ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

D2 Dopamine Receptor Homodimerization Is Mediated by Multiple Sites of Interaction, Including an Intermolecular Interaction Involving Transmembrane Domain 4

View Author Information
Departments of Pharmacology and Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, and Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
Cite this: Biochemistry 2003, 42, 37, 11023–11031
Publication Date (Web):August 23, 2003
https://doi.org/10.1021/bi0345539
Copyright © 2003 American Chemical Society

    Article Views

    914

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    In this study, we examined the mechanisms of intermolecular interaction involved in D2 dopamine receptor dimer formation to develop an understanding of the quaternary structure of G protein-coupled receptors. The potential role of two mechanisms was investigated:  disulfide bridges and hydrophobic interactions between transmembrane domains. D2 dopamine receptor oligomers were unaffected by treatment with a reducing agent; however, oligomers of the D1 dopamine receptor dissociated following a similar treatment. This observation suggested that other forces such as hydrophobic interactions were more robust in the D2 receptor than in the D1 receptor in maintaining oligomerization. To elucidate which transmembrane domains were involved in the intermolecular hydrophobic interactions, truncation mutants were generated by successive deletion of transmembrane domains from amino and/or carboxyl portions of the D2 dopamine receptor. Immunoblot analyses revealed that all the fragments were well expressed but only fragments containing transmembrane domain 4 were able to self-associate, suggesting that critical areas for receptor dimerization resided within this transmembrane domain. Disruption of the helical structure of transmembrane domain 4 in a truncated receptor capable of forming dimers interfered with its ability to self-associate; however, a similar disruption of the transmembrane domain 4 helix structure in the full-length receptor did not significantly affect dimerization. These results indicated that there are other sites of interaction involved in D2 receptor oligomer assembly in addition to transmembrane domain 4.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by grants from the Canadian Institutes of Health Research and the National Institute on Drug Abuse. S.R.G. is supported by a Canada Research Chair.

     Department of Pharmacology, University of Toronto.

    §

     Centre for Addiction and Mental Health.

    *

     To whom correspondence should be addressed:  Room 4358, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Telephone:  (416) 978-3367. Fax:  (416) 971-2868. E-mail:  [email protected].

     Department of Medicine, University of Toronto.

    Cited By

    This article is cited by 110 publications.

    1. Ramin Ekhteiari Salmas, Philip Seeman, Matthias Stein, Serdar Durdagi. Structural Investigation of the Dopamine-2 Receptor Agonist Bromocriptine Binding to Dimeric D2HighR and D2LowR States. Journal of Chemical Information and Modeling 2018, 58 (4) , 826-836. https://doi.org/10.1021/acs.jcim.7b00722
    2. Ramin Ekhteiari Salmas, Philip Seeman, Busecan Aksoydan, Ismail Erol, Isik Kantarcioglu, Matthias Stein, Mine Yurtsever, and Serdar Durdagi . Analysis of the Glutamate Agonist LY404,039 Binding to Nonstatic Dopamine Receptor D2 Dimer Structures and Consensus Docking. ACS Chemical Neuroscience 2017, 8 (6) , 1404-1415. https://doi.org/10.1021/acschemneuro.7b00070
    3. Ramin Ekhteiari Salmas, Philip Seeman, Busecan Aksoydan, Matthias Stein, Mine Yurtsever, and Serdar Durdagi . Biological Insights of the Dopaminergic Stabilizer ACR16 at the Binding Pocket of Dopamine D2 Receptor. ACS Chemical Neuroscience 2017, 8 (4) , 826-836. https://doi.org/10.1021/acschemneuro.6b00396
    4. Serdar Durdagi, Ramin Ekhteiari Salmas, Matthias Stein, Mine Yurtsever, and Philip Seeman . Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques. ACS Chemical Neuroscience 2016, 7 (2) , 185-195. https://doi.org/10.1021/acschemneuro.5b00271
    5. Francesca Fanelli and Pier G. De Benedetti . Update 1 of: Computational Modeling Approaches to Structure–Function Analysis of G Protein-Coupled Receptors. Chemical Reviews 2011, 111 (12) , PR438-PR535. https://doi.org/10.1021/cr100437t
    6. Julia Kühhorn, Angela Götz, Harald Hübner, Dawn Thompson, Jennifer Whistler, and Peter Gmeiner . Development of a Bivalent Dopamine D2 Receptor Agonist. Journal of Medicinal Chemistry 2011, 54 (22) , 7911-7919. https://doi.org/10.1021/jm2009919
    7. Jennifer M. Johnston, Mahalaxmi Aburi, Davide Provasi, Andrea Bortolato, Eneko Urizar, Nevin A. Lambert, Jonathan A. Javitch, and Marta Filizola . Making Structural Sense of Dimerization Interfaces of Delta Opioid Receptor Homodimers. Biochemistry 2011, 50 (10) , 1682-1690. https://doi.org/10.1021/bi101474v
    8. Davide Provasi, Jennifer M. Johnston and Marta Filizola. Lessons from Free Energy Simulations of δ-Opioid Receptor Homodimers Involving the Fourth Transmembrane Helix. Biochemistry 2010, 49 (31) , 6771-6776. https://doi.org/10.1021/bi100686t
    9. Aroa Soriano, Ruben Ventura, Anabel Molero, Rob Hoen, Vicent Casadó, Antoni Cortés, Francesca Fanelli, Fernando Albericio, Carmen Lluís, Rafael Franco and Miriam Royo . Adenosine A2A Receptor-Antagonist/Dopamine D2 Receptor-Agonist Bivalent Ligands as Pharmacological Tools to Detect A2A-D2 Receptor Heteromers. Journal of Medicinal Chemistry 2009, 52 (18) , 5590-5602. https://doi.org/10.1021/jm900298c
    10. Paul S.-H. Park,, Slawomir Filipek,, James W. Wells, and, Krzysztof Palczewski. Oligomerization of G Protein-Coupled Receptors:  Past, Present, and Future. Biochemistry 2004, 43 (50) , 15643-15656. https://doi.org/10.1021/bi047907k
    11. Katharine Herrick-Davis,, Ellinor Grinde, and, Joseph E. Mazurkiewicz. Biochemical and Biophysical Characterization of Serotonin 5-HT2C Receptor Homodimers on the Plasma Membrane of Living Cells. Biochemistry 2004, 43 (44) , 13963-13971. https://doi.org/10.1021/bi048398p
    12. Tianpeng Wang, Jingchen Shao, Shamit Kumar, Mohammad Wessam Alnouri, Jorge Carvalho, Stefan Günther, Cornelius Krasel, Kate T. Murphy, Moritz Bünemann, Stefan Offermanns, Nina Wettschureck. Orphan GPCR GPRC5C Facilitates Angiotensin II-Induced Smooth Muscle Contraction. Circulation Research 2024, https://doi.org/10.1161/CIRCRESAHA.123.323752
    13. Beatriz Bueschbell, Pedro R. Magalhães, Carlos A.V. Barreto, Rita Melo, Anke C. Schiedel, Miguel Machuqueiro, Irina S. Moreira. The World of GPCR dimers – Mapping dopamine receptor D2 homodimers in different activation states and configuration arrangements. Computational and Structural Biotechnology Journal 2023, 21 , 4336-4353. https://doi.org/10.1016/j.csbj.2023.08.032
    14. Fumiya Uefune, Toru Aonishi, Tetsuya Kitaguchi, Harumi Takahashi, Susumu Seino, Daisuke Sakano, Shoen Kume. Dopamine Negatively Regulates Insulin Secretion Through Activation of D1-D2 Receptor Heteromer. Diabetes 2022, 71 (9) , 1946-1961. https://doi.org/10.2337/db21-0644
    15. Robert Root-Bernstein, Beth Churchill. Co-Evolution of Opioid and Adrenergic Ligands and Receptors: Shared, Complementary Modules Explain Evolution of Functional Interactions and Suggest Novel Engineering Possibilities. Life 2021, 11 (11) , 1217. https://doi.org/10.3390/life11111217
    16. Jorge Carvalho, Ramesh Chennupati, Rui Li, Stefan Günther, Harmandeep Kaur, Wencai Zhao, Sarah Tonack, Michael Kurz, Nadja Mößlein, Moritz Bünemann, Stefan Offermanns, Nina Wettschureck. Orphan G Protein–Coupled Receptor GPRC5B Controls Smooth Muscle Contractility and Differentiation by Inhibiting Prostacyclin Receptor Signaling. Circulation 2020, 141 (14) , 1168-1183. https://doi.org/10.1161/CIRCULATIONAHA.119.043703
    17. Prasad Dandawate, Gaurav Kaushik, Chandrayee Ghosh, David Standing, Afreen Asif Ali Sayed, Sonali Choudhury, Dharmalingam Subramaniam, Ann Manzardo, Tuhina Banerjee, Santimukul Santra, Prabhu Ramamoorthy, Merlin Butler, Subhash B. Padhye, Joaquina Baranda, Anup Kasi, Weijing Sun, Ossama Tawfik, Domenico Coppola, Mokenge Malafa, Shahid Umar, Michael J. Soares, Subhrajit Saha, Scott J. Weir, Animesh Dhar, Roy A. Jensen, Sufi Mary Thomas, Shrikant Anant. Diphenylbutylpiperidine Antipsychotic Drugs Inhibit Prolactin Receptor Signaling to Reduce Growth of Pancreatic Ductal Adenocarcinoma in Mice. Gastroenterology 2020, 158 (5) , 1433-1449.e27. https://doi.org/10.1053/j.gastro.2019.11.279
    18. Xiaohan Song, Yi Yu, Cangjie Shen, Yubo Wang, Nan Wang. Dimerization/oligomerization of the extracellular domain of the GLP‐1 receptor and the negative cooperativity in its ligand binding revealed by the improved NanoBiT. The FASEB Journal 2020, 34 (3) , 4348-4368. https://doi.org/10.1096/fj.201902007R
    19. Carlos A.V. Barreto, Salete J. Baptista, António José Preto, Pedro Matos-Filipe, Joana Mourão, Rita Melo, Irina Moreira. Prediction and targeting of GPCR oligomer interfaces. 2020, 105-149. https://doi.org/10.1016/bs.pmbts.2019.11.007
    20. Agata Faron-Górecka, Maciej Kuśmider, Joanna Solich, Andrzej Górecki, Marta Dziedzicka-Wasylewska. Genetic variants in dopamine receptors influence on heterodimerization in the context of antipsychotic drug action. 2020, 279-296. https://doi.org/10.1016/bs.pmbts.2019.11.008
    21. . The Dopaminergic System. 2019, 1-39. https://doi.org/10.1002/9783527813421.ch1
    22. Vasudevan, Borroto-Escuela, Huysentruyt, Fuxe, Saini, Stove. Heterodimerization of Mu Opioid Receptor Protomer with Dopamine D2 Receptor Modulates Agonist-Induced Internalization of Mu Opioid Receptor. Biomolecules 2019, 9 (8) , 368. https://doi.org/10.3390/biom9080368
    23. Serdar Durdagi, Ismail Erol, Ramin Ekhteiari Salmas, Busecan Aksoydan, Isik Kantarcioglu. Oligomerization and cooperativity in GPCRs from the perspective of the angiotensin AT1 and dopamine D2 receptors. Neuroscience Letters 2019, 700 , 30-37. https://doi.org/10.1016/j.neulet.2018.04.028
    24. Elise Wouters, Adrián Marín, James Dalton, Jesús Giraldo, Christophe Stove. Distinct Dopamine D2 Receptor Antagonists Differentially Impact D2 Receptor Oligomerization. International Journal of Molecular Sciences 2019, 20 (7) , 1686. https://doi.org/10.3390/ijms20071686
    25. Maxwell S. DeNies, Luciana K. Rosselli-Murai, Victoria L. Murray, Elisabeth M. Steel, Allen P. Liu. Proximity Biotinylation for Studying G Protein-Coupled Receptor Dimerization. 2018, 251-263. https://doi.org/10.1007/978-1-4939-8576-0_16
    26. Jonathan Gallion, Amanda Koire, Panagiotis Katsonis, Anne‐Marie Schoenegge, Michel Bouvier, Olivier Lichtarge. Predicting phenotype from genotype: Improving accuracy through more robust experimental and computational modeling. Human Mutation 2017, 38 (5) , 569-580. https://doi.org/10.1002/humu.23193
    27. Hui Guo, Su An, Richard Ward, Yang Yang, Ying Liu, Xiao-Xi Guo, Qian Hao, Tian-Rui Xu. Methods used to study the oligomeric structure of G-protein-coupled receptors. Bioscience Reports 2017, 37 (2) https://doi.org/10.1042/BSR20160547
    28. Batoul Farran. An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacological Research 2017, 117 , 303-327. https://doi.org/10.1016/j.phrs.2017.01.008
    29. Wesley B. Asher, Signe Mathiasen, Michael D. Holsey, Steven G. Grinnell, Nevin A. Lambert, Jonathan A. Javitch. Extreme Vetting of Dopamine Receptor Oligomerization. 2017, 99-127. https://doi.org/10.1007/978-3-319-60174-8_5
    30. Alfredo Ulloa-Aguirre, Teresa Zariñán. The Follitropin Receptor: Matching Structure and Function. Molecular Pharmacology 2016, 90 (5) , 596-608. https://doi.org/10.1124/mol.116.104398
    31. Jigna Rajesh Kumar, Ramamoorthy Rajkumar, Usman Farooq, Liying Corinne Lee, Francis Chee Kuan Tan, Gavin S. Dawe. Evidence of D2 receptor expression in the nucleus incertus of the rat. Physiology & Behavior 2015, 151 , 525-534. https://doi.org/10.1016/j.physbeh.2015.08.024
    32. Nicole S. Schonenbach, Sunyia Hussain, Michelle A. O'Malley. Structure and function of G protein‐coupled receptor oligomers: implications for drug discovery. WIREs Nanomedicine and Nanobiotechnology 2015, 7 (3) , 408-427. https://doi.org/10.1002/wnan.1319
    33. Ahmed Hasbi, Melissa L. Perreault, Maurice Y. F. Shen, Lucia Zhang, Ryan To, Theresa Fan, Tuan Nguyen, Xiaodong Ji, Brian F. O'Dowd, Susan R. George. A peptide targeting an interaction interface disrupts the dopamine D1‐D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. The FASEB Journal 2014, 28 (11) , 4806-4820. https://doi.org/10.1096/fj.14-254037
    34. Manuela Jörg, Agnieszka A. Kaczor, Frankie S. Mak, Kiew Ching K. Lee, Antti Poso, Neil D. Miller, Peter J. Scammells, Ben Capuano. Investigation of novel ropinirole analogues: synthesis, pharmacological evaluation and computational analysis of dopamine D 2 receptor functionalized congeners and homobivalent ligands. MedChemComm 2014, 5 (7) , 891-898. https://doi.org/10.1039/C4MD00066H
    35. Heli Chauhan, Bryan Killinger, Cheryl Miller, Anna Moszczynska. Single and Binge Methamphetamine Administrations Have Different Effects on the Levels of Dopamine D2 Autoreceptor and Dopamine Transporter in Rat Striatum. International Journal of Molecular Sciences 2014, 15 (4) , 5884-5906. https://doi.org/10.3390/ijms15045884
    36. Miles D. Thompson, David E. C. Cole, Pedro A. Jose, Peter Chidiac. G Protein-Coupled Receptor Accessory Proteins and Signaling: Pharmacogenomic Insights. 2014, 121-152. https://doi.org/10.1007/978-1-4939-0956-8_7
    37. Boyang Zhang, Awatif Albaker, Bianca Plouffe, Caroline Lefebvre, Mario Tiberi. Constitutive Activities and Inverse Agonism in Dopamine Receptors. 2014, 175-214. https://doi.org/10.1016/B978-0-12-417197-8.00007-9
    38. Alfredo Ulloa-Aguirre, Teresa Zariñán, James A. Dias, P. Michael Conn. Mutations in G protein-coupled receptors that impact receptor trafficking and reproductive function. Molecular and Cellular Endocrinology 2014, 382 (1) , 411-423. https://doi.org/10.1016/j.mce.2013.06.024
    39. Melissa L Perreault, Ahmed Hasbi, Brian F O'Dowd, Susan R George. Heteromeric Dopamine Receptor Signaling Complexes: Emerging Neurobiology and Disease Relevance. Neuropsychopharmacology 2014, 39 (1) , 156-168. https://doi.org/10.1038/npp.2013.148
    40. Carolin L Piechowski, Anne Rediger, Christina Lagemann, Jessica Mühlhaus, Anne Müller, Juliane Pratzka, Patrick Tarnow, Annette Grüters, Heiko Krude, Gunnar Kleinau, Heike Biebermann. Inhibition of melanocortin-4 receptor dimerization by substitutions in intracellular loop 2. Journal of Molecular Endocrinology 2013, 51 (1) , 109-118. https://doi.org/10.1530/JME-13-0061
    41. Alexander J. Frey, Salam Ibrahim, Scott Gleim, John Hwa, Emer M. Smyth. Biased suppression of TP homodimerization and signaling through disruption of a TM GxxxGxxxL helical interaction motif. Journal of Lipid Research 2013, 54 (6) , 1678-1690. https://doi.org/10.1194/jlr.M036673
    42. Francesca Fanelli, Michele Seeber, Angelo Felline, Daniele Casciari, Francesco Raimondi. Quaternary Structure Predictions and Structural Communication Features of GPCR Dimers. 2013, 105-142. https://doi.org/10.1016/B978-0-12-386931-9.00005-2
    43. Alfredo Ulloa-Aguirre, James A. Dias, George Bousfield, Ilpo Huhtaniemi, Eric Reiter. Trafficking of the Follitropin Receptor. 2013, 17-45. https://doi.org/10.1016/B978-0-12-391862-8.00002-8
    44. Alexander O. Tarakanov, Kjell G. Fuxe, Dasiel O. Borroto-Escuela. Integrin triplets of marine sponges in human D2 receptor heteromers. Journal of Receptors and Signal Transduction 2012, 32 (4) , 202-208. https://doi.org/10.3109/10799893.2012.692119
    45. Maria Letizia Trincavelli, Simona Daniele, Elisabetta Orlandini, Gemma Navarro, Vicent Casadó, Chiara Giacomelli, Susanna Nencetti, Elisa Nuti, Marco Macchia, Harald Huebner, Peter Gmeiner, Armando Rossello, Carmen LLuís, Claudia Martini. A new D2 dopamine receptor agonist allosterically modulates A2A adenosine receptor signalling by interacting with the A2A/D2 receptor heteromer. Cellular Signalling 2012, 24 (4) , 951-960. https://doi.org/10.1016/j.cellsig.2011.12.018
    46. Chantevy Pou, Clotilde Mannoury la Cour, Leigh A. Stoddart, Mark J. Millan, Graeme Milligan. Functional Homomers and Heteromers of Dopamine D2L and D3 Receptors Co-exist at the Cell Surface. Journal of Biological Chemistry 2012, 287 (12) , 8864-8878. https://doi.org/10.1074/jbc.M111.326678
    47. Rishi K. Somvanshi, Sajad A. War, Nicole Chaudhari, Xiaofan Qiu, Ujendra Kumar. Receptor specific crosstalk and modulation of signaling upon heterodimerization between β1-adrenergic receptor and somatostatin receptor-5. Cellular Signalling 2011, 23 (5) , 794-811. https://doi.org/10.1016/j.cellsig.2011.01.002
    48. Pierre-Alexandre Vidi, Karin F.K. Ejendal, Julie A. Przybyla, Val J. Watts. Fluorescent protein complementation assays: new tools to study G protein-coupled receptor oligomerization and GPCR-mediated signaling. Molecular and Cellular Endocrinology 2011, 331 (2) , 185-193. https://doi.org/10.1016/j.mce.2010.07.011
    49. Sylwia Łukasiewicz, Agnieszka Polit, Sylwia Kędracka-Krok, Krzysztof Wędzony, Marzena Maćkowiak, Marta Dziedzicka-Wasylewska. Hetero-dimerization of serotonin 5-HT2A and dopamine D2 receptors. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2010, 1803 (12) , 1347-1358. https://doi.org/10.1016/j.bbamcr.2010.08.010
    50. Min Wang, Lin Pei, Paul J Fletcher, Shitij Kapur, Philip Seeman, Fang Liu. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization. Molecular Brain 2010, 3 (1) https://doi.org/10.1186/1756-6606-3-25
    51. Francisco Ciruela, Antoni Vallano, Josep M. Arnau, Silvia Sánchez, Dasiel O. Borroto-Escuela, Luigi F. Agnati, Kjell Fuxe, Víctor Fernández-Dueñas. G protein-coupled receptor oligomerization for what?. Journal of Receptors and Signal Transduction 2010, 30 (5) , 322-330. https://doi.org/10.3109/10799893.2010.508166
    52. Ahmed Hasbi, Brian F. O'Dowd, Susan R. George. Signaling of dopamine receptor homo- and heterooligomers. 2010, 90-110. https://doi.org/10.1017/CBO9780511760334.006
    53. Salam Ibrahim, Mazell Tetruashvily, Alex J. Frey, Stephen J. Wilson, Jeremiah Stitham, John Hwa, Emer M. Smyth. Dominant Negative Actions of Human Prostacyclin Receptor Variant Through Dimerization: Implications for Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology 2010, 30 (9) , 1802-1809. https://doi.org/10.1161/ATVBAHA.110.208900
    54. K.L. Conrad, K. Ford, M. Marinelli, M.E. Wolf. Dopamine receptor expression and distribution dynamically change in the rat nucleus accumbens after withdrawal from cocaine self-administration. Neuroscience 2010, 169 (1) , 182-194. https://doi.org/10.1016/j.neuroscience.2010.04.056
    55. Teresa Zariñán, Marco A. Perez-Solís, Guadalupe Maya-Núñez, Patricia Casas-González, P. Michael Conn, James A. Dias, Alfredo Ulloa-Aguirre. Dominant negative effects of human follicle-stimulating hormone receptor expression-deficient mutants on wild-type receptor cell surface expression. Rescue of oligomerization-dependent defective receptor expression by using cognate decoys. Molecular and Cellular Endocrinology 2010, 321 (2) , 112-122. https://doi.org/10.1016/j.mce.2010.02.027
    56. Marta Filizola. Increasingly accurate dynamic molecular models of G-protein coupled receptor oligomers: Panacea or Pandora's box for novel drug discovery?. Life Sciences 2010, 86 (15-16) , 590-597. https://doi.org/10.1016/j.lfs.2009.05.004
    57. Kjell Fuxe, Daniel Marcellino, Diego Guidolin, Amina Woods, Luigi Agnati. Dopamine Receptor Oligomerization. 2010, 255-280. https://doi.org/10.1007/978-1-60327-333-6_10
    58. Wataru Nemoto, Kazuhiko Fukui, Hiroyuki Toh. GRIP: A server for predicting interfaces for GPCR oligomerization. Journal of Receptors and Signal Transduction 2009, 29 (6) , 312-317. https://doi.org/10.3109/10799890903295143
    59. Graeme Milligan. G protein‐coupled receptor hetero‐dimerization: contribution to pharmacology and function. British Journal of Pharmacology 2009, 158 (1) , 5-14. https://doi.org/10.1111/j.1476-5381.2009.00169.x
    60. Hiroyuki Kobayashi, Koji Ogawa, Rong Yao, Olivier Lichtarge, Michel Bouvier. Functional Rescue of β 1 ‐Adrenoceptor Dimerization and Trafficking by Pharmacological Chaperones. Traffic 2009, 10 (8) , 1019-1033. https://doi.org/10.1111/j.1600-0854.2009.00932.x
    61. Tokiko Suzuki, Kazunori Namba, Ryosuke Yamagishi, Hiroki Kaneko, Tatsuya Haga, Hiroyasu Nakata. A highly conserved tryptophan residue in the fourth transmembrane domain of the A 1 adenosine receptor is essential for ligand binding but not receptor homodimerization. Journal of Neurochemistry 2009, 110 (4) , 1352-1362. https://doi.org/10.1111/j.1471-4159.2009.06227.x
    62. Pierre-Alexandre Vidi, Val J. Watts. Fluorescent and Bioluminescent Protein-Fragment Complementation Assays in the Study of G Protein-Coupled Receptor Oligomerization and Signaling. Molecular Pharmacology 2009, 75 (4) , 733-739. https://doi.org/10.1124/mol.108.053819
    63. Sylwia Łukasiewicz, Agata Faron‐Górecka, Jerzy Dobrucki, Agnieszka Polit, Marta Dziedzicka‐Wasylewska. Studies on the role of the receptor protein motifs possibly involved in electrostatic interactions on the dopamine D 1 and D 2 receptor oligomerization. The FEBS Journal 2009, 276 (3) , 760-775. https://doi.org/10.1111/j.1742-4658.2008.06822.x
    64. Makiko Hamatake, Toru Aoki, Yuko Futahashi, Emiko Urano, Naoki Yamamoto, Jun Komano. Ligand‐independent higher‐order multimerization of CXCR4, a G‐protein‐coupled chemokine receptor involved in targeted metastasis. Cancer Science 2009, 100 (1) , 95-102. https://doi.org/10.1111/j.1349-7006.2008.00997.x
    65. Jennifer L. Whistler. Ligand-Selective Receptor Desensitization and Endocytosis. 2009, 55-69. https://doi.org/10.1007/978-1-60327-335-0_4
    66. Xiu Sun, Michael Milovanovic, Yun Zhao, Marina E. Wolf. Acute and Chronic Dopamine Receptor Stimulation Modulates AMPA Receptor Trafficking in Nucleus Accumbens Neurons Cocultured with Prefrontal Cortex Neurons. The Journal of Neuroscience 2008, 28 (16) , 4216-4230. https://doi.org/10.1523/JNEUROSCI.0258-08.2008
    67. Jason R. Juhasz, Ahmed Hasbi, Asim J. Rashid, Christopher H. So, Susan R. George, Brian F. O'Dowd. Mu-opioid receptor heterooligomer formation with the dopamine D1 receptor as directly visualized in living cells. European Journal of Pharmacology 2008, 581 (3) , 235-243. https://doi.org/10.1016/j.ejphar.2007.11.060
    68. G Milligan. A day in the life of a G protein‐coupled receptor: the contribution to function of G protein‐coupled receptor dimerization. British Journal of Pharmacology 2008, 153 (S1) https://doi.org/10.1038/sj.bjp.0707490
    69. Merry C. Clark, Reesha Khan, Deborah J. Baro. Crustacean dopamine receptors: localization and G protein coupling in the stomatogastric ganglion. Journal of Neurochemistry 2008, 104 (4) , 1006-1019. https://doi.org/10.1111/j.1471-4159.2007.05029.x
    70. Miles D. Thompson, David E. C. Cole, Pedro A. Jose. Pharmacogenomics of G Protein-Coupled Receptor. 2008, 77-107. https://doi.org/10.1007/978-1-59745-205-2_6
    71. Katherine A. Smith, Richard W. Komuniecki, Elodie Ghedin, David Spiro, John Gray. Genes encoding putative biogenic amine receptors in the parasitic nematode Brugia malayi. Invertebrate Neuroscience 2007, 7 (4) , 227-244. https://doi.org/10.1007/s10158-007-0058-y
    72. Alessandra Baragli, Haydar Alturaihi, Heather L. Watt, Ali Abdallah, Ujendra Kumar. Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2. Cellular Signalling 2007, 19 (11) , 2304-2316. https://doi.org/10.1016/j.cellsig.2007.07.007
    73. Kjell Fuxe, Sergi Ferré, Susanna Genedani, Rafael Franco, Luigi F. Agnati. Adenosine receptor–dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiology & Behavior 2007, 92 (1-2) , 210-217. https://doi.org/10.1016/j.physbeh.2007.05.034
    74. S. Vohra, S.V. Chintapalli, C.J.R. Illingworth, P.J. Reeves, P.M. Mullineaux, H.S.X. Clark, M.K. Dean, G.J.G. Upton, C.A. Reynolds. Computational studies of Family A and Family B GPCRs. Biochemical Society Transactions 2007, 35 (4) , 749-754. https://doi.org/10.1042/BST0350749
    75. Manuel F. López-Aranda, Maria J. Acevedo, Antonia Gutierrez, Peter Koulen, Zafar U. Khan. Role of a Gαi2 protein splice variant in the formation of an intracellular dopamine D2 receptor pool. Journal of Cell Science 2007, 120 (13) , 2171-2178. https://doi.org/10.1242/jcs.005611
    76. Cristina F. Bush, Seth V. Jones, Alicia N. Lyle, Kenneth P. Minneman, Kerry J. Ressler, Randy A. Hall. Specificity of Olfactory Receptor Interactions with Other G Protein-coupled Receptors. Journal of Biological Chemistry 2007, 282 (26) , 19042-19051. https://doi.org/10.1074/jbc.M610781200
    77. Graeme Milligan. G protein-coupled receptor dimerisation: Molecular basis and relevance to function. Biochimica et Biophysica Acta (BBA) - Biomembranes 2007, 1768 (4) , 825-835. https://doi.org/10.1016/j.bbamem.2006.09.021
    78. Juan F. Lopez-Gimenez, Meritxell Canals, John D. Pediani, Graeme Milligan. The α 1b -Adrenoceptor Exists as a Higher-Order Oligomer: Effective Oligomerization Is Required for Receptor Maturation, Surface Delivery, and Function. Molecular Pharmacology 2007, 71 (4) , 1015-1029. https://doi.org/10.1124/mol.106.033035
    79. Pershia Samadi, Claude Rouillard, Paul J. Bédard, Thérèse Di Paolo. Functional neurochemistry of the basal ganglia. 2007, 19-66. https://doi.org/10.1016/S0072-9752(07)83002-8
    80. Carola Otth, Mauricio Torres, Alfredo Ramírez, Juan Carlos Fernandez, Maite Castro, M. Cecilia Rauch, Mónica Brito, Alejandro J. Yañez, Joan‐Enric Rodríguez‐Gil, Juan Carlos Slebe, Ilona I. Concha. Novel identification of peripheral dopaminergic D2 receptor in male germ cells. Journal of Cellular Biochemistry 2007, 100 (1) , 141-150. https://doi.org/10.1002/jcb.21037
    81. Meritxell Vivo, Hong Lin, Philip G. Strange. Investigation of Cooperativity in the Binding of Ligands to the D 2 Dopamine Receptor. Molecular Pharmacology 2006, 69 (1) , 226-235. https://doi.org/10.1124/mol.105.012443
    82. Katharine Herrick-Davis, Ellinor Grinde, Timothy J. Harrigan, Joseph E. Mazurkiewicz. Inhibition of Serotonin 5-Hydroxytryptamine2C Receptor Function through Heterodimerization. Journal of Biological Chemistry 2005, 280 (48) , 40144-40151. https://doi.org/10.1074/jbc.M507396200
    83. Mark C. Overton, Sharon L. Chinault, Kendall J. Blumer. Oligomerization of G-Protein-Coupled Receptors: Lessons from the Yeast Saccharomyces cerevisiae. Eukaryotic Cell 2005, 4 (12) , 1963-1970. https://doi.org/10.1128/EC.4.12.1963-1970.2005
    84. Wen Guo, Lei Shi, Marta Filizola, Harel Weinstein, Jonathan A. Javitch. Crosstalk in G protein-coupled receptors: Changes at the transmembrane homodimer interface determine activation. Proceedings of the National Academy of Sciences 2005, 102 (48) , 17495-17500. https://doi.org/10.1073/pnas.0508950102
    85. Geneviève Laroche, Marie-Claude Lépine, Caroline Thériault, Patrick Giguère, Vincent Giguère, Maxime A. Gallant, Artur de Brum-Fernandes, Jean-Luc Parent. Oligomerization of the α and β isoforms of the thromboxane A2 receptor: Relevance to receptor signaling and endocytosis. Cellular Signalling 2005, 17 (11) , 1373-1383. https://doi.org/10.1016/j.cellsig.2005.02.008
    86. Brian F. O'Dowd, Xiaodong Ji, Mohammad Alijaniaram, Ryan D. Rajaram, Michael M.C. Kong, Asim Rashid, Tuan Nguyen, Susan R. George. Dopamine Receptor Oligomerization Visualized in Living Cells. Journal of Biological Chemistry 2005, 280 (44) , 37225-37235. https://doi.org/10.1074/jbc.M504562200
    87. Blanca Rubí, Sanda Ljubicic, Shirin Pournourmohammadi, Stefania Carobbio, Mathieu Armanet, Clarissa Bartley, Pierre Maechler. Dopamine D2-like Receptors Are Expressed in Pancreatic Beta Cells and Mediate Inhibition of Insulin Secretion. Journal of Biological Chemistry 2005, 280 (44) , 36824-36832. https://doi.org/10.1074/jbc.M505560200
    88. Amy K. Jassen, Jeffrey M. Brown, Helen N. Panas, Gregory M. Miller, Danqing Xiao, Bertha K. Madras. Variants of the primate vesicular monoamine transporter-2. Molecular Brain Research 2005, 139 (2) , 251-257. https://doi.org/10.1016/j.molbrainres.2005.05.028
    89. Slawomir Filipek. Organization of rhodopsin molecules in native membranes of rod cells–an old theoretical model compared to new experimental data. Journal of Molecular Modeling 2005, 11 (4-5) , 385-391. https://doi.org/10.1007/s00894-005-0268-3
    90. Cristina Limatola, Sabrina Di Bartolomeo, Myriam Catalano, Flavia Trettel, Sergio Fucile, Loriana Castellani, Fabrizio Eusebi. Cysteine residues are critical for chemokine receptor CXCR2 functional properties. Experimental Cell Research 2005, 307 (1) , 65-75. https://doi.org/10.1016/j.yexcr.2005.02.020
    91. Sébastien Bulenger, Stefano Marullo, Michel Bouvier. Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends in Pharmacological Sciences 2005, 26 (3) , 131-137. https://doi.org/10.1016/j.tips.2005.01.004
    92. Wataru Nemoto, Hiroyuki Toh. Prediction of interfaces for oligomerizations of G‐protein coupled receptors. Proteins: Structure, Function, and Bioinformatics 2005, 58 (3) , 644-660. https://doi.org/10.1002/prot.20332
    93. Barbara Ahr, Mélanie Denizot, Véronique Robert-Hebmann, Anne Brelot, Martine Biard-Piechaczyk. Identification of the Cytoplasmic Domains of CXCR4 Involved in Jak2 and STAT3 Phosphorylation. Journal of Biological Chemistry 2005, 280 (8) , 6692-6700. https://doi.org/10.1074/jbc.M408481200
    94. Marta Filizola, Wen Guo, Jonathan A. Javitch, Harel Weinstein. Oligomerization Domains of G Protein-Coupled Receptors. 2005, 243-265. https://doi.org/10.1007/978-1-59259-919-6_11
    95. Selena E. Bartlett, Jennifer L. Whistler. Receptor Oligomerization and Trafficking. 2005, 309-322. https://doi.org/10.1007/978-1-59259-919-6_14
    96. Miles D. Thompson, W. McIntyre Burnham, David E. C. Cole. The G protein-coupled receptors: Pharmacogenetics and Disease. Critical Reviews in Clinical Laboratory Sciences 2005, 42 (4) , 311-389. https://doi.org/10.1080/10408360591001895
    97. SANDRA PANCHALINGAM, ASHIWEL S. UNDIE. Physicochemical Modulation of Agonist-Induced [ 35 S]GTPγS Binding: Implications for Coexistence of Multiple Functional Conformations of Dopamine D 1 -Like Receptors. Journal of Receptors and Signal Transduction 2005, 25 (2) , 125-146. https://doi.org/10.1080/10799890500184948
    98. Toshio Kamiya, Osamu Saitoh, Hiroyasu Nakata. Functional Expression of Single-Chain Heterodimeric G-Protein-Coupled Receptors for Adenosine and Dopamine. Cell Structure and Function 2005, 29 (5/6) , 139-145. https://doi.org/10.1247/csf.29.139
    99. Wataru Nemoto, Hiroyuki Toh. . Folia Pharmacologica Japonica 2005, 125 (3) , 159-164. https://doi.org/10.1254/fpj.125.159
    100. Juan J. Carrillo, Juan F. López-Giménez, Graeme Milligan. Multiple Interactions between Transmembrane Helices Generate the Oligomeric α 1b -Adrenoceptor. Molecular Pharmacology 2004, 66 (5) , 1123-1137. https://doi.org/10.1124/mol.104.001586
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect