ACS Publications. Most Trusted. Most Cited. Most Read
Probing the Molecular Mechanisms of AZT Drug Resistance Mediated by HIV-1 Reverse Transcriptase Using a Transient Kinetic Analysis
My Activity
    Article

    Probing the Molecular Mechanisms of AZT Drug Resistance Mediated by HIV-1 Reverse Transcriptase Using a Transient Kinetic Analysis
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia 30602-2352, and Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine/Veterans Affairs Medical Center, Decatur, Georgia 30033
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2003, 42, 29, 8831–8841
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi034435l
    Published July 4, 2003
    Copyright © 2003 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Several hypotheses have been proposed to explain the development of resistance to the anti-HIV drug AZT. Clinical findings show that AZT resistance mutations in HIV-1 reverse transcriptase (RT) not only reduce susceptibility to thymidine analogues but may also confer multi-dideoxynucleoside resistance. In this report, we describe transient kinetic studies establishing the biochemical effects of AZT resistance mutations in HIV-1 RT on the incorporation and removal of natural and unnatural deoxynucleotides. While the physiological role remains to be elucidated, the largest biochemical difference between wild-type and AZT resistant HIV-1 RT manifested itself during ATP-mediated deoxynucleotide removal. Enhanced removal resulted from an increase in the maximum rate of chain terminator excision, suggesting that mutated residues play a role in the optimal alignment of substrates for ATP-mediated removal. The efficiency of pyrophosphorolysis was not increased by the presence of AZT resistance mutations. However, a 2-fold decrease in the extent of inhibition caused by the next correct nucleotide during pyrophosphorolytic cleavage of a D4TMP chain-terminated primer may illustrate how this mutant can utilize pyrophosphate to enhance resistance. The inability of RT to catalyze removal of a chain terminator from an RNA−RNA primer−template may show how slight changes in selectivity against AZTMP incorporation during the initiation of DNA synthesis can contribute to high-level resistance. Taken together, these results suggest that multiple modes of resistance may be conferred by these mutations. Structure−activity studies of chain terminator removal suggest that analogues that form tight interactions with residues in the RT active site may be more prone to resistance mechanisms mediated by removal.

    Copyright © 2003 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Work supported by NIH Grants GM49551 (K.S.A.), R37AI-41980 (R.F.S.), AI 25899 (C.K.C.), and RO1AI-32351 (R.F.S. and C.K.C.), the Department of Veteran Affairs (R.F.S.), NRSA 5 T32 GM07223 from the National Institute of General Medical Sciences (A.S.R.), and ACS Postdoctoral Fellowship PF-4478 (J.A.V.).

     Yale University School of Medicine.

    §

     Current address:  Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Ave. SL-43, New Orleans, LA 70112.

     The University of Georgia.

     Emory University School of Medicine/Veterans Affairs Medical Center.

    *

     To whom correspondence should be addressed. E-mail:  [email protected]. Phone:  (203) 785-4526. Fax:  (203) 785-7670.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 61 publications.

    1. Kenneth A. Johnson, Tyler Dangerfield. Mechanisms of inhibition of viral RNA replication by nucleotide analogs. 2021, 39-62. https://doi.org/10.1016/bs.enz.2021.07.001
    2. Nicole Bertoletti, Albert H. Chan, Raymond F. Schinazi, Karen S. Anderson. Post-Catalytic Complexes with Emtricitabine or Stavudine and HIV-1 Reverse Transcriptase Reveal New Mechanistic Insights for Nucleotide Incorporation and Drug Resistance. Molecules 2020, 25 (20) , 4868. https://doi.org/10.3390/molecules25204868
    3. Brian Villalba, Jiawen Li, Kenneth A. Johnson. Resistance to excision determines efficiency of hepatitis C virus RNA-dependent RNA polymerase inhibition by nucleotide analogs. Journal of Biological Chemistry 2020, 295 (30) , 10112-10124. https://doi.org/10.1074/jbc.RA120.013422
    4. Grant Schauer, Nicolas Sluis-Cremer. HIV-1 Resistance to Reverse Transcriptase Inhibitors. 2017, 523-542. https://doi.org/10.1007/978-1-4939-0694-9_26
    5. Brian D. Herman, Robert A. Domaoal, Maryam Ehteshami, Raymond F. Schinazi. Resistance Mechanisms to HIV-1 Nucleoside Reverse Transcriptase Inhibitors. 2017, 503-519. https://doi.org/10.1007/978-3-319-46718-4_33
    6. D.V. Yanvarev, A.N. Korovina, N.N. Usanov, O.A. Khomich, J. Vepsäläinen, E. Puljula, M.K. Kukhanova, S.N. Kochetkov. Methylene bisphosphonates as the inhibitors of HIV RT phosphorolytic activity. Biochimie 2016, 127 , 153-162. https://doi.org/10.1016/j.biochi.2016.05.012
    7. Paul L. Boyer, Kalyan Das, Eddy Arnold, Stephen H. Hughes. Analysis of the Zidovudine Resistance Mutations T215Y, M41L, and L210W in HIV-1 Reverse Transcriptase. Antimicrobial Agents and Chemotherapy 2015, 59 (12) , 7184-7196. https://doi.org/10.1128/AAC.05069-14
    8. Pinar Iyidogan, Karen Anderson. Current Perspectives on HIV-1 Antiretroviral Drug Resistance. Viruses 2014, 6 (10) , 4095-4139. https://doi.org/10.3390/v6104095
    9. Chih-Wei Sheen, Onur Alptürk, Nicolas Sluis-Cremer. Novel high-throughput screen identifies an HIV-1 reverse transcriptase inhibitor with a unique mechanism of action. Biochemical Journal 2014, 462 (3) , 425-432. https://doi.org/10.1042/BJ20140365
    10. Andrea C. Mislak, Kathleen M. Frey, Mariela Bollini, William L. Jorgensen, Karen S. Anderson. A mechanistic and structural investigation of modified derivatives of the diaryltriazine class of NNRTIs targeting HIV-1 reverse transcriptase. Biochimica et Biophysica Acta (BBA) - General Subjects 2014, 1840 (7) , 2203-2211. https://doi.org/10.1016/j.bbagen.2014.04.001
    11. Jérôme Deval, Matthias Götte. Nucleoside Analogue Inhibitors of Human Immunodeficiency Virus Reverse Transcriptase. 2014, 51-70. https://doi.org/10.1128/9781555815493.ch4
    12. Grant Schauer, Nicolas Sluis-Cremer. HIV-1 Resistance to Reverse Transcriptase Inhibitors. 2014, 1-17. https://doi.org/10.1007/978-1-4939-0667-3_26-1
    13. Eleftherios Michailidis, Emily M Ryan, Atsuko Hachiya, Karen A Kirby, Bruno Marchand, Maxwell D Leslie, Andrew D Huber, Yee T Ong, Jacob C Jackson, Kamalendra Singh, Eiichi N Kodama, Hiroaki Mitsuya, Michael A Parniak, Stefan G Sarafianos. Hypersusceptibility mechanism of Tenofovir-resistant HIV to EFdA. Retrovirology 2013, 10 (1) https://doi.org/10.1186/1742-4690-10-65
    14. Maryam Ehteshami, Monique Nijhuis, Jean A. Bernatchez, Christopher J. Ablenas, Suzanne McCormick, Dorien de Jong, Dirk Jochmans, Matthias Götte. Formation of a Quaternary Complex of HIV-1 Reverse Transcriptase with a Nucleotide-competing Inhibitor and Its ATP Enhancer. Journal of Biological Chemistry 2013, 288 (24) , 17336-17346. https://doi.org/10.1074/jbc.M112.433441
    15. Gilda Tachedjian, Nicolas Sluis-Cremer. Role of RNase H Activity in NRTI/NNRTI Drug Resistance. 2013, 281-303. https://doi.org/10.1007/978-1-4614-7291-9_13
    16. Céline Ducloux, Marylène Mougel, Valérie Goldschmidt, Ludovic Didierlaurent, Roland Marquet, Catherine Isel. A pyrophosphatase activity associated with purified HIV-1 particles. Biochimie 2012, 94 (12) , 2498-2507. https://doi.org/10.1016/j.biochi.2012.06.025
    17. Pinar Iyidogan, Karen S. Anderson. Understanding the molecular mechanism of sequence dependent Tenofovir removal by HIV-1 reverse transcriptase: Differences in primer binding site versus polypurine tract. Antiviral Research 2012, 95 (2) , 93-103. https://doi.org/10.1016/j.antiviral.2012.05.012
    18. Max von Kleist, Philipp Metzner, Roland Marquet, Christof Schütte, . HIV-1 Polymerase Inhibition by Nucleoside Analogs: Cellular- and Kinetic Parameters of Efficacy, Susceptibility and Resistance Selection. PLoS Computational Biology 2012, 8 (1) , e1002359. https://doi.org/10.1371/journal.pcbi.1002359
    19. B. Christie Vu, Paul L. Boyer, Maqbool A. Siddiqui, Victor E. Marquez, Stephen H. Hughes. 4′- C -Methyl-2′-Deoxyadenosine and 4′- C -Ethyl-2′-Deoxyadenosine Inhibit HIV-1 Replication. Antimicrobial Agents and Chemotherapy 2011, 55 (5) , 2379-2389. https://doi.org/10.1128/AAC.01290-10
    20. Gilberto Betancor, Maria C. Puertas, María Nevot, César Garriga, Miguel A. Martínez, Javier Martinez-Picado, Luis Menéndez-Arias. Mechanisms Involved in the Selection of HIV-1 Reverse Transcriptase Thumb Subdomain Polymorphisms Associated with Nucleoside Analogue Therapy Failure. Antimicrobial Agents and Chemotherapy 2010, 54 (11) , 4799-4811. https://doi.org/10.1128/AAC.00716-10
    21. Xiongying Tu, Kalyan Das, Qianwei Han, Joseph D Bauman, Arthur D Clark, Xiaorong Hou, Yulia V Frenkel, Barbara L Gaffney, Roger A Jones, Paul L Boyer, Stephen H Hughes, Stefan G Sarafianos, Eddy Arnold. Structural basis of HIV-1 resistance to AZT by excision. Nature Structural & Molecular Biology 2010, 17 (10) , 1202-1209. https://doi.org/10.1038/nsmb.1908
    22. Jessica Radzio, Soo-Huey Yap, Gilda Tachedjian, Nicolas Sluis-Cremer. N348I in reverse transcriptase provides a genetic pathway for HIV-1 to select thymidine analogue mutations and mutations antagonistic to thymidine analogue mutations. AIDS 2010, 24 (5) , 659-667. https://doi.org/10.1097/QAD.0b013e328336781d
    23. Antonio J. Acosta-Hoyos, Walter A. Scott. The Role of Nucleotide Excision by Reverse Transcriptase in HIV Drug Resistance. Viruses 2010, 2 (2) , 372-394. https://doi.org/10.3390/v2020372
    24. Luis Menéndez-Arias. Molecular basis of human immunodeficiency virus drug resistance: An update. Antiviral Research 2010, 85 (1) , 210-231. https://doi.org/10.1016/j.antiviral.2009.07.006
    25. Egor P. Tchesnokov, Aleksandr Obikhod, Ivana Massud, Andrea Lisco, Christophe Vanpouille, Beda Brichacek, Jan Balzarini, Christopher McGuigan, Marco Derudas, Leonid Margolis, Raymond F. Schinazi, Matthias Götte. Mechanisms Associated with HIV-1 Resistance to Acyclovir by the V75I Mutation in Reverse Transcriptase. Journal of Biological Chemistry 2009, 284 (32) , 21496-21504. https://doi.org/10.1074/jbc.M109.024026
    26. Max von Kleist, Wilhelm Huisinga. Pharmacokinetic–pharmacodynamic relationship of NRTIs and its connection to viral escape: An example based on zidovudine. European Journal of Pharmaceutical Sciences 2009, 36 (4-5) , 532-543. https://doi.org/10.1016/j.ejps.2008.12.010
    27. Marleen C. D. G. Huigen, Charles A. B. Boucher. Molecular Mechanisms of Resistance to Nucleoside Reverse Transcriptase Inhibitors. 2009, 449-459. https://doi.org/10.1007/978-1-59745-180-2_32
    28. Stefan G. Sarafianos, Bruno Marchand, Kalyan Das, Daniel M. Himmel, Michael A. Parniak, Stephen H. Hughes, Eddy Arnold. Structure and Function of HIV-1 Reverse Transcriptase: Molecular Mechanisms of Polymerization and Inhibition. Journal of Molecular Biology 2009, 385 (3) , 693-713. https://doi.org/10.1016/j.jmb.2008.10.071
    29. Bruno Marchand, Stefan G. Sarafianos. HIV-1 Reverse Transcriptase Inhibitors and Mechanisms of Resistance. 2009, 549-570. https://doi.org/10.1007/b135974_24
    30. Egor P. Tchesnokov, Aleksandr Obikhod, Raymond F. Schinazi, Matthias Gótte. Delayed Chain Termination Protects the Anti-hepatitis B Virus Drug Entecavir from Excision by HIV-1 Reverse Transcriptase. Journal of Biological Chemistry 2008, 283 (49) , 34218-34228. https://doi.org/10.1074/jbc.M806797200
    31. Qiang Yu, Dirk Schwidom, Alexander Exner, Per Carlsen. Synthesis of Novel Homo-N-Nucleoside Analogs Composed of a Homo-1,4-Dioxane Sugar Analog and Substituted 1,3,5-Triazine Base Equivalents. Molecules 2008, 13 (12) , 3092-3106. https://doi.org/10.3390/molecules13123092
    32. Maryam Ehteshami, Greg L. Beilhartz, Brian J. Scarth, Egor P. Tchesnokov, Suzanne McCormick, Brian Wynhoven, P.Richard Harrigan, Matthias Götte. Connection Domain Mutations N348I and A360V in HIV-1 Reverse Transcriptase Enhance Resistance to 3′-Azido-3′-deoxythymidine through Both RNase H-dependent and -independent Mechanisms. Journal of Biological Chemistry 2008, 283 (32) , 22222-22232. https://doi.org/10.1074/jbc.M803521200
    33. Luis Menéndez-Arias. Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Research 2008, 134 (1-2) , 124-146. https://doi.org/10.1016/j.virusres.2007.12.015
    34. Jérôme Deval, Megan H. Powdrill, Claudia M. D'Abramo, Luciano Cellai, Matthias Götte. Pyrophosphorolytic Excision of Nonobligate Chain Terminators by Hepatitis C Virus NS5B Polymerase. Antimicrobial Agents and Chemotherapy 2007, 51 (8) , 2920-2928. https://doi.org/10.1128/AAC.00186-07
    35. Bruno Marchand, Kirsten L. White, John K. Ly, Nicolas A. Margot, Ruth Wang, Martin McDermott, Michael D. Miller, Matthias Götte. Effects of the Translocation Status of Human Immunodeficiency Virus Type 1 Reverse Transcriptase on the Efficiency of Excision of Tenofovir. Antimicrobial Agents and Chemotherapy 2007, 51 (8) , 2911-2919. https://doi.org/10.1128/AAC.00314-07
    36. Qing Xia, Jessica Radzio, Karen S. Anderson, Nicolas Sluis‐Cremer. Probing nonnucleoside inhibitor‐induced active‐site distortion in HIV‐1 reverse transcriptase by transient kinetic analyses. Protein Science 2007, 16 (8) , 1728-1737. https://doi.org/10.1110/ps.072829007
    37. Urvi M Parikh, Shannon Zelina, Nicolas Sluis-Cremer, John W Mellors. Molecular mechanisms of bidirectional antagonism between K65R and thymidine analog mutations in HIV-1 reverse transcriptase. AIDS 2007, 21 (11) , 1405-1414. https://doi.org/10.1097/QAD.0b013e3281ac229b
    38. Nicolas Sluis-Cremer. Molecular Mechanisms of HIV-1 Resistance to Nucleoside and Nucleotide Reverse Transcriptase Inhibitors. Future HIV Therapy 2007, 1 (2) , 191-201. https://doi.org/10.2217/17469600.1.2.191
    39. Johan Lennerstrand, Chung K. Chu, Raymond F. Schinazi. Biochemical Studies on the Mechanism of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Resistance to 1-(β- d -Dioxolane)Thymine Triphosphate. Antimicrobial Agents and Chemotherapy 2007, 51 (6) , 2078-2084. https://doi.org/10.1128/AAC.00119-07
    40. Najim A. Al-Masoudi, Yaseen A. Al-Soud, Ibrahim A. I. Ali, Thilo Schuppler, Christoph Pannecouque, Erik De Clercq. New AZT Analogues Having 5′-Alkylsulfonyl Groups: Synthesis and Anti-HIV Activity. Nucleosides, Nucleotides and Nucleic Acids 2007, 26 (3) , 223-230. https://doi.org/10.1080/15257770701257178
    41. Eisuke Murakami, Haiying Bao, Aravind Basavapathruni, Christopher M Bailey, Jinfa Du, Holly M Micolochick Steuer, Congrong Niu, Tony Whitaker, Karen S Anderson, Michael J Otto, Phillip A Furman. Mechanism of Action of (-)-(2 R ,4 R )-1-(2-hydroxymethyl-1,3-dioxolan-4-yl)thymine as an anti-HIV agent. Antiviral Chemistry and Chemotherapy 2007, 18 (2) , 83-92. https://doi.org/10.1177/095632020701800204
    42. Matthias Götte. Mechanisms of resistance associated with excision of incorporated nucleotide analogue inhibitors of HIV-1 reverse transcriptase. Current Opinion in HIV and AIDS 2007, 2 (2) , 103-107. https://doi.org/10.1097/COH.0b013e3280287a60
    43. Clara E. Cases-González, Sandra Franco, Miguel Ángel Martínez, Luis Menéndez-Arias. Mutational Patterns Associated with the 69 Insertion Complex in Multi-drug-resistant HIV-1 Reverse Transcriptase that Confer Increased Excision Activity and High-level Resistance to Zidovudine. Journal of Molecular Biology 2007, 365 (2) , 298-309. https://doi.org/10.1016/j.jmb.2006.09.073
    44. Peter R. Meyer, Anthony J. Smith, Suzanne E. Matsuura, Walter A. Scott. Chain-Terminating Dinucleoside Tetraphosphates Are Substrates for DNA Polymerization by Human Immunodeficiency Virus Type 1 Reverse Transcriptase with Increased Activity against Thymidine Analogue-Resistant Mutants. Antimicrobial Agents and Chemotherapy 2006, 50 (11) , 3607-3614. https://doi.org/10.1128/AAC.00537-06
    45. Carlos Cruchaga, Elena Ansó, Ana Rouzaut, Juan J. Martínez-Irujo. Selective Excision of Chain-terminating Nucleotides by HIV-1 Reverse Transcriptase with Phosphonoformate as Substrate. Journal of Biological Chemistry 2006, 281 (38) , 27744-27752. https://doi.org/10.1074/jbc.M603360200
    46. Matthias Götte, Mark A Wainberg. Significance of the L74V Mutation in HIV-1 Reverse Transcriptase. Future Virology 2006, 1 (4) , 493-500. https://doi.org/10.2217/17460794.1.4.493
    47. Kirsten L White, James M Chen, Joy Y Feng, Nicolas A Margot, John K Ly, Adrian S Ray, Holly L MacArthur, Martin J McDermott, S Swaminathan, Michael D Miller. The K65R Reverse Transcriptase Mutation in HIV-1 Reverses the Excision Phenotype of Zidovudine Resistance Mutations. Antiviral Therapy 2006, 11 (2) , 155-163. https://doi.org/10.1177/135965350601100209
    48. Kirsten L White, Nicolas A Margot, John K Ly, James M Chen, Adrian S Ray, Martina Pavelko, Ruth Wang, Martin McDermott, S Swaminathan, Michael D Miller. A combination of decreased NRTI incorporation and decreased excision determines the resistance profile of HIV-1 K65R RT. AIDS 2005, 19 (16) , 1751-1760. https://doi.org/10.1097/01.aids.0000189851.21441.f1
    49. Nicolas Sluis-Cremer, Dominique Arion, Urvi Parikh, Dianna Koontz, Raymond F. Schinazi, John W. Mellors, Michael A. Parniak. The 3′-Azido Group Is Not the Primary Determinant of 3′-Azido-3′-deoxythymidine (AZT) Responsible for the Excision Phenotype of AZT-resistant HIV-1. Journal of Biological Chemistry 2005, 280 (32) , 29047-29052. https://doi.org/10.1074/jbc.M503166200
    50. Luis R. Miranda, Matthias Götte, Daniel R. Kuritzkes. The L74V Mutation in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Counteracts Enhanced Excision of Zidovudine Monophosphate Associated with Thymidine Analog Resistance Mutations. Antimicrobial Agents and Chemotherapy 2005, 49 (7) , 2648-2656. https://doi.org/10.1128/AAC.49.7.2648-2656.2005
    51. Fernando A. Frankel, Bruno Marchand, Dan Turner, Matthias Götte, Mark A. Wainberg. Impaired Rescue of Chain-Terminated DNA Synthesis Associated with the L74V Mutation in Human Immunodeficiency Virus Type 1 Reverse Transcriptase. Antimicrobial Agents and Chemotherapy 2005, 49 (7) , 2657-2664. https://doi.org/10.1128/AAC.49.7.2657-2664.2005
    52. Jessica Radzio, Nicolas Sluis‐Cremer. Stereo‐selectivity of HIV‐1 reverse transcriptase toward isomers of thymidine‐5′‐O‐1‐thiotriphosphate. Protein Science 2005, 14 (7) , 1929-1933. https://doi.org/10.1110/ps.051445605
    53. Anthony J. Smith, Peter R. Meyer, Deshratn Asthana, Margarita R. Ashman, Walter A. Scott. Intracellular Substrates for the Primer-Unblocking Reaction by Human Immunodeficiency Virus Type 1 Reverse Transcriptase: Detection and Quantitation in Extracts from Quiescent- and Activated-Lymphocyte Subpopulations. Antimicrobial Agents and Chemotherapy 2005, 49 (5) , 1761-1769. https://doi.org/10.1128/AAC.49.5.1761-1769.2005
    54. Paul L. Boyer, John G. Julias, Victor E. Marquez, Stephen H. Hughes. Fixed Conformation Nucleoside Analogs Effectively Inhibit Excision-proficient HIV-1 Reverse Transcriptases. Journal of Molecular Biology 2005, 345 (3) , 441-450. https://doi.org/10.1016/j.jmb.2004.10.021
    55. Emmanuele Crespan, Giada A. Locatelli, Reynel Cancio, Ulrich Hübscher, Silvio Spadari, Giovanni Maga. Drug Resistance Mutations in the Nucleotide Binding Pocket of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Differentially Affect the Phosphorolysis-Dependent Primer Unblocking Activity in the Presence of Stavudine and Zidovudine and Its Inhibition by Efavirenz. Antimicrobial Agents and Chemotherapy 2005, 49 (1) , 342-349. https://doi.org/10.1128/AAC.49.1.342-349.2005
    56. Matthias Götte. Inhibition of HIV-1 reverse transcription: basic principles of drug action and resistance. Expert Review of Anti-infective Therapy 2004, 2 (5) , 707-716. https://doi.org/10.1586/14789072.2.5.707
    57. Peter R. Meyer, Anthony J. Smith, Suzanne E. Matsuura, Walter A. Scott. Effects of Primer-Template Sequence on ATP-dependent Removal of Chain-terminating Nucleotide Analogues by HIV-1 Reverse Transcriptase. Journal of Biological Chemistry 2004, 279 (44) , 45389-45398. https://doi.org/10.1074/jbc.M405072200
    58. Paul L. Boyer, Tomozumi Imamichi, Stefan G. Sarafianos, Edward Arnold, Stephen H. Hughes. Effects of the Δ67 Complex of Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase on Nucleoside Analog Excision. Journal of Virology 2004, 78 (18) , 9987-9997. https://doi.org/10.1128/JVI.78.18.9987-9997.2004
    59. Tania Matamoros, Sandra Franco, Blanca M. Vázquez-Álvarez, Antonio Mas, Miguel Ángel Martínez, Luis Menéndez-Arias. Molecular Determinants of Multi-nucleoside Analogue Resistance in HIV-1 Reverse Transcriptases Containing a Dipeptide Insertion in the Fingers Subdomain. Journal of Biological Chemistry 2004, 279 (23) , 24569-24577. https://doi.org/10.1074/jbc.M312658200
    60. Joy Y. Feng, Eisuke Murakami, Suzana M. Zorca, Allison A. Johnson, Kenneth A. Johnson, Raymond F. Schinazi, Phillip A. Furman, Karen S. Anderson. Relationship between Antiviral Activity and Host Toxicity: Comparison of the Incorporation Efficiencies of 2′,3′-Dideoxy-5-Fluoro-3′-Thiacytidine-Triphosphate Analogs by Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Human Mitochondrial DNA Polymerase. Antimicrobial Agents and Chemotherapy 2004, 48 (4) , 1300-1306. https://doi.org/10.1128/AAC.48.4.1300-1306.2004
    61. Aravind Basavapathruni, Christopher M. Bailey, Karen S. Anderson. Defining a Molecular Mechanism of Synergy between Nucleoside and Nonnucleoside AIDS Drugs. Journal of Biological Chemistry 2004, 279 (8) , 6221-6224. https://doi.org/10.1074/jbc.C300523200

    Biochemistry

    Cite this: Biochemistry 2003, 42, 29, 8831–8841
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi034435l
    Published July 4, 2003
    Copyright © 2003 American Chemical Society

    Article Views

    515

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.