ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Structural and Functional Study of the Apelin-13 Peptide, an Endogenous Ligand of the HIV-1 Coreceptor, APJ

View Author Information
The Dorrance H. Hamilton Laboratory, Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Jefferson Medical College, and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
Cite this: Biochemistry 2003, 42, 34, 10163–10168
Publication Date (Web):August 2, 2003
https://doi.org/10.1021/bi030049s
Copyright © 2003 American Chemical Society

    Article Views

    1176

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The APJ receptor is widely expressed in the human central nervous system (CNS). Apelin was recently identified as the endogenous peptidic ligand for human APJ. Studies with animal models suggested that APJ and apelin play an important role in the hypothalamic regulation of water intake and the endocrine axis, in the regulation of blood pressure, and in cardiac contractility. Apelin has been found to block the activity of APJ as a human immunodeficiency virus type I (HIV-1) coreceptor. In this study, we combined chemical synthetic approaches with alanine substitution to evaluate the structural requirements for interactions with the APJ receptor. We demonstrated that apelin peptides in aqueous solution adopt a random conformation, and the positive charge and hydrophobic residues of apelin-13 play important roles in interactions with the APJ receptor. We have observed an important correlation between receptor binding affinity and cell−cell fusion inhibitory activity. The elucidation of structural requirements of apelin-13 in its interaction with the APJ receptor is critical for further investigation of apelin−APJ functions in vivo and in the design of small molecular inhibitors for potential treatment of HIV-1 infection in the CNS.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Supported in part by U.S. Public Health Service Grants NS27405, NS41864, and MH58526 to R.J.P.

     Kimmel Cancer Center.

    §

     These authors contributed equally to this work.

     Jefferson Medical College.

    *

     To whom correspondence should be addressed:  The Dorrance H. Hamilton Laboratory, Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107. Telephone:  (215) 503-8575. Fax:  (215) 503-2624. E-mail:  [email protected].

    Cited By

    This article is cited by 76 publications.

    1. Kien Trân, Robin Van Den Hauwe, Xavier Sainsily, Pierre Couvineau, Jérôme Côté, Louise Simard, Marco Echevarria, Alexandre Murza, Alexandra Serre, Léa Théroux, Sabrina Saibi, Lounès Haroune, Jean-Michel Longpré, Olivier Lesur, Mannix Auger-Messier, Claude Spino, Michel Bouvier, Philippe Sarret, Steven Ballet, Éric Marsault. Constraining the Side Chain of C-Terminal Amino Acids in Apelin-13 Greatly Increases Affinity, Modulates Signaling, and Improves the Pharmacokinetic Profile. Journal of Medicinal Chemistry 2021, 64 (9) , 5345-5364. https://doi.org/10.1021/acs.jmedchem.0c01941
    2. Jovan Damjanovic, Jiayuan Miao, He Huang, Yu-Shan Lin. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chemical Reviews 2021, 121 (4) , 2292-2324. https://doi.org/10.1021/acs.chemrev.0c01087
    3. Conrad Fischer, Tess Lamer, Kleinberg Fernandez, Mahmoud Gheblawi, Wang Wang, Cameron Pascoe, Gareth Lambkin, Xavier Iturrioz, Catherine Llorens-Cortes, Gavin Y. Oudit, John C. Vederas. Optimizing PEG-Extended Apelin Analogues as Cardioprotective Drug Leads: Importance of the KFRR Motif and Aromatic Head Group for Improved Physiological Activity. Journal of Medicinal Chemistry 2020, 63 (20) , 12073-12082. https://doi.org/10.1021/acs.jmedchem.0c01395
    4. Shaun M. K. McKinnie, Wang Wang, Conrad Fischer, Tyler McDonald, Kevin R. Kalin, Xavier Iturrioz, Catherine Llorens-Cortes, Gavin Y. Oudit, and John C. Vederas . Synthetic Modification within the “RPRL” Region of Apelin Peptides: Impact on Cardiovascular Activity and Stability to Neprilysin and Plasma Degradation. Journal of Medicinal Chemistry 2017, 60 (14) , 6408-6427. https://doi.org/10.1021/acs.jmedchem.7b00723
    5. Robin E. Patterson, Nathan Weatherbee-Martin, and Jan K. Rainey . Pyrene–Apelin Conjugation Modulates Fluorophore– and Peptide–Micelle Interactions. The Journal of Physical Chemistry B 2017, 121 (18) , 4768-4777. https://doi.org/10.1021/acs.jpcb.7b02376
    6. Sanju Narayanan, Danni L. Harris, Rangan Maitra, and Scott P. Runyon . Regulation of the Apelinergic System and Its Potential in Cardiovascular Disease: Peptides and Small Molecules as Tools for Discovery. Journal of Medicinal Chemistry 2015, 58 (20) , 7913-7927. https://doi.org/10.1021/acs.jmedchem.5b00527
    7. Alexandre Murza, Élie Besserer-Offroy, Jérôme Côté, Patrick Bérubé, Jean-Michel Longpré, Robert Dumaine, Olivier Lesur, Mannix Auger-Messier, Richard Leduc, Philippe Sarret, and Éric Marsault . C-Terminal Modifications of Apelin-13 Significantly Change Ligand Binding, Receptor Signaling, and Hypotensive Action. Journal of Medicinal Chemistry 2015, 58 (5) , 2431-2440. https://doi.org/10.1021/jm501916k
    8. Gloria Ruiz-Gómez, Joel D. A. Tyndall, Bernhard Pfeiffer, Giovanni Abbenante, and David P. Fairlie. Update 1 of: Over One Hundred Peptide-Activated G Protein-Coupled Receptors Recognize Ligands with Turn Structure. Chemical Reviews 2010, 110 (4) , PR1-PR41. https://doi.org/10.1021/cr900344w
    9. David N. Langelaan and Jan K. Rainey. Headgroup-Dependent Membrane Catalysis of Apelin−Receptor Interactions Is Likely. The Journal of Physical Chemistry B 2009, 113 (30) , 10465-10471. https://doi.org/10.1021/jp904562q
    10. David N. Langelaan, E. Meghan Bebbington, Tyler Reddy and Jan K. Rainey . Structural Insight into G-Protein Coupled Receptor Binding by Apelin. Biochemistry 2009, 48 (3) , 537-548. https://doi.org/10.1021/bi801864b
    11. Joel D. A. Tyndall,, Bernhard Pfeiffer,, Giovanni Abbenante, and, David P. Fairlie. Over One Hundred Peptide-Activated G Protein-Coupled Receptors Recognize Ligands with Turn Structure. Chemical Reviews 2005, 105 (3) , 793-826. https://doi.org/10.1021/cr040689g
    12. Yun Wu, Chen Cui, Fang-fang Bi, Cheng-yu Wu, Jin-rui Li, Yu-meng Hou, Ze-hong Jing, Qing-ming Pan, Miao Cao, Li-fang Lv, Xue-lian Li, Hong-li Shan, Xin Zhai, Yu-hong Zhou. Montelukast, cysteinyl leukotriene receptor 1 antagonist, inhibits cardiac fibrosis by activating APJ. European Journal of Pharmacology 2022, 923 , 174892. https://doi.org/10.1016/j.ejphar.2022.174892
    13. Oanh Vu, Brian Joseph Bender, Lisa Pankewitz, Daniel Huster, Annette G. Beck-Sickinger, Jens Meiler. The Structural Basis of Peptide Binding at Class A G Protein-Coupled Receptors. Molecules 2022, 27 (1) , 210. https://doi.org/10.3390/molecules27010210
    14. Anisha Ashokan, Harikumar Sheela Harisankar, Mythili Kameswaran, Gopala Krishna Aradhyam. Critical APJ receptor residues in extracellular domains that influence effector selectivity. The FEBS Journal 2021, 288 (22) , 6543-6562. https://doi.org/10.1111/febs.16048
    15. Samrita Dogra, Deepika Neelakantan, Maulin M. Patel, Beth Griesel, Ann Olson, Sukyung Woo. Adipokine Apelin/APJ Pathway Promotes Peritoneal Dissemination of Ovarian Cancer Cells by Regulating Lipid Metabolism. Molecular Cancer Research 2021, 19 (9) , 1534-1545. https://doi.org/10.1158/1541-7786.MCR-20-0991
    16. Yunlu Jiang, Maocai Yan, Chunmei Wang, Qinqin Wang, Xiaoyu Chen, Rumin Zhang, Lei Wan, Bingyuan Ji, Bo Dong, Huiyun Wang, Jing Chen. The Effects of Apelin and Elabela Ligands on Apelin Receptor Distinct Signaling Profiles. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.630548
    17. Olena Wojno, Katarzyna Czarzasta, Liana Puchalska, Malgorzata Kowalczyk, Agnieszka Cudnoch‐Jedrzejewska. Central interaction between the apelinergic and vasopressinergic systems in the regulation of the haemodynamic parameters in rats maintained on a high‐fat diet. Clinical and Experimental Pharmacology and Physiology 2020, 47 (12) , 1902-1911. https://doi.org/10.1111/1440-1681.13381
    18. Pu Zhang, Ai-ping Wang, Hong-peng Yang, Lei Ai, Hong-jun Zhang, Yong-mei Wang, Yan-ling Bi, Huai-hai Fan, Jing Gao, Huan-yi Zhang, Jian-zhu Liu. Apelin-13 attenuates high glucose-induced calcification of MOVAS cells by regulating MAPKs and PI3K/AKT pathways and ROS-mediated signals. Biomedicine & Pharmacotherapy 2020, 128 , 110271. https://doi.org/10.1016/j.biopha.2020.110271
    19. Brandon Ason, Yinhong Chen, Qi Guo, Kimberly M. Hoagland, Ray W. Chui, Mark Fielden, Weston Sutherland, Rhonda Chen, Ying Zhang, Shirley Mihardja, Xiaochuan Ma, Xun Li, Yaping Sun, Dongming Liu, Khanh Nguyen, Jinghong Wang, Ning Li, Sridharan Rajamani, Yusheng Qu, BaoXi Gao, Andrea Boden, Vishnu Chintalgattu, Jim R. Turk, Joyce Chan, Liaoyuan A. Hu, Paul Dransfield, Jonathan Houze, Jingman Wong, Ji Ma, Vatee Pattaropong, Murielle M. Véniant, Hugo M. Vargas, Gayathri Swaminath, Aarif Y. Khakoo. Cardiovascular response to small-molecule APJ activation. JCI Insight 2020, 5 (8) https://doi.org/10.1172/jci.insight.132898
    20. Duuamene Nyimanu, Rhoda E. Kuc, Thomas L. Williams, Maria Bednarek, Philip Ambery, Lutz Jermutus, Janet J. Maguire, Anthony P. Davenport. Apelin-36-[L28A] and Apelin-36-[L28C(30kDa-PEG)] peptides that improve diet induced obesity are G protein biased ligands at the apelin receptor. Peptides 2019, 121 , 170139. https://doi.org/10.1016/j.peptides.2019.170139
    21. Cai Read, Duuamene Nyimanu, Thomas L. Williams, David J. Huggins, Petra Sulentic, Robyn G. C. Macrae, Peiran Yang, Robert C. Glen, Janet J. Maguire, Anthony P. Davenport, . International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacological Reviews 2019, 71 (4) , 467-502. https://doi.org/10.1124/pr.119.017533
    22. Iris Uribesalgo, David Hoffmann, Yin Zhang, Anoop Kavirayani, Jelena Lazovic, Judit Berta, Maria Novatchkova, Tsung‐Pin Pai, Reiner A Wimmer, Viktória László, Daniel Schramek, Rezaul Karim, Luigi Tortola, Sumit Deswal, Lisa Haas, Johannes Zuber, Miklós Szűcs, Keiji Kuba, Balazs Dome, Yihai Cao, Bernhard J Haubner, Josef M Penninger. Apelin inhibition prevents resistance and metastasis associated with anti‐angiogenic therapy. EMBO Molecular Medicine 2019, 11 (8) https://doi.org/10.15252/emmm.201809266
    23. Zhen Huang, Xuling Luo, Meiqing Liu, Linxi Chen. Function and regulation of apelin/APJ system in digestive physiology and pathology. Journal of Cellular Physiology 2019, 234 (6) , 7796-7810. https://doi.org/10.1002/jcp.27720
    24. Giorgia Mastrella, Mengzhuo Hou, Min Li, Veit M. Stoecklein, Nina Zdouc, Marie N.M. Volmar, Hrvoje Miletic, Sören Reinhard, Christel C. Herold-Mende, Susanne Kleber, Katharina Eisenhut, Gaetano Gargiulo, Michael Synowitz, Angelo L. Vescovi, Patrick N. Harter, Josef M. Penninger, Ernst Wagner, Michel Mittelbronn, Rolf Bjerkvig, Dolores Hambardzumyan, Ulrich Schüller, Jörg-Christian Tonn, Josefine Radke, Rainer Glass, Roland E. Kälin. Targeting APLN/APLNR Improves Antiangiogenic Efficiency and Blunts Proinvasive Side Effects of VEGFA/VEGFR2 Blockade in Glioblastoma. Cancer Research 2019, 79 (9) , 2298-2313. https://doi.org/10.1158/0008-5472.CAN-18-0881
    25. Keiji Kuba, Teruki Sato, Yumiko Imai, Tomokazu Yamaguchi. Apelin and Elabela/Toddler; double ligands for APJ/Apelin receptor in heart development, physiology, and pathology. Peptides 2019, 111 , 62-70. https://doi.org/10.1016/j.peptides.2018.04.011
    26. Alexandre Murza, Kien Trân, Laurent Bruneau‐Cossette, Olivier Lesur, Mannix Auger‐Messier, Pierre Lavigne, Philippe Sarret, Éric Marsault. Apelins, ELABELA, and their derivatives: Peptidic regulators of the cardiovascular system and beyond. Peptide Science 2019, 111 (1) https://doi.org/10.1002/pep2.24064
    27. Zhen Huang, Lu He, Zhe Chen, Linxi Chen. Targeting drugs to APJ receptor: From signaling to pathophysiological effects. Journal of Cellular Physiology 2019, 234 (1) , 61-74. https://doi.org/10.1002/jcp.27047
    28. Danielle McAnally, Khandaker Siddiquee, Ahmed Gomaa, Andras Szabo, Stefan Vasile, Patrick R. Maloney, Daniela B. Divlianska, Satyamaheshwar Peddibhotla, Camilo J. Morfa, Paul Hershberger, Rebecca Falter, Robert Williamson, David B. Terry, Rafal Farjo, Anthony B. Pinkerton, Xiaping Qi, Judith Quigley, Michael E. Boulton, Maria B. Grant, Layton H. Smith, . Repurposing antimalarial aminoquinolines and related compounds for treatment of retinal neovascularization. PLOS ONE 2018, 13 (9) , e0202436. https://doi.org/10.1371/journal.pone.0202436
    29. Zhen Huang, Lele Wu, Linxi Chen. Apelin/APJ system: A novel potential therapy target for kidney disease. Journal of Cellular Physiology 2018, 233 (5) , 3892-3900. https://doi.org/10.1002/jcp.26144
    30. Kyungsoo Shin, Calem Kenward, Jan K. Rainey. Apelinergic System Structure and Function. 2017, 407-450. https://doi.org/10.1002/cphy.c170028
    31. Finbarr P.M. O'Harte, Vadivel Parthsarathy, Christopher Hogg, Peter R Flatt. Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties. Biochemical Pharmacology 2017, 146 , 165-173. https://doi.org/10.1016/j.bcp.2017.10.002
    32. Kyungsoo Shin, Muzaddid Sarker, Shuya K. Huang, Jan K. Rainey. Apelin conformational and binding equilibria upon micelle interaction primarily depend on membrane-mimetic headgroup. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-14784-0
    33. Tong Chen, Ning Liu, Guang-Meng Xu, Tong-Jun Liu, Ying Liu, Yan Zhou, Si-Bo Huo, Kai Zhang. Apelin13/APJ promotes proliferation of colon carcinoma by activating Notch3 signaling pathway. Oncotarget 2017, 8 (60) , 101697-101706. https://doi.org/10.18632/oncotarget.21904
    34. Jiu-Chang Zhong, Zhen-Zhou Zhang, Wang Wang, Shaun M.K. McKinnie, John C. Vederas, Gavin Y. Oudit. Targeting the apelin pathway as a novel therapeutic approach for cardiovascular diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2017, 1863 (8) , 1942-1950. https://doi.org/10.1016/j.bbadis.2016.11.007
    35. Kyungsoo Shin, Nigel A. Chapman, Muzaddid Sarker, Calem Kenward, Shuya K. Huang, Nathan Weatherbee-Martin, Aditya Pandey, Denis J. Dupré, Jan K. Rainey. Bioactivity of the putative apelin proprotein expands the repertoire of apelin receptor ligands. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (8) , 1901-1912. https://doi.org/10.1016/j.bbagen.2017.05.017
    36. Yingli Ma, Yang Yue, Yanbin Ma, Qing Zhang, Qingtong Zhou, Yunpeng Song, Yuqing Shen, Xun Li, Xiaochuan Ma, Chao Li, Michael A. Hanson, Gye Won Han, E. Allen Sickmier, Gayathri Swaminath, Suwen Zhao, Raymond C. Stevens, Liaoyuan A. Hu, Wenge Zhong, Mingqiang Zhang, Fei Xu. Structural Basis for Apelin Control of the Human Apelin Receptor. Structure 2017, 25 (6) , 858-866.e4. https://doi.org/10.1016/j.str.2017.04.008
    37. Adrien Flahault, Pierre Couvineau, Rodrigo Alvear-Perez, Xavier Iturrioz, Catherine Llorens-Cortes. Role of the Vasopressin/Apelin Balance and Potential Use of Metabolically Stable Apelin Analogs in Water Metabolism Disorders. Frontiers in Endocrinology 2017, 8 https://doi.org/10.3389/fendo.2017.00120
    38. Peiran Yang, Rhoda E. Kuc, Aimée L. Brame, Alex Dyson, Mervyn Singer, Robert C. Glen, Joseph Cheriyan, Ian B. Wilkinson, Anthony P. Davenport, Janet J. Maguire. [Pyr1]Apelin-13(1–12) Is a Biologically Active ACE2 Metabolite of the Endogenous Cardiovascular Peptide [Pyr1]Apelin-13. Frontiers in Neuroscience 2017, 11 https://doi.org/10.3389/fnins.2017.00092
    39. Hadas Galon-Tilleman, Hong Yang, Maria A. Bednarek, Sandra M. Spurlock, Kevin J. Paavola, Brian Ko, Carmen To, Jian Luo, Hui Tian, Lutz Jermutus, Joseph Grimsby, Cristina M. Rondinone, Anish Konkar, Daniel D. Kaplan. Apelin-36 Modulates Blood Glucose and Body Weight Independently of Canonical APJ Receptor Signaling. Journal of Biological Chemistry 2017, 292 (5) , 1925-1933. https://doi.org/10.1074/jbc.M116.748103
    40. Zhe Chen, Di Wu, Lanfang Li, Linxi Chen. Apelin/APJ System: A Novel Therapeutic Target for Myocardial Ischemia/Reperfusion Injury. DNA and Cell Biology 2016, 35 (12) , 766-775. https://doi.org/10.1089/dna.2016.3391
    41. Lin Wang, Mei Mei, Aijian Qin, Jianqiang Ye, Kun Qian, Hongxia Shao. Membrane-associated GRP78 helps subgroup J avian leucosis virus enter cells. Veterinary Research 2016, 47 (1) https://doi.org/10.1186/s13567-016-0373-6
    42. Cathleen Juhl, Sylvia Els‐Heindl, Ria Schönauer, Gorden Redlich, Erik Haaf, Frank Wunder, Bernd Riedl, Nils Burkhardt, Annette G. Beck‐Sickinger, Donald Bierer. Development of Potent and Metabolically Stable APJ Ligands with High Therapeutic Potential. ChemMedChem 2016, 11 (21) , 2378-2384. https://doi.org/10.1002/cmdc.201600307
    43. Shaun M. K. McKinnie, Conrad Fischer, Kelvin M. H. Tran, Wang Wang, Fabricio Mosquera, Gavin Y. Oudit, John C. Vederas. The Metalloprotease Neprilysin Degrades and Inactivates Apelin Peptides. ChemBioChem 2016, 17 (16) , 1495-1498. https://doi.org/10.1002/cbic.201600244
    44. Wang Wang, Shaun M.K. McKinnie, Maikel Farhan, Manish Paul, Tyler McDonald, Brent McLean, Catherine Llorens-Cortes, Saugata Hazra, Allan G. Murray, John C. Vederas, Gavin Y. Oudit. Angiotensin-Converting Enzyme 2 Metabolizes and Partially Inactivates Pyr-Apelin-13 and Apelin-17. Hypertension 2016, 68 (2) , 365-377. https://doi.org/10.1161/HYPERTENSIONAHA.115.06892
    45. Shifang Huang, Linxi Chen, Liqun Lu, Lanfang Li. The apelin–APJ axis: A novel potential therapeutic target for organ fibrosis. Clinica Chimica Acta 2016, 456 , 81-88. https://doi.org/10.1016/j.cca.2016.02.025
    46. Kristina Pagh Friis, Xavier Iturrioz, Jonas Thomsen, Rodrigo Alvear-Perez, Shervin Bahrami, Catherine Llorens-Cortes, Finn Skou Pedersen, . Directed Molecular Evolution of an Engineered Gammaretroviral Envelope Protein with Dual Receptor Use Shows Stable Maintenance of Both Receptor Specificities. Journal of Virology 2016, 90 (3) , 1647-1656. https://doi.org/10.1128/JVI.02013-15
    47. Feng Xie, Wei Liu, Fen Feng, Xin Li, Lu He, Deguan Lv, Xuping Qin, Lifang Li, Lanfang Li, Linxi Chen. Apelin-13 promotes cardiomyocyte hypertrophy via PI3K-Akt-ERK1/2-p70S6K and PI3K-induced autophagy. Acta Biochimica et Biophysica Sinica 2015, 47 (12) , 969-980. https://doi.org/10.1093/abbs/gmv111
    48. C. Chaves-Almagro, I. Castan-Laurell, C. Dray, C. Knauf, P. Valet, B. Masri. Apelin receptors: From signaling to antidiabetic strategy. European Journal of Pharmacology 2015, 763 , 149-159. https://doi.org/10.1016/j.ejphar.2015.05.017
    49. Peiran Yang, Janet J. Maguire, Anthony P. Davenport. Apelin, Elabela/Toddler, and biased agonists as novel therapeutic agents in the cardiovascular system. Trends in Pharmacological Sciences 2015, 36 (9) , 560-567. https://doi.org/10.1016/j.tips.2015.06.002
    50. Plinio Cirillo, Francesca Ziviello, Grazia Pellegrino, Stefano Conte, Giovanni Cimmino, Alessandro Giaquinto, Francesco Pacifico, Antonio Leonardi, Paolo Golino, Bruno Trimarco. The adipokine apelin-13 induces expression of prothrombotic tissue factor. Thrombosis and Haemostasis 2015, 113 (02) , 363-372. https://doi.org/10.1160/TH14-05-0451
    51. Romain Gerbier, Vincent Leroux, Pierre Couvineau, Rodrigo Alvear‐Perez, Bernard Maigret, Catherine Llorens‐Cortes, Xavier Iturrioz. New structural insights into the apelin receptor: identification of key residues for apelin binding. The FASEB Journal 2015, 29 (1) , 314-322. https://doi.org/10.1096/fj.14-256339
    52. Alexandre Murza, Karine Belleville, Jean‐Michel Longpré, Philippe Sarret, Éric Marsault. Stability and degradation patterns of chemically modified analogs of apelin‐13 in plasma and cerebrospinal fluid. Peptide Science 2014, 102 (4) , 297-303. https://doi.org/10.1002/bip.22498
    53. Yanyan Zhang, Rangan Maitra, Danni L. Harris, Suraj Dhungana, Rodney Snyder, Scott P. Runyon. Identifying structural determinants of potency for analogs of apelin-13: Integration of C-terminal truncation with structure–activity. Bioorganic & Medicinal Chemistry 2014, 22 (11) , 2992-2997. https://doi.org/10.1016/j.bmc.2014.04.001
    54. Stephen P.H. Alexander, Helen E. Benson, Elena Faccenda, Adam J. Pawson, Joanna L. Sharman, Michael Spedding, John A. Peters, Anthony J. Harmar, . The Concise Guide to PHARMACOLOGY 2013/14: G Protein-Coupled Receptors. British Journal of Pharmacology 2013, 170 (8) , 1459-1581. https://doi.org/10.1111/bph.12445
    55. Anne-Marie O'Carroll, Stephen J Lolait, Louise E Harris, George R Pope. The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. Journal of Endocrinology 2013, 219 (1) , R13-R35. https://doi.org/10.1530/JOE-13-0227
    56. R. Raucci, F. Rusolo, A. Sharma, G. Colonna, G. Castello, S. Costantini. Functional and structural features of adipokine family. Cytokine 2013, 61 (1) , 1-14. https://doi.org/10.1016/j.cyto.2012.08.036
    57. Kyungsoo Shin, Aditya Pandey, Xiang-Qin Liu, Younes Anini, Jan K. Rainey. Preferential apelin‐13 production by the proprotein convertase PCSK3 is implicated in obesity. FEBS Open Bio 2013, 3 (1) , 328-333. https://doi.org/10.1016/j.fob.2013.08.001
    58. Alexandre Murza, Alexandre Parent, Elie Besserer‐Offroy, Hugo Tremblay, Félix Karadereye, Nicolas Beaudet, Richard Leduc, Philippe Sarret, Éric Marsault. Elucidation of the Structure–Activity Relationships of Apelin: Influence of Unnatural Amino Acids on Binding, Signaling, and Plasma Stability. ChemMedChem 2012, 7 (2) , 318-325. https://doi.org/10.1002/cmdc.201100492
    59. Oleg I. Pisarenko, Yulia A. Pelogeykina, Valentin S. Shulzhenko, Irina M. Studneva. Nitric oxide synthase mediates the apelin-induced improvement of myocardial postischemic metabolic and functional recovery. Open Journal of Molecular and Integrative Physiology 2012, 02 (01) , 1-7. https://doi.org/10.4236/ojmip.2012.21001
    60. SPH Alexander, A Mathie, JA Peters. G PROTEIN‐COUPLED RECEPTORS. British Journal of Pharmacology 2011, 164 (s1) https://doi.org/10.1111/j.1476-5381.2011.01649_3.x
    61. Isabelle Castan-Laurell, Cédric Dray, Camille Attané, Thibaut Duparc, Claude Knauf, Philippe Valet. Apelin, diabetes, and obesity. Endocrine 2011, 40 (1) , 1-9. https://doi.org/10.1007/s12020-011-9507-9
    62. N. J. Maximilian Macaluso, Sarah L. Pitkin, Janet J. Maguire, Anthony P. Davenport, Robert C. Glen. Discovery of a Competitive Apelin Receptor (APJ) Antagonist. ChemMedChem 2011, 6 (6) , 1017-1023. https://doi.org/10.1002/cmdc.201100069
    63. Christopher J Charles. Update on apelin peptides as putative targets for cardiovascular drug discovery. Expert Opinion on Drug Discovery 2011, 6 (6) , 633-644. https://doi.org/10.1517/17460441.2011.571251
    64. Sarah L. Pitkin, Janet. J. Maguire, Tom I. Bonner, Anthony P. Davenport. International Union of Basic and Clinical Pharmacology. LXXIV. Apelin Receptor Nomenclature, Distribution, Pharmacology, and Function. Pharmacological Reviews 2010, 62 (3) , 331-342. https://doi.org/10.1124/pr.110.002949
    65. N. J. Maximilian Macaluso, Robert C. Glen. Exploring the ‘RPRL’ Motif of Apelin‐13 through Molecular Simulation and Biological Evaluation of Cyclic Peptide Analogues. ChemMedChem 2010, 5 (8) , 1247-1253. https://doi.org/10.1002/cmdc.201000061
    66. Xavier Iturrioz, Rodrigo Alvear‐Perez, Nadia De Mota, Christel Franchet, Fabrice Guillier, Vincent Leroux, Hubert Dabire, Melissande Le Jouan, Hadjila Chabane, Romain Gerbier, Dominique Bonnet, Alain Berdeaux, Bernard Maigret, Jean‐Luc Galzi, Marcel Hibert, Catherine Llorens‐Cortes. Identification and pharmacological properties of E339–3D6, the first nonpeptidic apelin receptor agonist. The FASEB Journal 2010, 24 (5) , 1506-1517. https://doi.org/10.1096/fj.09-140715
    67. . Apelin. British Journal of Pharmacology 2009, S26-S26. https://doi.org/10.1111/j.1476-5381.2009.00501_12.x
    68. Lin Guo, Qiang Li, Wei Wang, Ping Yu, Hongyan Pan, Pengjie Li, Yuqian Sun, Jinchao Zhang. Apelin Inhibits Insulin Secretion in Pancreatic β-Cells by Activation of PI3-Kinase-Phosphodiesterase 3B. Endocrine Research 2009, 34 (4) , 142-154. https://doi.org/10.3109/07435800903287079
    69. . 7TM RECEPTORS. British Journal of Pharmacology 2009https://doi.org/10.1111/j.1476-5381.2009.00501.x
    70. C. Carpéné, C. Dray, C. Attané, P. Valet, M. P. Portillo, I. Churruca, F. I. Milagro, I. Castan-Laurell. Expanding role for the apelin/APJ system in physiopathology. Journal of Physiology and Biochemistry 2007, 63 (4) , 358-373. https://doi.org/10.1007/BF03165767
    71. Shervin Bahrami, Mogens Duch, Finn Skou Pedersen. Ligand presentation on a synthetic flexible hinge in Moloney murine leukemia virus SU supports entry via a heterologous receptor. Virology 2007, 363 (2) , 303-309. https://doi.org/10.1016/j.virol.2007.01.021
    72. Roland E. Kälin, Martin P. Kretz, Andrea M. Meyer, Andreas Kispert, Frank L. Heppner, André W. Brändli. Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Developmental Biology 2007, 305 (2) , 599-614. https://doi.org/10.1016/j.ydbio.2007.03.004
    73. Matthias J. Kleinz, Anthony P. Davenport. Emerging roles of apelin in biology and medicine. Pharmacology & Therapeutics 2005, 107 (2) , 198-211. https://doi.org/10.1016/j.pharmthera.2005.04.001
    74. B. Masri, B. Knibiehler, Y. Audigier. Apelin signalling: a promising pathway from cloning to pharmacology. Cellular Signalling 2005, 17 (4) , 415-426. https://doi.org/10.1016/j.cellsig.2004.09.018
    75. Dennis K. Lee, Victor R. Saldivia, Tuan Nguyen, Regina Cheng, Susan R. George, Brian F. O’Dowd. Modification of the Terminal Residue of Apelin-13 Antagonizes Its Hypotensive Action. Endocrinology 2005, 146 (1) , 231-236. https://doi.org/10.1210/en.2004-0359
    76. Naiming Zhou, Xiaoling Zhang, Xuejun Fan, Elias Argyris, Jianhua Fang, Edward Acheampong, Garrett C DuBois, Roger J Pomerantz. The N-terminal domain of APJ, a CNS-based coreceptor for HIV-1, is essential for its receptor function and coreceptor activity. Virology 2003, 317 (1) , 84-94. https://doi.org/10.1016/j.virol.2003.08.026

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect