ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

The Carboxyl-Terminal Region Common to Lamins A and C Contains a DNA Binding Domain

View Author Information
Département de Biologie Supramoléculaire et Cellulaire, Institut Jacques Monod-CNRS UMR 7592, Universités Paris 6/Paris 7, 2 place Jussieu, 75251 Paris cedex 05, France, Département d'Ingénierie et d'Etudes des Protéines, Bat. 152, CEA Saclay, 91191 Gif-sur-Yvette, France, Departments of Medicine and of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, and Laboratoire de Minéralogie-Cristallographie Paris, CNRS UMR 7590, Universités Paris 6/Paris 7, 2 place Jussieu, 75251 Paris cedex 05, France
Cite this: Biochemistry 2003, 42, 17, 4819–4828
Publication Date (Web):April 9, 2003
https://doi.org/10.1021/bi020704g
Copyright © 2003 American Chemical Society

    Article Views

    934

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (297 KB)

    Abstract

    Lamins A and C are intermediate filament proteins which polymerize into the nucleus to form the nuclear lamina network. The lamina is apposed to the inner nuclear membrane and functions in tethering chromatin to the nuclear envelope and in maintaining nuclear shape. We have recently characterized a globular domain that adopts an immunoglobulin fold in the carboxyl-terminal tail common to lamins A and C. Using an electrophoretic mobility shift assay (EMSA), we show that a peptide containing this domain interacts in vitro with DNA after dimerization through a disulfide bond, but does not interact with the core particle or the dinucleosome. The covalent dimer binds a 30−40 bp DNA fragment with a micromolar affinity and no sequence specificity. Using nuclear magnetic resonance (NMR) and an EMSA, we observed that two peptide regions participate in the DNA binding:  the unstructured amino-terminal part containing the nuclear localization signal and a large positively charged region centered around amino acid R482 at the surface of the immunoglobulin-like domain. Mutations R482Q and -W, which are responsible for Dunnigan-type partial lipodystrophy, lower the affinity of the peptide for DNA. We conclude that the carboxyl-terminal end of lamins A and C binds DNA and suggest that alterations in lamin−DNA interactions may play a role in the pathophysiology of some lamin-linked diseases.

     This work was supported by the Centre National de la Recherche Scientifique, l'Institut National de la Santé et de la Recherche Médicale, and la Fondation pour la Recherche Médicale, by grants from FEGEFLUC and l'Association Française des Myopathies to S.Z.-J., and by grants from the American Diabetes Association and Human Frontiers Science Program to H.J.W.

     Institut Jacques Monod-CNRS UMR 7592, Universités Paris 6/Paris 7.

    §

     CEA Saclay.

     Columbia University.

     CNRS UMR 7590, Universités Paris 6/Paris 7.

    *

     To whom correspondence should be addressed. Phone:  33 1 44 27 77 63. Fax:  33 1 44 27 59 94. E-mail:  [email protected].

    Cited By

    This article is cited by 130 publications.

    1. Shruti Pande, Debasish Kumar Ghosh. Nuclear proteostasis imbalance in laminopathy‐associated premature aging diseases. The FASEB Journal 2023, 37 (8) https://doi.org/10.1096/fj.202300878R
    2. Andria C Schibler, Predrag Jevtic, Gianluca Pegoraro, Daniel L Levy, Tom Misteli. Identification of epigenetic modulators as determinants of nuclear size and shape. eLife 2023, 12 https://doi.org/10.7554/eLife.80653
    3. Noelle J. Batista, Sanket G. Desai, Alexis M. Perez, Alexa Finkelstein, Rachel Radigan, Manrose Singh, Aaron Landman, Brian Drittel, Daniella Abramov, Mina Ahsan, Samantha Cornwell, Dong Zhang. The Molecular and Cellular Basis of Hutchinson–Gilford Progeria Syndrome and Potential Treatments. Genes 2023, 14 (3) , 602. https://doi.org/10.3390/genes14030602
    4. Emily C. Storey, Heidi R. Fuller. Genotype-Phenotype Correlations in Human Diseases Caused by Mutations of LINC Complex-Associated Genes: A Systematic Review and Meta-Summary. Cells 2022, 11 (24) , 4065. https://doi.org/10.3390/cells11244065
    5. Michelle L. Jones, Kris Noel Dahl, Tanmay P. Lele, Daniel E. Conway, Vivek Shenoy, Soham Ghosh, Spencer E. Szczesny. The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. Journal of Biomechanical Engineering 2022, 144 (8) https://doi.org/10.1115/1.4053797
    6. Isabelle Jéru. Genetics of lipodystrophy syndromes. La Presse Médicale 2021, 50 (3) , 104074. https://doi.org/10.1016/j.lpm.2021.104074
    7. Kevin Rose, Stephanie Spada, Vanessa Hirsch, Fadila Bouamr. When in Need of an ESCRT: The Nature of Virus Assembly Sites Suggests Mechanistic Parallels between Nuclear Virus Egress and Retroviral Budding. Viruses 2021, 13 (6) , 1138. https://doi.org/10.3390/v13061138
    8. Jade Bishop, Hetty Swan, Francesco Valente, Hans-Wilhelm Nützmann. The Plant Nuclear Envelope and Its Role in Gene Transcription. Frontiers in Plant Science 2021, 12 https://doi.org/10.3389/fpls.2021.674209
    9. Agathe Marcelot, Ambre Petitalot, Virginie Ropars, Marie-Hélène Le Du, Camille Samson, Stevens Dubois, Guillaume Hoffmann, Simona Miron, Philippe Cuniasse, Jose Antonio Marquez, Robert Thai, François-Xavier Theillet, Sophie Zinn-Justin. Di-phosphorylated BAF shows altered structural dynamics and binding to DNA, but interacts with its nuclear envelope partners. Nucleic Acids Research 2021, 49 (7) , 3841-3855. https://doi.org/10.1093/nar/gkab184
    10. Jinsook Ahn, Jinwook Lee, Soyeon Jeong, So-mi Kang, Bum-Joon Park, Nam-Chul Ha. Beta-strand-mediated dimeric formation of the Ig-like domains of human lamin A/C and B1. Biochemical and Biophysical Research Communications 2021, 550 , 191-196. https://doi.org/10.1016/j.bbrc.2021.02.102
    11. Aizhan Bizhanova, Paul D. Kaufman. Close to the edge: Heterochromatin at the nucleolar and nuclear peripheries. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2021, 1864 (1) , 194666. https://doi.org/10.1016/j.bbagrm.2020.194666
    12. Ayberk Turkyilmaz, Bilgen Bilge Geçkinli, Ceren Alavanda, Esra Arslan Ates, Ahmet Arman. Novel clinical features and pleiotropic effect in three unrelated patients with LMNA variant. Clinical Dysmorphology 2021, 30 (1) , 10-16. https://doi.org/10.1097/MCD.0000000000000355
    13. Tanaya Roychowdhury, Samit Chattopadhyay. Chemical Decorations of “MARs” Residents in Orchestrating Eukaryotic Gene Regulation. Frontiers in Cell and Developmental Biology 2020, 8 https://doi.org/10.3389/fcell.2020.602994
    14. Nolwenn Briand, Philippe Collas. Lamina-associated domains: peripheral matters and internal affairs. Genome Biology 2020, 21 (1) https://doi.org/10.1186/s13059-020-02003-5
    15. Francesca Donnaloja, Federica Carnevali, Emanuela Jacchetti, Manuela Teresa Raimondi. Lamin A/C Mechanotransduction in Laminopathies. Cells 2020, 9 (5) , 1306. https://doi.org/10.3390/cells9051306
    16. Alena Svobodová Kovaříková, Eva Bártová, Aleš Kovařík, Emilie Lukášová. Spatiotemporal Mislocalization of Nuclear Membrane-Associated Proteins in γ-Irradiation-Induced Senescent Cells. Cells 2020, 9 (4) , 999. https://doi.org/10.3390/cells9040999
    17. Berta N Vazquez, Joshua K Thackray, Nicolas G Simonet, Sanjay Chahar, Noriko Kane-Goldsmith, Simon J Newkirk, Suman Lee, Jinchuan Xing, Michael P Verzi, Wenfeng An, Alejandro Vaquero, Jay A Tischfield, Lourdes Serrano. SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina. Nucleic Acids Research 2019, 47 (15) , 7870-7885. https://doi.org/10.1093/nar/gkz519
    18. Morteza Aramesh, Diana Stoycheva, Lion Raaz, Enrico Klotzsch. Engineering T-cell activation for immunotherapy by mechanical forces. Current Opinion in Biomedical Engineering 2019, 10 , 134-141. https://doi.org/10.1016/j.cobme.2019.05.004
    19. Isabel Guerreiro, Jop Kind. Spatial chromatin organization and gene regulation at the nuclear lamina. Current Opinion in Genetics & Development 2019, 55 , 19-25. https://doi.org/10.1016/j.gde.2019.04.008
    20. Muneyo Mio, Toshihiko Sugiki, Chie Matsuda, Hiroaki Mitsuhashi, Chojiro Kojima, Siu Yuen Chan, Yukiko K. Hayashi, Kazuhiro Mio. Structural instability of lamin A tail domain modulates its assembly and higher order function in Emery–Dreifuss muscular dystrophy. Biochemical and Biophysical Research Communications 2019, 512 (1) , 22-28. https://doi.org/10.1016/j.bbrc.2019.02.138
    21. Jungwon Hah, Dong-Hwee Kim. Deciphering Nuclear Mechanobiology in Laminopathy. Cells 2019, 8 (3) , 231. https://doi.org/10.3390/cells8030231
    22. Rosettia Ho, Robert A. Hegele. Complex effects of laminopathy mutations on nuclear structure and function. Clinical Genetics 2019, 95 (2) , 199-209. https://doi.org/10.1111/cge.13455
    23. Nolwenn Briand, Philippe Collas. Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation. Nucleus 2018, 9 (1) , 216-226. https://doi.org/10.1080/19491034.2018.1449498
    24. Corinne Vigouroux, Anne-Claire Guénantin, Camille Vatier, Emilie Capel, Caroline Le Dour, Pauline Afonso, Guillaume Bidault, Véronique Béréziat, Olivier Lascols, Jacqueline Capeau, Nolwenn Briand, Isabelle Jéru. Lipodystrophic syndromes due to LMNA mutations: recent developments on biomolecular aspects, pathophysiological hypotheses and therapeutic perspectives. Nucleus 2018, 9 (1) , 251-264. https://doi.org/10.1080/19491034.2018.1456217
    25. Meng Han, Miao Zhao, Chen Cheng, Yuan Huang, Shengna Han, Wenjuan Li, Xin Tu, Xuan Luo, Xiaoling Yu, Yinan Liu, Qiuyun Chen, Xiang Ren, Qing Kenneth Wang, Tie Ke. Lamin A mutation impairs interaction with nucleoporin NUP155 and disrupts nucleocytoplasmic transport in atrial fibrillation. Human Mutation 2018, 299 https://doi.org/10.1002/humu.23691
    26. Alexandre Janin, Vincent Gache. Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Frontiers in Physiology 2018, 9 https://doi.org/10.3389/fphys.2018.01277
    27. Nolwenn Briand, Inswasti Cahyani, Julia Madsen-Østerbye, Jonas Paulsen, Torunn Rønningen, Anita L. Sørensen, Philippe Collas. Lamin A, Chromatin and FPLD2: Not Just a Peripheral Ménage-à-Trois. Frontiers in Cell and Developmental Biology 2018, 6 https://doi.org/10.3389/fcell.2018.00073
    28. Can Zhou, Li Rao, Derek T. Warren, Catherine M. Shanahan, Qiuping Zhang. Mouse models of nesprin-related diseases. Biochemical Society Transactions 2018, 46 (3) , 669-681. https://doi.org/10.1042/BST20180085
    29. Graham F. Brady, Raymond Kwan, Juliana Bragazzi Cunha, Jared S. Elenbaas, M. Bishr Omary. Lamins and Lamin-Associated Proteins in Gastrointestinal Health and Disease. Gastroenterology 2018, 154 (6) , 1602-1619.e1. https://doi.org/10.1053/j.gastro.2018.03.026
    30. Can Zhou, Li Rao, Catherine M. Shanahan, Qiuping Zhang. Nesprin-1/2: roles in nuclear envelope organisation, myogenesis and muscle disease. Biochemical Society Transactions 2018, 46 (2) , 311-320. https://doi.org/10.1042/BST20170149
    31. Y. Y. Shevelyov, S. V. Ulianov. Role of Nuclear Lamina in Gene Repression and Maintenance of Chromosome Architecture in the Nucleus. Biochemistry (Moscow) 2018, 83 (4) , 359-369. https://doi.org/10.1134/S0006297918040077
    32. Kohta Ikegami, Stefano Secchia, Jason D. Lieb, Ivan P. Moskowitz. Depolymerized Lamins Link Nuclear Envelope Breakdown to Mitotic Transcriptional Quiescence. SSRN Electronic Journal 2018, https://doi.org/10.2139/ssrn.3263774
    33. Jonas Paulsen, Monika Sekelja, Anja R. Oldenburg, Alice Barateau, Nolwenn Briand, Erwan Delbarre, Akshay Shah, Anita L. Sørensen, Corinne Vigouroux, Brigitte Buendia, Philippe Collas. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biology 2017, 18 (1) https://doi.org/10.1186/s13059-016-1146-2
    34. Ilaria Pecorari, Daniele Borin, Orfeo Sbaizero. A Perspective on the Experimental Techniques for Studying Lamins. Cells 2017, 6 (4) , 33. https://doi.org/10.3390/cells6040033
    35. Michael Lherbette, Ália dos Santos, Yukti Hari-Gupta, Natalia Fili, Christopher P. Toseland, Iwan A. T. Schaap. Atomic Force Microscopy micro-rheology reveals large structural inhomogeneities in single cell-nuclei. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-08517-6
    36. Anja Oldenburg, Nolwenn Briand, Anita L. Sørensen, Inswasti Cahyani, Akshay Shah, Jan Øivind Moskaug, Philippe Collas. A lipodystrophy-causing lamin A mutant alters conformation and epigenetic regulation of the anti-adipogenic MIR335 locus. Journal of Cell Biology 2017, 216 (9) , 2731-2743. https://doi.org/10.1083/jcb.201701043
    37. Nana Naetar, Simona Ferraioli, Roland Foisner. Lamins in the nuclear interior − life outside the lamina. Journal of Cell Science 2017, 130 (13) , 2087-2096. https://doi.org/10.1242/jcs.203430
    38. Isabelle Jeru, Camille Vatier, Marie-Christine Vantyghem, Olivier Lascols, Corinne Vigouroux. LMNA -associated partial lipodystrophy: anticipation of metabolic complications. Journal of Medical Genetics 2017, 54 (6) , 413-416. https://doi.org/10.1136/jmedgenet-2016-104437
    39. Xi Wang, Allyson Zabell, Wonshill Koh, W. H. Wilson Tang. Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies. Current Treatment Options in Cardiovascular Medicine 2017, 19 (3) https://doi.org/10.1007/s11936-017-0520-z
    40. Ryo Uchino, Shin Sugiyama, Motoi Katagiri, Yoshiro Chuman, Kazuhiro Furukawa. Non-farnesylated B-type lamin can tether chromatin inside the nucleus and its chromatin interaction requires the Ig-fold region. Chromosoma 2017, 126 (1) , 125-144. https://doi.org/10.1007/s00412-016-0581-x
    41. Hamish T. J. Gilbert, Joe Swift. Molecular Pathways of Mechanotransduction. 2017, 23-42. https://doi.org/10.1002/9781118966174.ch2
    42. Jérôme D. Robin, Frédérique Magdinier. Physiological and Pathological Aging Affects Chromatin Dynamics, Structure and Function at the Nuclear Edge. Frontiers in Genetics 2016, 7 https://doi.org/10.3389/fgene.2016.00153
    43. Takanobu Moriuchi, Masaki Kuroda, Fumiya Kusumoto, Takashi Osumi, Fumiko Hirose. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif. Experimental Cell Research 2016, 342 (1) , 83-94. https://doi.org/10.1016/j.yexcr.2016.02.016
    44. Pauline Afonso, Martine Auclair, Franck Boccara, Marie-Christine Vantyghem, Christine Katlama, Jacqueline Capeau, Corinne Vigouroux, Martine Caron-Debarle. LMNA mutations resulting in lipodystrophy and HIV protease inhibitors trigger vascular smooth muscle cell senescence and calcification: Role of ZMPSTE24 downregulation. Atherosclerosis 2016, 245 , 200-211. https://doi.org/10.1016/j.atherosclerosis.2015.12.012
    45. Jerome Irianto, Irena L. Ivanovska, Joe Swift, Dennis E. Discher. The Nuclear Lamina: From Mechanosensing in Differentiation to Cancer Cell Migration. 2016, 175-195. https://doi.org/10.1007/978-1-4939-5617-3_9
    46. Torunn Rønningen, Akshay Shah, Anja R. Oldenburg, Kristin Vekterud, Erwan Delbarre, Jan Øivind Moskaug, Philippe Collas. Prepatterning of differentiation-driven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B. Genome Research 2015, 25 (12) , 1825-1835. https://doi.org/10.1101/gr.193748.115
    47. Teemu O. Ihalainen, Lina Aires, Florian A. Herzog, Ruth Schwartlander, Jens Moeller, Viola Vogel. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nature Materials 2015, 14 (12) , 1252-1261. https://doi.org/10.1038/nmat4389
    48. Magdalena Machowska, Katarzyna Piekarowicz, Ryszard Rzepecki. Regulation of lamin properties and functions: does phosphorylation do it all?. Open Biology 2015, 5 (11) , 150094. https://doi.org/10.1098/rsob.150094
    49. Jean Ollion, François Loll, Julien Cochennec, Thomas Boudier, Christophe Escudé, . Proliferation-dependent positioning of individual centromeres in the interphase nucleus of human lymphoblastoid cell lines. Molecular Biology of the Cell 2015, 26 (13) , 2550-2560. https://doi.org/10.1091/mbc.E14-05-1002
    50. Yosef Gruenbaum, Roland Foisner. Lamins: Nuclear Intermediate Filament Proteins with Fundamental Functions in Nuclear Mechanics and Genome Regulation. Annual Review of Biochemistry 2015, 84 (1) , 131-164. https://doi.org/10.1146/annurev-biochem-060614-034115
    51. . References. 2015, 157-209. https://doi.org/10.1201/b18093-9
    52. Jessica A. Talamas, Maya Capelson. Nuclear envelope and genome interactions in cell fate. Frontiers in Genetics 2015, 6 https://doi.org/10.3389/fgene.2015.00095
    53. O. A. Zhironkina, S. Yu. Kurchashova, A. L. Brattseva, V. D. Cherepaninets, O. S. Strelkova, A. S. Belmont, I. I. Kireev. Overcoming steric hindrances during replication of peripheral heterochromatin. Cell and Tissue Biology 2015, 9 (2) , 110-118. https://doi.org/10.1134/S1990519X15020121
    54. Joe Swift, Dennis E. Discher. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. Journal of Cell Science 2014, 127 (14) , 3005-3015. https://doi.org/10.1242/jcs.149203
    55. A.C. Guénantin, N. Briand, G. Bidault, P. Afonso, V. Béréziat, C. Vatier, O. Lascols, M. Caron-Debarle, J. Capeau, C. Vigouroux. Nuclear envelope-related lipodystrophies. Seminars in Cell & Developmental Biology 2014, 29 , 148-157. https://doi.org/10.1016/j.semcdb.2013.12.015
    56. Anja R. Oldenburg, Erwan Delbarre, Bernd Thiede, Corinne Vigouroux, Philippe Collas. Deregulation of Fragile X-related protein 1 by the lipodystrophic lamin A p.R482W mutation elicits a myogenic gene expression program in preadipocytes. Human Molecular Genetics 2014, 23 (5) , 1151-1162. https://doi.org/10.1093/hmg/ddt509
    57. Eivind Lund, Philippe Collas. Nuclear lamins. Nucleus 2013, 4 (6) , 424-430. https://doi.org/10.4161/nucl.26865
    58. Liu Yang, Martina Munck, Karthic Swaminathan, Larisa E. Kapinos, Angelika A. Noegel, Sascha Neumann, . Mutations in LMNA Modulate the Lamin A - Nesprin-2 Interaction and Cause LINC Complex Alterations. PLoS ONE 2013, 8 (8) , e71850. https://doi.org/10.1371/journal.pone.0071850
    59. Nicola Carboni, Anna Mateddu, Giovanni Marrosu, Eleonora Cocco, Maria Giovanna Marrosu. Genetic and clinical characteristics of skeletal and cardiac muscle in patients with lamin A/C gene mutations. Muscle & Nerve 2013, 48 (2) , 161-170. https://doi.org/10.1002/mus.23827
    60. A. B. Malashicheva, A. S. Zabirnik, N. A. Smolina, R. I. Dmitrieva, A. A. Kostareva. Lamin A/C mutations alter differentiation potential of mesenchymal stem cells. Cell and Tissue Biology 2013, 7 (4) , 325-328. https://doi.org/10.1134/S1990519X1304010X
    61. Steven C. Chen, Brian K. Kennedy, Paul D. Lampe. Phosphorylation of connexin43 on S279/282 may contribute to laminopathy-associated conduction defects. Experimental Cell Research 2013, 319 (6) , 888-896. https://doi.org/10.1016/j.yexcr.2012.12.014
    62. Dan N. Simon, Katherine L. Wilson. Partners and post-translational modifications of nuclear lamins. Chromosoma 2013, 122 (1-2) , 13-31. https://doi.org/10.1007/s00412-013-0399-8
    63. Nard Kubben, Michiel Adriaens, Wouter Meuleman, Jan Willem Voncken, Bas van Steensel, Tom Misteli. Mapping of lamin A- and progerin-interacting genome regions. Chromosoma 2012, 121 (5) , 447-464. https://doi.org/10.1007/s00412-012-0376-7
    64. Daniel Jahn, Sabine Schramm, Martina Schnölzer, Clemens J. Heilmann, Chris G. de Koster, Wolfgang Schütz, Ricardo Benavente, Manfred Alsheimer. A truncated lamin A in the Lmna −/− mouse line. Nucleus 2012, 3 (5) , 463-474. https://doi.org/10.4161/nucl.21676
    65. Nicola Carboni, Claudia Sardu, Eleonora Cocco, Giovanni Marrosu, Rosa C. Manzi, Vincenzo Nissardi, Franco Isola, Anna Mateddu, Elisabetta Solla, Maria A. Maioli, Valentina Oppo, Rachele Piras, Giancarlo Coghe, Carlo Lai, Maria G. Marrosu. Cardiac involvement in patients with lamin A/C gene mutations: A cohort observation. Muscle & Nerve 2012, 46 (2) , 187-192. https://doi.org/10.1002/mus.23294
    66. Cinzia Magagnotti, Angela Bachi, Gianpaolo Zerbini, Elena Fattore, Isabella Fermo, Michela Riba, Stefano C. Previtali, Maurizio Ferrari, Annapaola Andolfo, Sara Benedetti. Protein profiling reveals energy metabolism and cytoskeletal protein alterations in LMNA mutation carriers. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2012, 1822 (6) , 970-979. https://doi.org/10.1016/j.bbadis.2012.01.014
    67. Magdalena Zaremba-Czogalla, Katarzyna Piekarowicz, Katarzyna Wachowicz, Katarzyna Kozioł, Magda Dubińska-Magiera, Ryszard Rzepecki, . The Different Function of Single Phosphorylation Sites of Drosophila melanogaster Lamin Dm and Lamin C. PLoS ONE 2012, 7 (2) , e32649. https://doi.org/10.1371/journal.pone.0032649
    68. K.N. Dahl, A.J.S. Ribeiro. 7.9 Biophysics of Nuclear Organization and Dynamics. 2012, 122-141. https://doi.org/10.1016/B978-0-12-374920-8.00710-4
    69. Guillaume Bidault, Camille Vatier, Jacqueline Capeau, Corinne Vigouroux, Véronique Béréziat. LMNA -linked lipodystrophies: from altered fat distribution to cellular alterations. Biochemical Society Transactions 2011, 39 (6) , 1752-1757. https://doi.org/10.1042/BST20110675
    70. Nicolas Sylvius, Gise'le Bonne, Kees Straatman, Thimma Reddy, Timothy W. Gant, Sue Shackleton. MicroRNA expression profiling in patients with lamin A/C‐associated muscular dystrophy. The FASEB Journal 2011, 25 (11) , 3966-3978. https://doi.org/10.1096/fj.11-182915
    71. Zhao Qin, Agnieszka Kalinowski, Kris Noel Dahl, Markus J. Buehler. Structure and stability of the lamin A tail domain and HGPS mutant. Journal of Structural Biology 2011, 175 (3) , 425-433. https://doi.org/10.1016/j.jsb.2011.05.015
    72. Kris Noel Dahl, Agnieszka Kalinowski. Nucleoskeleton mechanics at a glance. Journal of Cell Science 2011, 124 (5) , 675-678. https://doi.org/10.1242/jcs.069096
    73. Francine Bruston, Erwan Delbarre, Cecilia Östlund, Howard J. Worman, Brigitte Buendia, Isabelle Duband-Goulet. Loss of a DNA binding site within the tail of prelamin A contributes to altered heterochromatin anchorage by progerin. FEBS Letters 2010, 584 (14) , 2999-3004. https://doi.org/10.1016/j.febslet.2010.05.032
    74. KRIS NOEL DAHL, AGNIESZKA KALINOWSKI, KEREM PEKKAN. Mechanobiology and the Microcirculation: Cellular, Nuclear and Fluid Mechanics. Microcirculation 2010, 17 (3) , 179-191. https://doi.org/10.1111/j.1549-8719.2009.00016.x
    75. Nicola Carboni, Maurizio Porcu, Marco Mura, Eleonora Cocco, Giovanni Marrosu, Maria A. Maioli, Elisabetta Solla, Stefania Tranquilli, Pierpaolo Orrù, Maria G. Marrosu. Evolution of the phenotype in a family with an LMNA gene mutation presenting with isolated cardiac involvement. Muscle & Nerve 2010, 41 (1) , 85-91. https://doi.org/10.1002/mus.21443
    76. Richard D. W. Kelly, Ramiro Alberio, Keith H. S. Campbell. A-type lamin dynamics in bovine somatic cell nuclear transfer embryos. Reproduction, Fertility and Development 2010, 22 (6) , 956. https://doi.org/10.1071/RD09264
    77. Nicola Carboni, Matteo Floris, Maria Valentini, Giovanni Marrosu, Eleonora Cocco, Maria Antonietta Maioli, Elisabetta Solla, Anna Mateddu, Marco Mura, Maria Giovanna Marrosu. A Novel Mutation in Lamin A/C Gene: Phenotype and Consequences on the Protein Structure and Flexibility. SRX Biology 2010, 2010 , 1-7. https://doi.org/10.3814/2010/301679
    78. Patrycja Przygodzka, Björn Ramstedt, Tobias Tengel, Göran Larsson, Malgorzata Wilczynska. Bomapin is a redox-sensitive nuclear serpin that affects responsiveness of myeloid progenitor cells to growth environment. BMC Cell Biology 2010, 11 (1) , 30. https://doi.org/10.1186/1471-2121-11-30
    79. Vicente Andrés, José M. González. Role of A-type lamins in signaling, transcription, and chromatin organization. Journal of Cell Biology 2009, 187 (7) , 945-957. https://doi.org/10.1083/jcb.200904124
    80. Sebastian Kandert, Manfred Wehnert, Clemens R. Müller, Brigitte Buendia, Marie-Christine Dabauvalle. Impaired nuclear functions lead to increased senescence and inefficient differentiation in human myoblasts with a dominant p.R545C mutation in the LMNA gene. European Journal of Cell Biology 2009, 88 (10) , 593-608. https://doi.org/10.1016/j.ejcb.2009.06.002
    81. Ignacio Gonzalez-Suarez, Abena B Redwood, Stephanie M Perkins, Bart Vermolen, Daniel Lichtensztejin, David A Grotsky, Lucia Morgado-Palacin, Eric J Gapud, Barry P Sleckman, Teresa Sullivan, Julien Sage, Colin L Stewart, Sabine Mai, Susana Gonzalo. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. The EMBO Journal 2009, 28 (16) , 2414-2427. https://doi.org/10.1038/emboj.2009.196
    82. Albert Busch, Tilman Kiel, Wolfgang-M. Heupel, Manfred Wehnert, Stefan Hübner. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants. Experimental Cell Research 2009, 315 (14) , 2373-2385. https://doi.org/10.1016/j.yexcr.2009.05.003
    83. Valerie L.R.M. Verstraeten, Sandrine Caputo, Maurice A.M. van Steensel, Isabelle Duband-Goulet, Sophie Zinn-Justin, Miriam Kamps, Helma J.H. Kuijpers, Cecilia Östlund, Howard J. Worman, Jacob J. Briedé, Caroline Le Dour, Carlo L.M. Marcelis, Michel van Geel, Peter M. Steijlen, Arthur van den Wijngaard, Frans C.S. Ramaekers, Jos L.V. Broers. The R439C mutation in LMNA causes lamin oligomerization and susceptibility to oxidative stress. Journal of Cellular and Molecular Medicine 2009, 13 (5) , 959-971. https://doi.org/10.1111/j.1582-4934.2009.00690.x
    84. Damian C. Lee, K. Linnea Welton, Erica D. Smith, Brian K. Kennedy. A-type nuclear lamins act as transcriptional repressors when targeted to promoters. Experimental Cell Research 2009, 315 (6) , 996-1007. https://doi.org/10.1016/j.yexcr.2009.01.003
    85. Thomas Dechat, Stephen A. Adam, Robert D. Goldman. Nuclear lamins and chromatin: When structure meets function. Advances in Enzyme Regulation 2009, 49 (1) , 157-166. https://doi.org/10.1016/j.advenzreg.2008.12.003
    86. Nisrine Haddad, Micheline Paulin-Levasseur. Effects of heat shock on the distribution and expression levels of nuclear proteins in HeLa S3 cells. Journal of Cellular Biochemistry 2008, 105 (6) , 1485-1500. https://doi.org/10.1002/jcb.21968
    87. Kris Noel Dahl, Alexandre J.S. Ribeiro, Jan Lammerding. Nuclear Shape, Mechanics, and Mechanotransduction. Circulation Research 2008, 102 (11) , 1307-1318. https://doi.org/10.1161/CIRCRESAHA.108.173989
    88. Anne-Mari Håkelien, Erwan Delbarre, Kristine G. Gaustad, Brigitte Buendia, Philippe Collas. Expression of the myodystrophic R453W mutation of lamin A in C2C12 myoblasts causes promoter-specific and global epigenetic defects. Experimental Cell Research 2008, 314 (8) , 1869-1880. https://doi.org/10.1016/j.yexcr.2008.02.018
    89. Thomas Dechat, Katrin Pfleghaar, Kaushik Sengupta, Takeshi Shimi, Dale K. Shumaker, Liliana Solimando, Robert D. Goldman. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes & Development 2008, 22 (7) , 832-853. https://doi.org/10.1101/gad.1652708
    90. Catherine Favreau, Erwan Delbarre, Jean-Claude Courvalin, Brigitte Buendia. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery–Dreifuss muscular dystrophy is improved by inhibition of the MEK–ERK pathway and stimulation of the PI3-kinase pathway. Experimental Cell Research 2008, 314 (6) , 1392-1405. https://doi.org/10.1016/j.yexcr.2008.01.018
    91. Giovanna Lattanzi, Marta Columbaro, Elisabetta Mattioli, Vittoria Cenni, Daria Camozzi, Manfred Wehnert, Spartaco Santi, Massimo Riccio, Rosalba Del Coco, Nadir M. Maraldi, Stefano Squarzoni, Roland Foisner, Cristina Capanni. Pre-Lamin A processing is linked to heterochromatin organization. Journal of Cellular Biochemistry 2007, 102 (5) , 1149-1159. https://doi.org/10.1002/jcb.21467
    92. Sebastian Kandert, Yvonne Lüke, Tobias Kleinhenz, Sascha Neumann, Wenshu Lu, Verena M. Jaeger, Martina Munck, Manfred Wehnert, Clemens R. Müller, Zhongjun Zhou, Angelika A. Noegel, Marie-Christine Dabauvalle, Iakowos Karakesisoglou. Nesprin-2 giant safeguards nuclear envelope architecture in LMNA S143F progeria cells. Human Molecular Genetics 2007, 16 (23) , 2944-2959. https://doi.org/10.1093/hmg/ddm255
    93. Francesca Lombardi, Francesca Gullotta, Marta Columbaro, Antonio Filareto, Monica D’Adamo, Anne Vielle, Valeria Guglielmi, Anna Maria Nardone, Valeria Azzolini, Enrico Grosso, Giovanna Lattanzi, Maria Rosaria D’Apice, Salvatore Masala, Nadir Mario Maraldi, Paolo Sbraccia, Giuseppe Novelli. Compound Heterozygosity for Mutations in LMNA in a Patient with a Myopathic and Lipodystrophic Mandibuloacral Dysplasia Type A Phenotype. The Journal of Clinical Endocrinology & Metabolism 2007, 92 (11) , 4467-4471. https://doi.org/10.1210/jc.2007-0116
    94. Mei Wang, Maggie Law, Jean Duhamel, P. Chen. Interaction of a Self-Assembling Peptide with Oligonucleotides: Complexation and Aggregation. Biophysical Journal 2007, 93 (7) , 2477-2490. https://doi.org/10.1529/biophysj.106.102624
    95. Joel D. Baines. Envelopment of HSV nucleocapsids at the inner nuclear membrane. 2007, 144-150. https://doi.org/10.1017/CBO9780511545313.012
    96. Sylvia Vlcek, Roland Foisner. A-type lamin networks in light of laminopathic diseases. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2007, 1773 (5) , 661-674. https://doi.org/10.1016/j.bbamcr.2006.07.002
    97. Karen J. Meaburn, Erik Cabuy, Gisele Bonne, Nicolas Levy, Glenn E. Morris, Giuseppe Novelli, Ian R. Kill, Joanna M. Bridger. Primary laminopathy fibroblasts display altered genome organization and apoptosis. Aging Cell 2007, 6 (2) , 139-153. https://doi.org/10.1111/j.1474-9726.2007.00270.x
    98. Joanna M. Bridger, Nicole Foeger, Ian R. Kill, Harald Herrmann. The nuclear lamina. FEBS Journal 2007, 274 (6) , 1354-1361. https://doi.org/10.1111/j.1742-4658.2007.05694.x
    99. Anna Mattout, Michal Goldberg, Yonatan Tzur, Ayelet Margalit, Yosef Gruenbaum. Specific and conserved sequences in D. melanogaster and C. elegans lamins and histone H2A mediate the attachment of lamins to chromosomes. Journal of Cell Science 2007, 120 (1) , 77-85. https://doi.org/10.1242/jcs.03325
    100. Antoine Muchir, Catherine Massart, Baziel G. van Engelen, Martin Lammens, Gisèle Bonne, Howard J. Worman. Proteasome-mediated degradation of integral inner nuclear membrane protein emerin in fibroblasts lacking A-type lamins. Biochemical and Biophysical Research Communications 2006, 351 (4) , 1011-1017. https://doi.org/10.1016/j.bbrc.2006.10.147
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect