, Jie Pan, Howard Chen, Donald J. Marsh, Lauren P. Shearman, Alison M. Strack, Joseph M. Metzger, Scott D. Feighner, Carina Tan, Andrew D. Howard, Constantin Tamvakopoulos, Qianping Peng, Xiao-Ming Guan, Marc L. Reitman, Arthur A. Patchett, Matthew J. Wyvratt, Ravi P. Nargund. Discovery of substituted biphenyl imidazoles as potent, bioavailable bombesin receptor subtype-3 agonists. Bioorganic & Medicinal Chemistry Letters 2010, 20 (6) , 1913-1917. https://doi.org/10.1016/j.bmcl.2010.01.154
    41. Xiao-Ming Guan, Howard Chen, Peter H. Dobbelaar, Yan Dong, Tung M. Fong, Karen Gagen, Judith Gorski, Shuwen He, Andrew D. Howard, Tianying Jian, Michael Jiang, Yanqing Kan, Theresa M. Kelly, Jennifer Kosinski, Linus S. Lin, Jian Liu, Donald J. Marsh, Joseph M. Metzger, Randy Miller, Ravi P. Nargund, Oksana Palyha, Lauren Shearman, Zhu Shen, Ralph Stearns, Alison M. Strack, Sloan Stribling, Yui Sing Tang, Sheng-Ping Wang, Amanda White, Hong Yu, Marc L. Reitman. Regulation of Energy Homeostasis by Bombesin Receptor Subtype-3: Selective Receptor Agonists for the Treatment of Obesity. Cell Metabolism 2010, 11 (2) , 101-112. https://doi.org/10.1016/j.cmet.2009.12.008
    42. Li Zhang, Hans-Peter Nothacker, Zhiwei Wang, Laura M. Bohn, Olivier Civelli. Pharmacological characterization of a selective agonist for bombesin receptor subtype-3. Biochemical and Biophysical Research Communications 2009, 387 (2) , 283-288. https://doi.org/10.1016/j.bbrc.2009.07.006
    43. H Christian Weber. Regulation and signaling of human bombesin receptors and their biological effects. Current Opinion in Endocrinology, Diabetes and Obesity 2009, 16 (1) , 66-71. https://doi.org/10.1097/MED.0b013e32831cf5aa
    44. R. T. Jensen, J. F. Battey, E. R. Spindel, R. V. Benya. International Union of Pharmacology. LXVIII. Mammalian Bombesin Receptors: Nomenclature, Distribution, Pharmacology, Signaling, and Functions in Normal and Disease States. Pharmacological Reviews 2008, 60 (1) , 1-42. https://doi.org/10.1124/pr.107.07108
    45. Ellen E. Ladenheim, Nahketah L. Hamilton, Robert R. Behles, Sheng Bi, Lori L. Hampton, James F. Battey, Timothy H. Moran. Factors Contributing to Obesity in Bombesin Receptor Subtype-3-Deficient Mice. Endocrinology 2008, 149 (3) , 971-978. https://doi.org/10.1210/en.2007-1319
    46. Li-Chun Sun, Jing Luo, Vienna L. Mackey, Joseph A. Fuselier, David H. Coy. Effects of camptothecin on tumor cell proliferation and angiogenesis when coupled to a bombesin analog used as a targeted delivery vector. Anti-Cancer Drugs 2007, 18 (3) , 341-348. https://doi.org/10.1097/CAD.0b013e32801261b6
    47. Tomoo Nakagawa, Simon J. Hocart, Michael Schumann, Jose A. Tapia, Samuel A. Mantey, David H. Coy, Kenji Tokita, Tatsuro Katsuno, Robert T. Jensen. Identification of key amino acids in the gastrin-releasing peptide receptor (GRPR) responsible for high affinity binding of gastrin-releasing peptide (GRP). Biochemical Pharmacology 2005, 69 (4) , 579-593. https://doi.org/10.1016/j.bcp.2004.11.003
    48. Samuel A. Mantey, David H. Coy, Laurence K. Entsuah, Robert T. Jensen. Development of Bombesin Analogs with Conformationally Restricted Amino Acid Substitutions with Enhanced Selectivity for the Orphan Receptor Human Bombesin Receptor Subtype 3. Journal of Pharmacology and Experimental Therapeutics 2004, 310 (3) , 1161-1170. https://doi.org/10.1124/jpet.104.066761
    49. Hideki Sano, Scott D Feighner, Donna L Hreniuk, Hisashi Iwaasa, Andreas W Sailer, Jie Pan, Marc L Reitman, Akio Kanatani, Andrew D Howard, Carina P Tan. Characterization of the bombesin-like peptide receptor family in primates. Genomics 2004, 84 (1) , 139-146. https://doi.org/10.1016/j.ygeno.2004.01.008
    50. Fumihiko Maekawa, Hun-Meng A. Quah, Kohichi Tanaka, Hiroko Ohki-Hamazaki. Leptin Resistance and Enhancement of Feeding Facilitation by Melanin-Concentrating Hormone in Mice Lacking Bombesin Receptor Subtype-3. Diabetes 2004, 53 (3) , 570-576. https://doi.org/10.2337/diabetes.53.3.570
    51. F Maekawa, S Tsukahara, K Tanaka, H Ohki-Hamazaki. Distributions of two chicken bombesin receptors, bombesin receptor subtype-3.5 (chBRS-3.5) and gastrin-releasing peptide receptor (chGRP-R) mRNAS in the chicken telencephalon. Neuroscience 2004, 125 (3) , 569-582. https://doi.org/10.1016/j.neuroscience.2004.01.057
    52. Maiko Iwabuchi, Kumiko Ui‐Tei, Kazuhiko Yamada, Yoichi Matsuda, Yasushi Sakai, Kohichi Tanaka, Hiroko Ohki‐Hamazaki. Molecular cloning and characterization of avian bombesin‐like peptide receptors: new tools for investigating molecular basis for ligand selectivity. British Journal of Pharmacology 2003, 139 (3) , 555-566. https://doi.org/10.1038/sj.bjp.0705282
    53. Xiangping Qu, Dongmei Xiao, H. Christian Weber. Biologic relevance of mammalian bombesin-like peptides and their receptors in human malignancies. Current Opinion in Endocrinology & Diabetes 2003, 10 (1) , 60-71. https://doi.org/10.1097/00060793-200302000-00010

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect