ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Oxidative Dimer Formation Is the Critical Rate-Limiting Step for Parkinson's Disease α-Synuclein Fibrillogenesis

View Author Information
Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, Colorado 80262, Department of Chemical Engineering, University of Colorado, Boulder, Colorado 80309, and Amgen, Inc., Thousand Oaks, California 91320
Cite this: Biochemistry 2003, 42, 3, 829–837
Publication Date (Web):December 20, 2002
https://doi.org/10.1021/bi026528t
Copyright © 2003 American Chemical Society

    Article Views

    1473

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (149 KB)

    Abstract

    Intraneuronal deposition of α-synuclein as fibrils and oxidative stress are both implicated in the pathogenesis of Parkinson's disease. We found that the critical rate-limiting step in nucleation of α-synuclein fibrils under physiological conditions is the oxidative formation and accumulation of a dimeric, dityrosine cross-linked prenucleus. Dimer formation is accelerated for the pathogenic A30P and A53T mutant α-synucleins, because of their greater propensity to self-interact, which is reflected in the smaller values of the osmotic second virial coefficient compared to that of wild-type synuclein. Our finding that oxidation is an essential step in α-synuclein aggregation supports a mechanism of Parkinson's disease pathogenesis in which the separately studied pathogenic factors of oxidative stress and α-synuclein aggregation converge at the critical step of α-synuclein dimer formation.

     Supported by National Science Foundation Grant BES 0138595 to J.F.C. and T.W.R.

     University of Colorado Health Sciences Center.

    §

     University of Colorado.

     Amgen, Inc.

    *

     To whom correspondence should be addressed:  Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80262. Phone:  (303) 315-6074. Fax:  (303) 315-6281. E-mail:  [email protected].

    Cited By

    This article is cited by 162 publications.

    1. Xun Chen, Mingchen Chen, Peter G. Wolynes. Exploring the Interplay between Disordered and Ordered Oligomer Channels on the Aggregation Energy Landscapes of α-Synuclein. The Journal of Physical Chemistry B 2022, 126 (28) , 5250-5261. https://doi.org/10.1021/acs.jpcb.2c03676
    2. Cagla Sahin, Eva Christina Østerlund, Nicklas Österlund, Joana Costeira-Paulo, Jannik Nedergaard Pedersen, Gunna Christiansen, Janni Nielsen, Anne Louise Grønnemose, Søren Kirk Amstrup, Manish K. Tiwari, R. Shyama Prasad Rao, Morten Jannik Bjerrum, Leopold L. Ilag, Michael J. Davies, Erik G. Marklund, Jan Skov Pedersen, Michael Landreh, Ian Max Møller, Thomas J. D. Jørgensen, Daniel Erik Otzen. Structural Basis for Dityrosine-Mediated Inhibition of α-Synuclein Fibrillization. Journal of the American Chemical Society 2022, 144 (27) , 11949-11954. https://doi.org/10.1021/jacs.2c03607
    3. Lokesh Baweja, Julien Roche. Pushing the Limits of Structure-Based Models: Prediction of Nonglobular Protein Folding and Fibrils Formation with Go-Model Simulations. The Journal of Physical Chemistry B 2018, 122 (9) , 2525-2535. https://doi.org/10.1021/acs.jpcb.7b12129
    4. Soumya Mukherjee, Eugene A. Kapp, Amber Lothian, Anne M. Roberts, Yury V. Vasil’ev, Berin A. Boughton, Kevin J. Barnham, W. Mei Kok, Craig A. Hutton, Colin L. Masters, Ashley I. Bush, Joseph S. Beckman, Somdatta Ghosh Dey, and Blaine R. Roberts . Characterization and Identification of Dityrosine Cross-Linked Peptides Using Tandem Mass Spectrometry. Analytical Chemistry 2017, 89 (11) , 6136-6145. https://doi.org/10.1021/acs.analchem.7b00941
    5. Ritwik Burai, Nadine Ait-Bouziad, Anass Chiki, and Hilal A. Lashuel . Elucidating the Role of Site-Specific Nitration of α-Synuclein in the Pathogenesis of Parkinson’s Disease via Protein Semisynthesis and Mutagenesis. Journal of the American Chemical Society 2015, 137 (15) , 5041-5052. https://doi.org/10.1021/ja5131726
    6. Tony Ly, Ryan R. Julian. Protein-metal interactions of calmodulin and α-synuclein monitored by selective noncovalent adduct protein probing mass spectrometry. Journal of the American Society for Mass Spectrometry 2008, 19 (11) , 1663-1672. https://doi.org/10.1016/j.jasms.2008.07.006
    7. Satinder Kaur, Abhishek Sehrawat, Sarabjit Singh Mastana, Ramesh Kandimalla, Pushpender Kumar Sharma, Gurjit Kaur Bhatti, Jasvinder Singh Bhatti. Targeting calcium homeostasis and impaired inter-organelle crosstalk as a potential therapeutic approach in Parkinson's disease. Life Sciences 2023, 330 , 121995. https://doi.org/10.1016/j.lfs.2023.121995
    8. Rong Liu, Jiahua Yang, Yinghui Li, Junxia Xie, Jun Wang. Heme oxygenase‐1: The roles of both good and evil in neurodegenerative diseases. Journal of Neurochemistry 2023, 21 https://doi.org/10.1111/jnc.15969
    9. Shaik Basha, Darshan Chikkanayakanahalli Mukunda, Jackson Rodrigues, Meagan Gail D’Souza, Gireesh Gangadharan, Aparna Ramakrishna Pai, Krishna Kishore Mahato. A comprehensive review of protein misfolding disorders, underlying mechanism, clinical diagnosis, and therapeutic strategies. Ageing Research Reviews 2023, 90 , 102017. https://doi.org/10.1016/j.arr.2023.102017
    10. Anukool A. Bhopatkar, Rakez Kayed. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. Journal of Biological Chemistry 2023, 299 (9) , 105122. https://doi.org/10.1016/j.jbc.2023.105122
    11. Mengying Wang, Roland Thuenauer, Robin Schubert, Susanna Gevorgyan, Kristina Lorenzen, Hévila Brognaro, Christian Betzel. Formation kinetics and physicochemical properties of mesoscopic Alpha-Synuclein assemblies modulated by sodium chloride and a distinct pulsed electric field. Soft Matter 2023, 19 (7) , 1363-1372. https://doi.org/10.1039/D2SM01615J
    12. Ryan D. Hallam, Brodie Buchner-Duby, Morgan G. Stykel, Carla L. Coackley, Scott D. Ryan. Intracellular Accumulation of α-Synuclein Aggregates Promotes S-Nitrosylation of MAP1A Leading to Decreased NMDAR-Evoked Calcium Influx and Loss of Mature Synaptic Spines. The Journal of Neuroscience 2022, 42 (50) , 9473-9487. https://doi.org/10.1523/JNEUROSCI.0074-22.2022
    13. Morgan G. Stykel, Scott D. Ryan. Nitrosative stress in Parkinson’s disease. npj Parkinson's Disease 2022, 8 (1) https://doi.org/10.1038/s41531-022-00370-3
    14. Seok Joon Won, Rebecca Fong, Nicholas Butler, Jennifer Sanchez, Yiguan Zhang, Candance Wong, Olive Tambou Nzoutchoum, Annie Huynh, June Pan, Raymond A. Swanson. Neuronal Oxidative Stress Promotes α-Synuclein Aggregation In Vivo. Antioxidants 2022, 11 (12) , 2466. https://doi.org/10.3390/antiox11122466
    15. Janaína K. Barbiero, Daniele C. Ramos, Suelen Boschen, Taysa Bassani, Cláudio Da Cunha, Maria A. B. F. Vital. Fenofibrate promotes neuroprotection in a model of rotenone-induced Parkinson’s disease. Behavioural Pharmacology 2022, 33 (8) , 513-526. https://doi.org/10.1097/FBP.0000000000000699
    16. Adrien Guzzo , Patrice Delarue , Ana Rojas, Adrien Nicolaï , Gia G. Maisuradze , Patrick Senet. Wild-Type α-Synuclein and Variants Occur in Different Disordered Dimers and Pre-Fibrillar Conformations in Early Stage of Aggregation. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.910104
    17. Rafael Cardoso Maciel Costa Silva, Leonardo Holanda Travassos Correa. Heme Oxygenase 1 in Vertebrates: Friend and Foe. Cell Biochemistry and Biophysics 2022, 80 (1) , 97-113. https://doi.org/10.1007/s12013-021-01047-z
    18. Kaylie-Anna Juliette Vallee, Jerel Adam Fields. Caloric Restriction Mimetic 2-Deoxyglucose Reduces Inflammatory Signaling in Human Astrocytes: Implications for Therapeutic Strategies Targeting Neurodegenerative Diseases. Brain Sciences 2022, 12 (3) , 308. https://doi.org/10.3390/brainsci12030308
    19. Tengfang Long, Lei Liu, Youqi Tao, Wanli Zhang, Jiale Quan, Jie Zheng, Julian D. Hegemann, Motonari Uesugi, Wenbing Yao, Hong Tian, Huan Wang. Light‐Controlled Tyrosine Nitration of Proteins. Angewandte Chemie International Edition 2021, 60 (24) , 13414-13422. https://doi.org/10.1002/anie.202102287
    20. Tengfang Long, Lei Liu, Youqi Tao, Wanli Zhang, Jiale Quan, Jie Zheng, Julian D. Hegemann, Motonari Uesugi, Wenbing Yao, Hong Tian, Huan Wang. Light‐Controlled Tyrosine Nitration of Proteins. Angewandte Chemie 2021, 133 (24) , 13526-13534. https://doi.org/10.1002/ange.202102287
    21. Bryan Frey, Abdelrahman AlOkda, Matthew P. Jackson, Nathan Riguet, James A. Duce, Hilal A. Lashuel. Monitoring alpha‐synuclein oligomerization and aggregation using bimolecular fluorescence complementation assays: What you see is not always what you get. Journal of Neurochemistry 2021, 157 (4) , 872-888. https://doi.org/10.1111/jnc.15147
    22. Rohit Bansal, Rozaleen Dash, Anurag S. Rathore. Impact of mAb Aggregation on Its Biological Activity: Rituximab as a Case Study. Journal of Pharmaceutical Sciences 2020, 109 (9) , 2684-2698. https://doi.org/10.1016/j.xphs.2020.05.015
    23. Longgang Jia, Wenping Zhao, Wei Wei, Xiao Guo, Wenjuan Wang, Ying Wang, Jingcheng Sang, Fuping Lu, Fufeng Liu. Expression and purification of amyloid β-protein, tau, and α-synuclein in Escherichia coli : a review. Critical Reviews in Biotechnology 2020, 40 (4) , 475-489. https://doi.org/10.1080/07388551.2020.1742646
    24. Guillem Vázquez, Ana B. Caballero, Jakub Kokinda, Ana Hijano, Raimon Sabaté, Patrick Gamez. Copper, dityrosine cross-links and amyloid-β aggregation. JBIC Journal of Biological Inorganic Chemistry 2019, 24 (8) , 1217-1229. https://doi.org/10.1007/s00775-019-01734-6
    25. Xi Li, Chunhua Dong, Marion Hoffmann, Craig R. Garen, Leonardo M. Cortez, Nils O. Petersen, Michael T. Woodside. Early stages of aggregation of engineered α-synuclein monomers and oligomers in solution. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-018-37584-6
    26. Simon Nicot, Jérémy Verchère, Maxime Bélondrade, Charly Mayran, Dominique Bétemps, Daisy Bougard, Thierry Baron. Seeded propagation of α‐synuclein aggregation in mouse brain using protein misfolding cyclic amplification. The FASEB Journal 2019, 33 (11) , 12073-12086. https://doi.org/10.1096/fj.201900354R
    27. Justine Lempart, Eric Tse, James A Lauer, Magdalena I Ivanova, Alexandra Sutter, Nicholas Yoo, Philipp Huettemann, Daniel Southworth, Ursula Jakob. Mechanistic insights into the protective roles of polyphosphate against amyloid cytotoxicity. Life Science Alliance 2019, 2 (5) , e201900486. https://doi.org/10.26508/lsa.201900486
    28. José Martín-Nieto, Mary Luz Uribe, Julián Esteve-Rudd, María Trinidad Herrero, Laura Campello. A role for DJ-1 against oxidative stress in the mammalian retina. Neuroscience Letters 2019, 708 , 134361. https://doi.org/10.1016/j.neulet.2019.134361
    29. Manish K. Tiwari, Fabian Leinisch, Cagla Sahin, Ian Max Møller, Daniel E. Otzen, Michael J. Davies, Morten J. Bjerrum. Early events in copper-ion catalyzed oxidation of α-synuclein. Free Radical Biology and Medicine 2018, 121 , 38-50. https://doi.org/10.1016/j.freeradbiomed.2018.04.559
    30. Nikolaos Papagiannakis, Christos Koros, Maria Stamelou, Athina-Maria Simitsi, Matina Maniati, Roubina Antonelou, Dimitra Papadimitriou, Georgia Dermentzaki, Marina Moraitou, Helen Michelakakis, Leonidas Stefanis. Alpha-synuclein dimerization in erythrocytes of patients with genetic and non-genetic forms of Parkinson’s Disease. Neuroscience Letters 2018, 672 , 145-149. https://doi.org/10.1016/j.neulet.2017.11.012
    31. Peizhou Jiang, Dennis W. Dickson. Parkinson’s disease: experimental models and reality. Acta Neuropathologica 2018, 135 (1) , 13-32. https://doi.org/10.1007/s00401-017-1788-5
    32. Diana F. Lázaro, Maria Angeliki S. Pavlou, Tiago Fleming Outeiro. Cellular models as tools for the study of the role of alpha-synuclein in Parkinson's disease. Experimental Neurology 2017, 298 , 162-171. https://doi.org/10.1016/j.expneurol.2017.05.007
    33. Michael M. Wördehoff, Hamed Shaykhalishahi, Luca Groß, Lothar Gremer, Matthias Stoldt, Alexander K. Buell, Dieter Willbold, Wolfgang Hoyer. Opposed Effects of Dityrosine Formation in Soluble and Aggregated α-Synuclein on Fibril Growth. Journal of Molecular Biology 2017, 429 (20) , 3018-3030. https://doi.org/10.1016/j.jmb.2017.09.005
    34. Federica Piccirilli, Nicoletta Plotegher, Maria Grazia Ortore, Isabella Tessari, Marco Brucale, Francesco Spinozzi, Mariano Beltramini, Paolo Mariani, Valeria Militello, Stefano Lupi, Andrea Perucchi, Luigi Bubacco. High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy. Biophysical Journal 2017, 113 (8) , 1685-1696. https://doi.org/10.1016/j.bpj.2017.08.042
    35. K.V. Barinova, M.L. Kuravsky, A.M. Arutyunyan, M.V. Serebryakova, E.V. Schmalhausen, V.I. Muronetz. Dimerization of Tyr136Cys alpha-synuclein prevents amyloid transformation of wild type alpha-synuclein. International Journal of Biological Macromolecules 2017, 96 , 35-43. https://doi.org/10.1016/j.ijbiomac.2016.12.011
    36. Graziano Colombo, Marco Clerici, Alessandra Altomare, Francesco Rusconi, Daniela Giustarini, Nicola Portinaro, Maria Lisa Garavaglia, Ranieri Rossi, Isabella Dalle-Donne, Aldo Milzani. Thiol oxidation and di-tyrosine formation in human plasma proteins induced by inflammatory concentrations of hypochlorous acid. Journal of Proteomics 2017, 152 , 22-32. https://doi.org/10.1016/j.jprot.2016.10.008
    37. Youssra K. Al-Hilaly, Luca Biasetti, Ben J. F. Blakeman, Saskia J. Pollack, Shahin Zibaee, Alaa Abdul-Sada, Julian R. Thorpe, Wei-Feng Xue, Louise C. Serpell. The involvement of dityrosine crosslinking in α-synuclein assembly and deposition in Lewy Bodies in Parkinson’s disease. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep39171
    38. Alexandre N. Rcom-H'cheo-Gauthier, Samantha L. Osborne, Adrian C. B. Meedeniya, Dean L. Pountney. Calcium: Alpha-Synuclein Interactions in Alpha-Synucleinopathies. Frontiers in Neuroscience 2016, 10 https://doi.org/10.3389/fnins.2016.00570
    39. Wolfgang Wrasidlo, Igor F. Tsigelny, Diana L. Price, Garima Dutta, Edward Rockenstein, Thomas C. Schwarz, Karin Ledolter, Douglas Bonhaus, Amy Paulino, Simona Eleuteri, Åge A. Skjevik, Valentina L. Kouznetsova, Brian Spencer, Paula Desplats, Tania Gonzalez-Ruelas, Margarita Trejo-Morales, Cassia R. Overk, Stefan Winter, Chunni Zhu, Marie-Francoise Chesselet, Dieter Meier, Herbert Moessler, Robert Konrat, Eliezer Masliah. A de novo compound targeting α-synuclein improves deficits in models of Parkinson’s disease. Brain 2016, 139 (12) , 3217-3236. https://doi.org/10.1093/brain/aww238
    40. Peizhou Jiang, Ming Gan, Shu-Hui Yen, Simon Moussaud, Pamela J. McLean, Dennis W. Dickson. Proaggregant nuclear factor(s) trigger rapid formation of α-synuclein aggregates in apoptotic neurons. Acta Neuropathologica 2016, 132 (1) , 77-91. https://doi.org/10.1007/s00401-016-1542-4
    41. Amano Masato, Fukui Kiichi, Susumu Uchiyama. Suppression of Methionine Oxidation of a Pharmaceutical Antibody Stored in a Polymer-Based Syringe. Journal of Pharmaceutical Sciences 2016, 105 (2) , 623-629. https://doi.org/10.1002/jps.24675
    42. Marina Moraitou, Georgia Dermentzaki, Evangelia Dimitriou, Ioannis Monopolis, Nick Dekker, Hans Aerts, Leonidas Stefanis, Helen Michelakakis. α-Synuclein dimerization in erythrocytes of Gaucher disease patients: correlation with lipid abnormalities and oxidative stress. Neuroscience Letters 2016, 613 , 1-5. https://doi.org/10.1016/j.neulet.2015.12.013
    43. Xi-Lin Xu, Yu Shang, Jian-Guo Jiang. Plant species forbidden in health food and their toxic constituents, toxicology and detoxification. Food & Function 2016, 7 (2) , 643-664. https://doi.org/10.1039/C5FO00995B
    44. Katrin Eckermann, Sebastian Kügler, Mathias Bähr. Dimerization propensities of Synucleins are not predictive for Synuclein aggregation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2015, 1852 (8) , 1658-1664. https://doi.org/10.1016/j.bbadis.2015.05.002
    45. Rosalind F. Roberts, Richard Wade-Martins, Javier Alegre-Abarrategui. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain 2015, 138 (6) , 1642-1657. https://doi.org/10.1093/brain/awv040
    46. Christina Vessely. Regulatory strategy for the development of analytical methods for the routine determination of aggregate profiles for a biosimilar product. Pharmaceutical Bioprocessing 2015, 3 (4) , 305-312. https://doi.org/10.4155/pbp.15.15
    47. Yaping Chu, Jeffrey H. Kordower. The Prion Hypothesis of Parkinson’s Disease. Current Neurology and Neuroscience Reports 2015, 15 (5) https://doi.org/10.1007/s11910-015-0549-x
    48. Parvana Hajieva, Nadhim Bayatti, Matthias Granold, Christian Behl, Bernd Moosmann. Membrane protein oxidation determines neuronal degeneration. Journal of Neurochemistry 2015, 133 (3) , 352-367. https://doi.org/10.1111/jnc.12987
    49. Zhengjian Lv, Alexey V. Krasnoslobodtsev, Yuliang Zhang, Daniel Ysselstein, Jean-Christophe Rochet, Scott C. Blanchard, Yuri L. Lyubchenko. Direct Detection of α-Synuclein Dimerization Dynamics: Single-Molecule Fluorescence Analysis. Biophysical Journal 2015, 108 (8) , 2038-2047. https://doi.org/10.1016/j.bpj.2015.03.010
    50. Neeraj Singh, Vivek Lawana, Niranjana Krishnan, Sri Harsha Kanuri, Huajun Jin, Vellareddy Anantharam, Anumantha Kanthasamy, Arthi Kanthasamy. Agrochemicals-Induced Dopaminergic Neurotoxicity: Role of Mitochondria-Mediated Oxidative Stress and Protein Clearance Mechanisms. 2015, 171-204. https://doi.org/10.1007/978-3-319-13939-5_10
    51. Ashley S. Phillips, Alexandre F. Gomes, Jason M. D. Kalapothakis, Jay E. Gillam, Jonas Gasparavicius, Fabio C. Gozzo, Tilo Kunath, Cait MacPhee, Perdita E. Barran. Conformational dynamics of α-synuclein: insights from mass spectrometry. The Analyst 2015, 140 (9) , 3070-3081. https://doi.org/10.1039/C4AN02306D
    52. A van Maarschalkerweerd, MN Pedersen, H Peterson, M Nilsson, TTT Nguyen, T Skamris, K Rand, V Vetri, AE Langkilde, B Vestergaard. Formation of covalent di-tyrosine dimers in recombinant α-synuclein. Intrinsically Disordered Proteins 2015, 3 (1) , e1071302. https://doi.org/10.1080/21690707.2015.1071302
    53. Alex Rcom-H'cheo-Gauthier, Jacob Goodwin, Dean Pountney. Interactions between Calcium and Alpha-Synuclein in Neurodegeneration. Biomolecules 2014, 4 (3) , 795-811. https://doi.org/10.3390/biom4030795
    54. Jie Gao, Masafumi Ohtsubo, Yoshihiro Hotta, Shinsei Minoshima, . Oligomerization of Optineurin and Its Oxidative Stress- or E50K Mutation-Driven Covalent Cross-Linking: Possible Relationship with Glaucoma Pathology. PLoS ONE 2014, 9 (7) , e101206. https://doi.org/10.1371/journal.pone.0101206
    55. Cristina Aureli, Tommaso Cassano, Alessandra Masci, Antonio Francioso, Sara Martire, Annalisa Cocciolo, Silvia Chichiarelli, Adele Romano, Silvana Gaetani, Patrizia Mancini, Mario Fontana, Maria d'Erme, Luciana Mosca. 5-S-cysteinyldopamine neurotoxicity: Influence on the expression of α-synuclein and ERp57 in cellular and animal models of Parkinson's disease. Journal of Neuroscience Research 2014, 92 (3) , 347-358. https://doi.org/10.1002/jnr.23318
    56. Jee Eun Yang, Je Won Hong, Jehoon Kim, Seung R. Paik. Amyloid Polymorphism of α-Synuclein Induced by Active Firefly Luciferase. Bulletin of the Korean Chemical Society 2014, 35 (2) , 425-430. https://doi.org/10.5012/bkcs.2014.35.2.425
    57. Rajoshi Chaudhuri, Yuan Cheng, C. Russell Middaugh, David B. Volkin. High-Throughput Biophysical Analysis of Protein Therapeutics to Examine Interrelationships Between Aggregate Formation and Conformational Stability. The AAPS Journal 2014, 16 (1) , 48-64. https://doi.org/10.1208/s12248-013-9539-6
    58. Alireza Roostaee, Simon Beaudoin, Antanas Staskevicius, Xavier Roucou. Aggregation and neurotoxicity of recombinant α-synuclein aggregates initiated by dimerization. Molecular Neurodegeneration 2013, 8 (1) https://doi.org/10.1186/1750-1326-8-5
    59. Annika Höhn, Jeannette König, Tilman Grune. Protein oxidation in aging and the removal of oxidized proteins. Journal of Proteomics 2013, 92 , 132-159. https://doi.org/10.1016/j.jprot.2013.01.004
    60. Eduardo Coelho-Cerqueira, Phelippe Carmo-Gonçalves, Anderson Sá Pinheiro, Juliana Cortines, Cristian Follmer. α-Synuclein as an intrinsically disordered monomer  -  fact or artefact?. FEBS Journal 2013, 280 (19) , 4915-4927. https://doi.org/10.1111/febs.12471
    61. Gina M. Moriarty, Maria K. Janowska, Lijuan Kang, Jean Baum. Exploring the accessible conformations of N‐terminal acetylated α‐synuclein. FEBS Letters 2013, 587 (8) , 1128-1138. https://doi.org/10.1016/j.febslet.2013.02.049
    62. T Reid Alderson, John L Markley. Biophysical characterization of α-synuclein and its controversial structure. Intrinsically Disordered Proteins 2013, 1 (1) , e26255. https://doi.org/10.4161/idp.26255
    63. Micaela Pivato, Giorgia De Franceschi, Laura Tosatto, Erica Frare, Dhruv Kumar, Daniel Aioanei, Marco Brucale, Isabella Tessari, Marco Bisaglia, Bruno Samori, Patrizia Polverino de Laureto, Luigi Bubacco, . Covalent α-Synuclein Dimers: Chemico-Physical and Aggregation Properties. PLoS ONE 2012, 7 (12) , e50027. https://doi.org/10.1371/journal.pone.0050027
    64. . Oxidative Stress and Protein Oxidation. 2012, 1-214. https://doi.org/10.1002/9781118493038.ch1
    65. Ana Clara Cristóvão, Subhrangshu Guhathakurta, Eugene Bok, Goun Je, Seung Don Yoo, Dong-Hee Choi, Yoon-Seong Kim. NADPH Oxidase 1 Mediates α-Synucleinopathy in Parkinson's Disease. The Journal of Neuroscience 2012, 32 (42) , 14465-14477. https://doi.org/10.1523/JNEUROSCI.2246-12.2012
    66. Assimina Argyriou, Georgia Dermentzaki, Themistoklis Papasilekas, Marina Moraitou, Eleftherios Stamboulis, Kostas Vekrellis, Helen Michelakakis, Leonidas Stefanis. Increased dimerization of alpha-synuclein in erythrocytes in Gaucher disease and aging. Neuroscience Letters 2012, 528 (2) , 205-209. https://doi.org/10.1016/j.neulet.2012.08.069
    67. Claudio D. Borsarelli, Lisandro J. Falomir-Lockhart, Veronika Ostatná, Jonathan A. Fauerbach, He-Hsuan Hsiao, Henning Urlaub, Emil Paleček, Elizabeth A. Jares-Erijman, Thomas M. Jovin. Biophysical properties and cellular toxicity of covalent crosslinked oligomers of α-synuclein formed by photoinduced side-chain tyrosyl radicals. Free Radical Biology and Medicine 2012, 53 (4) , 1004-1015. https://doi.org/10.1016/j.freeradbiomed.2012.06.035
    68. Bruno Fauvet, Martial K. Mbefo, Mohamed-Bilal Fares, Carole Desobry, Sarah Michael, Mustafa T. Ardah, Elpida Tsika, Philippe Coune, Michel Prudent, Niels Lion, David Eliezer, Darren J. Moore, Bernard Schneider, Patrick Aebischer, Omar M. El-Agnaf, Eliezer Masliah, Hilal A. Lashuel. α-Synuclein in Central Nervous System and from Erythrocytes, Mammalian Cells, and Escherichia coli Exists Predominantly as Disordered Monomer. Journal of Biological Chemistry 2012, 287 (19) , 15345-15364. https://doi.org/10.1074/jbc.M111.318949
    69. Jean-Christophe Rochet, Bruce A. Hay, Ming Guo. Molecular Insights into Parkinson's Disease. 2012, 125-188. https://doi.org/10.1016/B978-0-12-385883-2.00011-4
    70. Katerina E. Paleologou, Omar M. A. El-Agnaf. α-Synuclein Aggregation and Modulating Factors. 2012, 109-164. https://doi.org/10.1007/978-94-007-5416-4_6
    71. Z. Sultana, K.E. Paleologou, K.M. Al-Mansoori, M.T. Ardah, N. Singh, S. Usmani, H. Jiao, F.L. Martin, M.M.S. Bharath, S. Vali, O.M.A. El-Agnaf. Dynamic modeling of α-synuclein aggregation in dopaminergic neuronal system indicates points of neuroprotective intervention: experimental validation with implications for Parkinson's therapy. Neuroscience 2011, 199 , 303-317. https://doi.org/10.1016/j.neuroscience.2011.10.018
    72. Marisa K. Joubert, Quanzhou Luo, Yasser Nashed-Samuel, Jette Wypych, Linda O. Narhi. Classification and Characterization of Therapeutic Antibody Aggregates. Journal of Biological Chemistry 2011, 286 (28) , 25118-25133. https://doi.org/10.1074/jbc.M110.160457
    73. Peizhou Jiang, Ming Gan, Abdul Shukkur Ebrahim, Wen-Lang Lin, Heather L Melrose, Shu-Hui C Yen. ER stress response plays an important role in aggregation of α-synuclein. Molecular Neurodegeneration 2010, 5 (1) https://doi.org/10.1186/1750-1326-5-56
    74. Sabrina Büttner, Charlotte Delay, Vanessa Franssens, Tine Bammens, Doris Ruli, Sandra Zaunschirm, Rita Machado de Oliveira, Tiago Fleming Outeiro, Frank Madeo, Luc Buée, Marie-Christine Galas, Joris Winderickx, . Synphilin-1 Enhances α-Synuclein Aggregation in Yeast and Contributes to Cellular Stress and Cell Death in a Sir2-Dependent Manner. PLoS ONE 2010, 5 (10) , e13700. https://doi.org/10.1371/journal.pone.0013700
    75. Song Yi Bae, Seulgi Kim, Heejin Hwang, Hyun-Kyung Kim, Hyun C. Yoon, Jae Ho Kim, SangYoon Lee, T. Doohun Kim. Amyloid formation and disaggregation of α-synuclein and its tandem repeat (α-TR). Biochemical and Biophysical Research Communications 2010, 400 (4) , 531-536. https://doi.org/10.1016/j.bbrc.2010.08.088
    76. Violeta Ruipérez, Frédéric Darios, Bazbek Davletov. Alpha-synuclein, lipids and Parkinson’s disease. Progress in Lipid Research 2010, 49 (4) , 420-428. https://doi.org/10.1016/j.plipres.2010.05.004
    77. Paul J. Thornalley, Naila Rabbani. Oxidative Modification of Proteins: An Overview. 2010, 137-156. https://doi.org/10.1002/9780813814438.ch9
    78. Jacques Fantini, Nouara Yahi. Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases. Expert Reviews in Molecular Medicine 2010, 12 https://doi.org/10.1017/S1462399410001602
    79. Elizabeth M. Topp, Lei Zhang, Hong Zhao, Robert W. Payne, Gabriel J. Evans, Mark Cornell Manning. Chemical Instability in Peptide and Protein Pharmaceuticals. 2010, 41-67. https://doi.org/10.1002/9780470595886.ch2
    80. Andisheh Abedini, Ruchi Gupta, Peter Marek, Fanling Meng, Daniel P. Raleigh, Humeyra Taskent, Sylvia Tracz. Role of Posttranslational Modifications in Amyloid Formation. 2010, 131-144. https://doi.org/10.1002/9780470572702.ch7
    81. Hisashi Yagi, Daisaku Ozawa, Kazumasa Sakurai, Toru Kawakami, Hiroki Kuyama, Osamu Nishimura, Toshinori Shimanouchi, Ryoichi Kuboi, Hironobu Naiki, Yuji Goto. Laser-induced Propagation and Destruction of Amyloid β Fibrils. Journal of Biological Chemistry 2010, 285 (25) , 19660-19667. https://doi.org/10.1074/jbc.M109.076505
    82. Wei Wang, Sandeep Nema, Dirk Teagarden. Protein aggregation—Pathways and influencing factors. International Journal of Pharmaceutics 2010, 390 (2) , 89-99. https://doi.org/10.1016/j.ijpharm.2010.02.025
    83. V Franssens, E Boelen, J Anandhakumar, T Vanhelmont, S Büttner, J Winderickx. Yeast unfolds the road map toward α-synuclein-induced cell death. Cell Death & Differentiation 2010, 17 (5) , 746-753. https://doi.org/10.1038/cdd.2009.203
    84. Mark Cornell Manning, Danny K. Chou, Brian M. Murphy, Robert W. Payne, Derrick S. Katayama. Stability of Protein Pharmaceuticals: An Update. Pharmaceutical Research 2010, 27 (4) , 544-575. https://doi.org/10.1007/s11095-009-0045-6
    85. Melanie Dyllick-Brenzinger, Cheryl A. D’Souza, Burkhardt Dahlmann, Peter-Michael Kloetzel, Anurag Tandon. Reciprocal Effects of α-Synuclein Overexpression and Proteasome Inhibition in Neuronal Cells and Tissue. Neurotoxicity Research 2010, 17 (3) , 215-227. https://doi.org/10.1007/s12640-009-9094-1
    86. Massimo Sandal, Marco Brucale, Bruno Samorì. Monitoring the Conformational Equilibria of Monomeric Intrinsically Disordered Proteins by Single‐Molecule Force Spectroscopy. 2010, 391-430. https://doi.org/10.1002/9780470602614.ch14
    87. Elpida Tsika, Maria Moysidou, Jing Guo, Mimi Cushman, Patrick Gannon, Raphael Sandaltzopoulos, Benoit I. Giasson, Dimitri Krainc, Harry Ischiropoulos, Joseph R. Mazzulli. Distinct Region-Specific α-Synuclein Oligomers in A53T Transgenic Mice: Implications for Neurodegeneration. The Journal of Neuroscience 2010, 30 (9) , 3409-3418. https://doi.org/10.1523/JNEUROSCI.4977-09.2010
    88. Jean‐Marc Taymans, Mark R. Cookson. Mechanisms in dominant parkinsonism: The toxic triangle of LRRK2, α‐synuclein, and tau. BioEssays 2010, 32 (3) , 227-235. https://doi.org/10.1002/bies.200900163
    89. Kristen A Malkus, Elpida Tsika, Harry Ischiropoulos. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle. Molecular Neurodegeneration 2009, 4 (1) https://doi.org/10.1186/1750-1326-4-24
    90. Elpida Tsika, Harry Ischiropoulos, Kristen Malkus. The Neuroprotective Role of Micronutrients in Parkinson’s Disease. 2009https://doi.org/10.1201/9781420073522.ch2
    91. Rogan B. Tinsley, Chris R. Bye, Clare L. Parish, Angela Tziotis-Vais, Sonia George, Janetta G. Culvenor, Qiao-Xin Li, Colin L. Masters, David I. Finkelstein, Malcolm K. Horne. Dopamine D 2 receptor knockout mice develop features of Parkinson disease. Annals of Neurology 2009, 66 (4) , 472-484. https://doi.org/10.1002/ana.21716
    92. Kim Sneppen, Ludvig Lizana, Mogens H Jensen, Simone Pigolotti, Daniel Otzen. Modeling proteasome dynamics in Parkinson's disease. Physical Biology 2009, 6 (3) , 036005. https://doi.org/10.1088/1478-3975/6/3/036005
    93. Nicolas Brandes, Sebastian Schmitt, Ursula Jakob. Thiol-Based Redox Switches in Eukaryotic Proteins. Antioxidants & Redox Signaling 2009, 11 (5) , 997-1014. https://doi.org/10.1089/ars.2008.2285
    94. Ashley D. Reynolds, David K. Stone, R. Lee Mosley, Howard E. Gendelman. Nitrated α-Synuclein-Induced Alterations in Microglial Immunity Are Regulated by CD4+ T Cell Subsets. The Journal of Immunology 2009, 182 (7) , 4137-4149. https://doi.org/10.4049/jimmunol.0803982
    95. Junping Yu, Yuri L. Lyubchenko. Early Stages for Parkinson’s Development: α-Synuclein Misfolding and Aggregation. Journal of Neuroimmune Pharmacology 2009, 4 (1) , 10-16. https://doi.org/10.1007/s11481-008-9115-5
    96. David Olivares, Xudong Huang, Lars Branden, Nigel Greig, Jack Rogers. Physiological and Pathological Role of Alpha-synuclein in Parkinson’s Disease Through Iron Mediated Oxidative Stress; The Role of a Putative Iron-responsive Element. International Journal of Molecular Sciences 2009, 10 (3) , 1226-1260. https://doi.org/10.3390/ijms10031226
    97. Marco Brucale, Massimo Sandal, Selena Di Maio, Aldo Rampioni, Isabella Tessari, Laura Tosatto, Marco Bisaglia, Luigi Bubacco, Bruno Samorì. Pathogenic Mutations Shift the Equilibria of α-Synuclein Single Molecules towards Structured Conformers. ChemBioChem 2009, 10 (1) , 176-183. https://doi.org/10.1002/cbic.200800581
    98. Simon N. Haydar, Heedong Yun, Roland G.W. Staal, Warren D. Hirst. Chapter 3 Small-Molecule Protein?Protein Interaction Inhibitors as Therapeutic Agents for Neurodegenerative Diseases: Recent Progress and Future Directions. 2009, 51-69. https://doi.org/10.1016/S0065-7743(09)04403-0
    99. Junping Yu, Sarka Malkova, Yuri L. Lyubchenko. α-Synuclein Misfolding: Single Molecule AFM Force Spectroscopy Study. Journal of Molecular Biology 2008, 384 (4) , 992-1001. https://doi.org/10.1016/j.jmb.2008.10.006
    100. Igor F. Tsigelny, Leslie Crews, Paula Desplats, Gideon M. Shaked, Yuriy Sharikov, Hideya Mizuno, Brian Spencer, Edward Rockenstein, Margarita Trejo, Oleksandr Platoshyn, Jason X.-J. Yuan, Eliezer Masliah, . Mechanisms of Hybrid Oligomer Formation in the Pathogenesis of Combined Alzheimer's and Parkinson's Diseases. PLoS ONE 2008, 3 (9) , e3135. https://doi.org/10.1371/journal.pone.0003135
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect