ACS Publications. Most Trusted. Most Cited. Most Read
Characterization of Recombinant Long-Chain Rat Acyl-CoA Synthetase Isoforms 3 and 6:  Identification of a Novel Variant of Isoform 6
My Activity
    Article

    Characterization of Recombinant Long-Chain Rat Acyl-CoA Synthetase Isoforms 3 and 6:  Identification of a Novel Variant of Isoform 6
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2005, 44, 5, 1635–1642
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi047721l
    Published January 11, 2005
    Copyright © 2005 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The metabolism of long-chain fatty acids in brain and their incorporation into signaling molecules such as diacylglycerol and LPA and into structural components of membranes, including myelin, requires activation by long-chain acyl-CoA synthetase (ACSL). Because ACSL3 and ACSL6 are the predominant ACSL isoforms in brain, we cloned and characterized these isoforms from rat brain and identified a novel ACSL6 clone (ACSL6_v2). ACSL6_v2 and the previously reported ACSL6_v1 represent splice variants that include exon 13 or 14, respectively. Homologue sequences of both of these variants are present in the human and mouse databases. ACSL3, ACSL6_v1, and ACSL6_v2 with Flag-epitopes at the C-termini were expressed in Escherichia coli and purified on Flag-affinity columns. The three recombinant proteins were characterized. Compared to ACSL4, another brain isoform, ACSL3, ACSL6_v1, and ACSL6_v2 showed similarities in kinetic values for CoA, palmitate, and arachidonate, but their apparent Km values for oleate were 4- to 6-fold lower than for ACSL4. In a direct competition assay with palmitate, all the polyunsaturated fatty acids tested were strong competitors only for ACSL4 with IC50 values of 0.5 to 5 μM. DHA was also strongly preferred by ACSL6_v2. The apparent Km value for ATP of ACSL6_v1 was 8-fold higher than that of ACSL6_v2. ACSL3 and the two variants of ACSL6 were more resistant than ACSL4 to heat inactivation. Despite the high amino acid identity between ACSL3 and ACSL4, rosiglitazone inhibited only ACSL4. Triacsin C, an inhibitor of ACSL1 and ACSL4, also inhibited ACSL3, but did not inhibit the ACSL6 variants. These data further document important differences in the closely related ACSL isoforms and show that amino acid changes near the consensus nucleotide binding site alter function in the two splice variants of ACSL6.

    Copyright © 2005 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Current address:  Department of Biochemistry, Rm. 239 Nutrition Research Center, Wake Forest University Health Sciences Medical Center Blvd, Winston-Salem, NC 27157.

    §

     Current address:  Department of Nutritional Sciences, 96 Lipman Drive, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901.

    *

     To whom correspondence should be addressed. Tel:  919-966-7213. Fax:  919-966-7216. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 122 publications.

    1. José Pedro Friedmann Angeli, Sayuri Miyamoto, Almut Schulze. Ferroptosis: The Greasy Side of Cell Death. Chemical Research in Toxicology 2019, 32 (3) , 362-369. https://doi.org/10.1021/acs.chemrestox.8b00349
    2. Mikhail Y. Golovko,, Thad A. Rosenberger,, Nils J. Færgeman,, Søren Feddersen,, Nelson B. Cole,, Ingrid Pribill,, Johannes Berger,, Robert L. Nussbaum, and, Eric J. Murphy. Acyl-CoA Synthetase Activity Links Wild-Type but Not Mutant α-Synuclein to Brain Arachidonate Metabolism. Biochemistry 2006, 45 (22) , 6956-6966. https://doi.org/10.1021/bi0600289
    3. Jan Korbecki, Mateusz Bosiacki, Maciej Pilarczyk, Magdalena Gąssowska-Dobrowolska, Paweł Jarmużek, Izabela Szućko-Kociuba, Justyna Kulik-Sajewicz, Dariusz Chlubek, Irena Baranowska-Bosiacka. Phospholipid Acyltransferases: Characterization and Involvement of the Enzymes in Metabolic and Cancer Diseases. Cancers 2024, 16 (11) , 2115. https://doi.org/10.3390/cancers16112115
    4. Xu Zhang, Rongrong Gao, Liuke Yang, Youwei Zhu, Tiancheng Zhang, Xiaorong Shen, Wenwen Gu, Long Yang, Shenjie Peng. Astrocytic functions and lipid metabolism: Correlations and therapeutic targets in Alzheimer's disease and glioblastoma. Clinical and Translational Discovery 2024, 4 (2) https://doi.org/10.1002/ctd2.287
    5. Yunxia Ma, Miljana Nenkov, Alexander Berndt, Mohamed Abubrig, Martin Schmidt, Tim Sandhaus, Otmar Huber, Joachim H. Clement, Susanne M. Lang, Yuan Chen, Nikolaus Gaßler. The Diagnostic Value of ACSL1, ACSL4, and ACSL5 and the Clinical Potential of an ACSL Inhibitor in Non-Small-Cell Lung Cancer. Cancers 2024, 16 (6) , 1170. https://doi.org/10.3390/cancers16061170
    6. Ning Ding, Wenwen Wang, Jun Teng, Yongqing Zeng, Qin Zhang, Licai Dong, Hui Tang. miR-26a-5p Regulates Adipocyte Differentiation via Directly Targeting ACSL3 in Adipocytes. Adipocyte 2023, 12 (1) , 1-10. https://doi.org/10.1080/21623945.2023.2166345
    7. Kahealani Uehara, Dominic Santoleri, Anna E. Garcia Whitlock, Paul M. Titchenell. Insulin Regulation of Hepatic Lipid Homeostasis. 2023, 4785-4809. https://doi.org/10.1002/cphy.c220015
    8. Junichi Fujii, Ken-ichi Yamada. Defense systems to avoid ferroptosis caused by lipid peroxidation-mediated membrane damage. Free Radical Research 2023, 57 (5) , 353-372. https://doi.org/10.1080/10715762.2023.2244155
    9. Robert V. Farese, Tobias C. Walther. Glycerolipid Synthesis and Lipid Droplet Formation in the Endoplasmic Reticulum. Cold Spring Harbor Perspectives in Biology 2023, 15 (5) , a041246. https://doi.org/10.1101/cshperspect.a041246
    10. Jinfeng Xu, Fan Zhou, Xiaodong Wang, Chunheng Mo. Role of ferroptosis in pregnancy related diseases and its therapeutic potential. Frontiers in Cell and Developmental Biology 2023, 11 https://doi.org/10.3389/fcell.2023.1083838
    11. Jorlin Liu, Mark G. Waugh. The regulation and functions of ACSL3 and ACSL4 in the liver and hepatocellular carcinoma. Liver Cancer International 2023, 4 (1) , 28-41. https://doi.org/10.1002/lci2.68
    12. Zhimin Wu, Jun Sun, Zhi Liao, Jia Qiao, Chuan Chen, Cong Ling, Hui Wang. An update on the therapeutic implications of long-chain acyl-coenzyme A synthetases in nervous system diseases. Frontiers in Neuroscience 2022, 16 https://doi.org/10.3389/fnins.2022.1030512
    13. Romain Marteau, Séverine Ravez, Darius Mazhari Dorooee, Hind Bouchaoui, Karine Porte, Jean-Christophe Devedjian, Patricia Melnyk, David Devos, Raphaël Frédérick, Jamal El Bakali. Repositioning of FDA-Approved antifungal agents to interrogate Acyl-CoA synthetase long chain family member 4 (ACSL4) in ferroptosis. Biochemical Pharmacology 2022, 204 , 115239. https://doi.org/10.1016/j.bcp.2022.115239
    14. Faris Zaibaq, Tyrone Dowdy, Mioara Larion. Targeting the Sphingolipid Rheostat in Gliomas. International Journal of Molecular Sciences 2022, 23 (16) , 9255. https://doi.org/10.3390/ijms23169255
    15. Zhigang Yang, Hangbo Zhu, Xiaoping Huang, Aimin Wang, Dizhi Xie. Molecular Characterization, Tissue Distribution Profile, and Nutritional Regulation of acsl Gene Family in Golden Pompano (Trachinotus ovatus). International Journal of Molecular Sciences 2022, 23 (12) , 6437. https://doi.org/10.3390/ijms23126437
    16. Yun Hee Jung, So Young Bu. Glycolytic and oxidative muscles under acute glucose supplementation differ in their metabolic responses to fatty acyl-CoA synthetase gene suppression. Journal of Nutrition and Health 2022, 55 (1) , 70. https://doi.org/10.4163/jnh.2022.55.1.70
    17. Yunxia Ma, Miljana Nenkov, Yuan Chen, Adrian T Press, Elke Kaemmerer, Nikolaus Gassler. Fatty acid metabolism and acyl-CoA synthetases in the liver-gut axis. World Journal of Hepatology 2021, 13 (11) , 1512-1533. https://doi.org/10.4254/wjh.v13.i11.1512
    18. Anri Kurotaki, Hiroshi Kuwata, Shuntaro Hara. Substrate Specificity of Human Long-Chain Acyl-CoA Synthetase ACSL6 Variants. Biological and Pharmaceutical Bulletin 2021, 44 (10) , 1571-1575. https://doi.org/10.1248/bpb.b21-00551
    19. Regina F. Fernandez, Andrea S. Pereyra, Victoria Diaz, Emily S. Wilson, Karen A. Litwa, Jonatan Martínez-Gardeazabal, Shelley N. Jackson, J. Thomas Brenna, Brian P. Hermann, Jeffrey B. Eells, Jessica M. Ellis. Acyl-CoA synthetase 6 is required for brain docosahexaenoic acid retention and neuroprotection during aging. JCI Insight 2021, 6 (11) https://doi.org/10.1172/jci.insight.144351
    20. Yulin Bi, Xiaoya Yuan, Ying Chen, Guobin Chang, Guohong Chen. Expression analysis of genes related to lipid metabolism in peripheral blood lymphocytes of chickens challenged with reticuloendotheliosis virus. Poultry Science 2021, 100 (5) , 101081. https://doi.org/10.1016/j.psj.2021.101081
    21. Melina A. Dattilo, Yanina Benzo, Lucia M. Herrera, Jesica G. Prada, Paula F. Lopez, Carla M. Caruso, Mercedes Lasaga, Corina I. García, Cristina Paz, Paula M. Maloberti. Regulation and role of Acyl-CoA synthetase 4 in glial cells. The Journal of Steroid Biochemistry and Molecular Biology 2021, 208 , 105792. https://doi.org/10.1016/j.jsbmb.2020.105792
    22. Jefte M. Drijvers, Jacob E. Gillis, Tara Muijlwijk, Thao H. Nguyen, Emily F. Gaudiano, Isaac S. Harris, Martin W. LaFleur, Alison E. Ringel, Cong-Hui Yao, Kiran Kurmi, Vikram R. Juneja, Justin D. Trombley, Marcia C. Haigis, Arlene H. Sharpe. Pharmacologic Screening Identifies Metabolic Vulnerabilities of CD8+ T Cells. Cancer Immunology Research 2021, 9 (2) , 184-199. https://doi.org/10.1158/2326-6066.CIR-20-0384
    23. Minhua Zheng, Wei Wang, Jun Liu, Xiao Zhang, Rui Zhang. Lipid Metabolism in Cancer Cells. 2021, 49-69. https://doi.org/10.1007/978-981-33-6785-2_4
    24. Yixin Xu, Xuehan Li, Yan Cheng, Mingan Yang, Rurong Wang. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia‐reperfusion. The FASEB Journal 2020, 34 (12) , 16262-16275. https://doi.org/10.1096/fj.202001758R
    25. Regina F. Fernandez, Jessica M Ellis. Acyl-CoA synthetases as regulators of brain phospholipid acyl-chain diversity. Prostaglandins, Leukotrienes and Essential Fatty Acids 2020, 161 , 102175. https://doi.org/10.1016/j.plefa.2020.102175
    26. Meiling Huang, Jiang Wu, Rui Ling, Nanlin Li. Quadruple negative breast cancer. Breast Cancer 2020, 27 (4) , 527-533. https://doi.org/10.1007/s12282-020-01047-6
    27. Quan Zhang, Yi Kang Luo, Bo Hai Zhang, Yan Zi Chan, Lin Lin Huang, Yin Wang, Jia Ming Liang, Xi Quan Zhang. RNA-Seq Study of Hepatic Response of Yellow-Feather Chickens to Acute Heat Stress. Annals of Animal Science 2020, 20 (1) , 55-69. https://doi.org/10.2478/aoas-2019-0060
    28. Jessica Roelands, Mathieu Garand, Emily Hinchcliff, Ying Ma, Parin Shah, Mohammed Toufiq, Mohamed Alfaki, Wouter Hendrickx, Sabri Boughorbel, Darawan Rinchai, Amir Jazaeri, Davide Bedognetti, Damien Chaussabel. Long-Chain Acyl-CoA Synthetase 1 Role in Sepsis and Immunity: Perspectives From a Parallel Review of Public Transcriptome Datasets and of the Literature. Frontiers in Immunology 2019, 10 https://doi.org/10.3389/fimmu.2019.02410
    29. Hiroshi Kuwata, Shuntaro Hara. Role of acyl-CoA synthetase ACSL4 in arachidonic acid metabolism. Prostaglandins & Other Lipid Mediators 2019, 144 , 106363. https://doi.org/10.1016/j.prostaglandins.2019.106363
    30. Benjamin J. Hale, Regina F. Fernandez, Sora Q. Kim, Victoria D. Diaz, Shelley N. Jackson, Lei Liu, J. Thomas Brenna, Brian P. Hermann, Christopher B. Geyer, Jessica M. Ellis. Acyl-CoA synthetase 6 enriches seminiferous tubules with the ω-3 fatty acid docosahexaenoic acid and is required for male fertility in the mouse. Journal of Biological Chemistry 2019, 294 (39) , 14394-14405. https://doi.org/10.1074/jbc.RA119.009972
    31. Yang Lv, Yang Cao, Yi Gao, Jinyan Yun, Yongsheng Yu, Lichun Zhang, Zhongchang Hu, Lixiang Liu, Jiajia Xue, Guoliang Zhang. Effect of ACSL3 Expression Levels on Preadipocyte Differentiation in Chinese Red Steppe Cattle. DNA and Cell Biology 2019, 38 (9) , 945-954. https://doi.org/10.1089/dna.2018.4443
    32. Roniele Santana Valente, Tamie Guibu de Almeida, Mayra Fernanda Alves, Janine de Camargo, Andrea Cristina Basso, Katia Roberta Anacleto Belaz, Marcos Nogueira Eberlin, Fernanda da Cruz Landim-Alvarenga, Patricia Kubo Fontes, Marcelo Fábio Gouveia Nogueira, Mateus José Sudano, . Modulation of long-chain Acyl-CoA synthetase on the development, lipid deposit and cryosurvival of in vitro produced bovine embryos. PLOS ONE 2019, 14 (8) , e0220731. https://doi.org/10.1371/journal.pone.0220731
    33. Andrea Angius, Paolo Uva, Giovanna Pira, Maria Rosaria Muroni, Giovanni Sotgiu, Laura Saderi, Elena Uleri, Maurizio Caocci, Gabriele Ibba, Maria Rosaria Cesaraccio, Caterina Serra, Ciriaco Carru, Alessandra Manca, Francesca Sanges, Alberto Porcu, Antonia Dolei, Antonio Mario Scanu, Paolo Cossu Rocca, Maria Rosaria De Miglio. Integrated Analysis of miRNA and mRNA Endorses a Twenty miRNAs Signature for Colorectal Carcinoma. International Journal of Molecular Sciences 2019, 20 (16) , 4067. https://doi.org/10.3390/ijms20164067
    34. Chao Zhao, Guangshuai Liu, Shuai Shang, Qinguo Wei, Lei Zhang, Tian Xia, Xiufeng Yang, Guolei Sun, Honghai Zhang. Adaptive evolution of the ACSL gene family in Carnivora. Genetica 2019, 147 (2) , 141-148. https://doi.org/10.1007/s10709-019-00057-3
    35. Xiphias Ge Zhu, Shirony Nicholson Puthenveedu, Yihui Shen, Konnor La, Can Ozlu, Tim Wang, Diana Klompstra, Yetis Gultekin, Jingyi Chi, Justine Fidelin, Tao Peng, Henrik Molina, Howard C. Hang, Wei Min, Kıvanç Birsoy. CHP1 Regulates Compartmentalized Glycerolipid Synthesis by Activating GPAT4. Molecular Cell 2019, 74 (1) , 45-58.e7. https://doi.org/10.1016/j.molcel.2019.01.037
    36. Sujung Park, Myeungsoo Lee, Churl-Hong Chun, Eun-Jung Jin. The lncRNA, Nespas, Is Associated with Osteoarthritis Progression and Serves as a Potential New Prognostic Biomarker. CARTILAGE 2019, 10 (2) , 148-156. https://doi.org/10.1177/1947603517725566
    37. Daniel R. Zamzow, Valerie Elias, Varinia A. Acosta, Emily Escobedo, Kathy R. Magnusson. Higher Levels of Protein Palmitoylation in the Frontal Cortex across Aging Were Associated with Reference Memory and Executive Function Declines. eneuro 2019, 6 (1) , ENEURO.0310-18.2019. https://doi.org/10.1523/ENEURO.0310-18.2019
    38. Raphaël Chouinard-Watkins, Richard P. Bazinet. ACSL6 is critical for maintaining brain DHA levels. Proceedings of the National Academy of Sciences 2018, 115 (49) , 12343-12345. https://doi.org/10.1073/pnas.1817557115
    39. R.J.Scott Lacombe, Raphaël Chouinard-Watkins, Richard P. Bazinet. Brain docosahexaenoic acid uptake and metabolism. Molecular Aspects of Medicine 2018, 64 , 109-134. https://doi.org/10.1016/j.mam.2017.12.004
    40. Yue Zhou, Yuting Wang, Xinxing Zhang, Subhradeep Bhar, Rachel A Jones Lipinski, Jungsoo Han, Likui Feng, Rebecca A Butcher. Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in C. elegans. eLife 2018, 7 https://doi.org/10.7554/eLife.33286
    41. Margarete Poppelreuther, Simone Sander, Fadil Minden, Marina S. Dietz, Tarik Exner, Chen Du, Ingrid Zhang, Friedrich Ehehalt, Laura Knüppel, Susanne Domschke, Anna Badenhop, Sarah Staudacher, Robert Ehehalt, Wolfgang Stremmel, Christoph Thiele, Mike Heilemann, Joachim Füllekrug. The metabolic capacity of lipid droplet localized acyl-CoA synthetase 3 is not sufficient to support local triglyceride synthesis independent of the endoplasmic reticulum in A431 cells. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2018, 1863 (6) , 614-624. https://doi.org/10.1016/j.bbalip.2018.03.003
    42. Eric Soupene, Frans A. Kuypers. Phosphatidylserine decarboxylase CT699, lysophospholipid acyltransferase CT775, and acyl-ACP synthase CT776 provide membrane lipid diversity to Chlamydia trachomatis. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-16116-8
    43. Carlos R. P. Dechandt, Felippe H. Zuccolotto-dos-Reis, Bruno G. Teodoro, Anna Maria A. P. Fernandes, Marcos N. Eberlin, Isis C. Kettelhut, Carlos Curti, Luciane C. Alberici. Triacsin C reduces lipid droplet formation and induces mitochondrial biogenesis in primary rat hepatocytes. Journal of Bioenergetics and Biomembranes 2017, 49 (5) , 399-411. https://doi.org/10.1007/s10863-017-9725-9
    44. Flore Geillon, Catherine Gondcaille, Quentin Raas, Alexandre M.M. Dias, Delphine Pecqueur, Caroline Truntzer, Géraldine Lucchi, Patrick Ducoroy, Pierre Falson, Stéphane Savary, Doriane Trompier. Peroxisomal ATP-binding cassette transporters form mainly tetramers. Journal of Biological Chemistry 2017, 292 (17) , 6965-6977. https://doi.org/10.1074/jbc.M116.772806
    45. Bruno G. Teodoro, Igor H. Sampaio, Lucas H. M. Bomfim, André L. Queiroz, Leonardo R. Silveira, Anderson O. Souza, Anna M. A. P. Fernandes, Marcos N. Eberlin, Tai‐Yu Huang, Donghai Zheng, P. Darrell Neufer, Ronald N. Cortright, Luciane C. Alberici. Long‐chain acyl‐CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle. The Journal of Physiology 2017, 595 (3) , 677-693. https://doi.org/10.1113/JP272962
    46. Giuseppe Conte, Andrea Serra, Marcello Mele. Dairy Cow Breeding and Feeding on the Milk Fatty Acid Pattern. 2017, 19-41. https://doi.org/10.1016/B978-0-12-809762-5.00002-4
    47. Sebastian Doll, Bettina Proneth, Yulia Y Tyurina, Elena Panzilius, Sho Kobayashi, Irina Ingold, Martin Irmler, Johannes Beckers, Michaela Aichler, Axel Walch, Holger Prokisch, Dietrich Trümbach, Gaowei Mao, Feng Qu, Hulya Bayir, Joachim Füllekrug, Christina H Scheel, Wolfgang Wurst, Joel A Schick, Valerian E Kagan, José Pedro Friedmann Angeli, Marcus Conrad. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology 2017, 13 (1) , 91-98. https://doi.org/10.1038/nchembio.2239
    48. Stephen L. Pinkosky, Roger S. Newton, Emily A. Day, Rebecca J. Ford, Sarka Lhotak, Richard C. Austin, Carolyn M. Birch, Brennan K. Smith, Sergey Filippov, Pieter H.E. Groot, Gregory R. Steinberg, Narendra D. Lalwani. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms13457
    49. Yan Huang, Sheng Huang, Sin Man Lam, Zhihua Liu, Guanghou Shui, Yong Q. Zhang. Acsl, the Drosophila ortholog of intellectual-disability-related ACSL4, inhibits synaptic growth by altered lipids. Journal of Cell Science 2016, 129 (21) , 4034-4045. https://doi.org/10.1242/jcs.195032
    50. Maria A. Recuero-Checa, Manu Sharma, Constance Lau, Paul A. Watkins, Charlotte A. Gaydos, Deborah Dean. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs). Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep23148
    51. Michele Alves-Bezerra, Eric L. Klett, Iron F. De Paula, Isabela B. Ramos, Rosalind A. Coleman, Katia C. Gondim. Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2016, 1861 (7) , 650-662. https://doi.org/10.1016/j.bbalip.2016.04.007
    52. D.R. Seeger, C.C. Murphy, E.J. Murphy. Astrocyte arachidonate and palmitate uptake and metabolism is differentially modulated by dibutyryl-cAMP treatment. Prostaglandins, Leukotrienes and Essential Fatty Acids 2016, 110 , 16-26. https://doi.org/10.1016/j.plefa.2016.05.003
    53. Mette Korre Andersen, Emil Jørsboe, Camilla Helene Sandholt, Niels Grarup, Marit Eika Jørgensen, Nils Joakim Færgeman, Peter Bjerregaard, Oluf Pedersen, Ida Moltke, Torben Hansen, Anders Albrechtsen, . Identification of Novel Genetic Determinants of Erythrocyte Membrane Fatty Acid Composition among Greenlanders. PLOS Genetics 2016, 12 (6) , e1006119. https://doi.org/10.1371/journal.pgen.1006119
    54. Kevin Kolahi, Samantha Louey, Oleg Varlamov, Kent Thornburg, . Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells. PLOS ONE 2016, 11 (4) , e0153522. https://doi.org/10.1371/journal.pone.0153522
    55. Xiaojuan Ye, Yi Zhang, Xiao Wang, Yandong Li, Yong Gao. Tumor-suppressive functions of long-chain acyl-CoA synthetase 4 in gastric cancer. IUBMB Life 2016, 68 (4) , 320-327. https://doi.org/10.1002/iub.1486
    56. Anthony Arlia-Ciommo, Veronika Svistkova, Sadaf Mohtashami, Vladimir I. Titorenko. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget 2016, 7 (5) , 5204-5225. https://doi.org/10.18632/oncotarget.6440
    57. Fengguang Guo, Guadalupe Ortega-Pierres, Raúl Argüello-García, Haili Zhang, Guan Zhu. Giardia fatty acyl-CoA synthetases as potential drug targets. Frontiers in Microbiology 2015, 6 https://doi.org/10.3389/fmicb.2015.00753
    58. Michael Chu, Harini Sampath, David Y. Cahana, Christoph A. Kahl, Romel Somwar, Anda Cornea, Charles T. Roberts, Oleg Varlamov, . Spatiotemporal dynamics of triglyceride storage in unilocular adipocytes. Molecular Biology of the Cell 2014, 25 (25) , 4096-4105. https://doi.org/10.1091/mbc.e14-06-1085
    59. Daniel R. Zamzow, Valerie Elias, LeeCole L. Legette, Jaewoo Choi, J. Fred Stevens, Kathy R. Magnusson. Xanthohumol improved cognitive flexibility in young mice. Behavioural Brain Research 2014, 275 , 1-10. https://doi.org/10.1016/j.bbr.2014.08.045
    60. Peng Sun, Shuli Xia, Bachchu Lal, Xiaohai Shi, Kil Sung Yang, Paul A Watkins, John Laterra. Lipid metabolism enzyme ACSVL3 supports glioblastoma stem cell maintenance and tumorigenicity. BMC Cancer 2014, 14 (1) https://doi.org/10.1186/1471-2407-14-401
    61. Trisha J. Grevengoed, Eric L. Klett, Rosalind A. Coleman. Acyl-CoA Metabolism and Partitioning. Annual Review of Nutrition 2014, 34 (1) , 1-30. https://doi.org/10.1146/annurev-nutr-071813-105541
    62. Cong Li, Dongxiao Sun, Shengli Zhang, Sheng Wang, Xiaoping Wu, Qin Zhang, Lin Liu, Yanhua Li, Lv Qiao, . Genome Wide Association Study Identifies 20 Novel Promising Genes Associated with Milk Fatty Acid Traits in Chinese Holstein. PLoS ONE 2014, 9 (5) , e96186. https://doi.org/10.1371/journal.pone.0096186
    63. F. Guo, H. Zhang, J. M. Fritzler, S. D. Rider, L. Xiang, N. N. McNair, J. R. Mead, G. Zhu. Amelioration of Cryptosporidium parvum Infection In Vitro and In Vivo by Targeting Parasite Fatty Acyl-Coenzyme A Synthetases. Journal of Infectious Diseases 2014, 209 (8) , 1279-1287. https://doi.org/10.1093/infdis/jit645
    64. Hiroshi Kuwata, Makiko Yoshimura, Yuka Sasaki, Emiko Yoda, Yoshihito Nakatani, Ichiro Kudo, Shuntaro Hara. Role of long-chain acyl-coenzyme A synthetases in the regulation of arachidonic acid metabolism in interleukin 1β-stimulated rat fibroblasts. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2014, 1841 (1) , 44-53. https://doi.org/10.1016/j.bbalip.2013.09.015
    65. Xinyu Wu, Yirong Li, Jinhua Wang, Xin Wen, Max T. Marcus, Garrett Daniels, David Y. Zhang, Fei Ye, Ling Hang Wang, Xinxin Du, Sylvia Adams, Baljit Singh, Jiri Zavadil, Peng Lee, Marie E. Monaco, . Long Chain Fatty Acyl-CoA Synthetase 4 Is a Biomarker for and Mediator of Hormone Resistance in Human Breast Cancer. PLoS ONE 2013, 8 (10) , e77060. https://doi.org/10.1371/journal.pone.0077060
    66. Jinjiang Fan, Vassilios Papadopoulos, . Evolutionary Origin of the Mitochondrial Cholesterol Transport Machinery Reveals a Universal Mechanism of Steroid Hormone Biosynthesis in Animals. PLoS ONE 2013, 8 (10) , e76701. https://doi.org/10.1371/journal.pone.0076701
    67. Philippe Pierre Robichaud, Katherine Boulay, Jean éric Munganyiki, Marc E. Surette. Fatty acid remodeling in cellular glycerophospholipids following the activation of human T cells. Journal of Lipid Research 2013, 54 (10) , 2665-2677. https://doi.org/10.1194/jlr.M037044
    68. Erin Currie, Almut Schulze, Rudolf Zechner, Tobias C. Walther, Robert V. Farese. Cellular Fatty Acid Metabolism and Cancer. Cell Metabolism 2013, 18 (2) , 153-161. https://doi.org/10.1016/j.cmet.2013.05.017
    69. Jules A. Nchoutmboube, Ekaterina G. Viktorova, Alison J. Scott, Lauren A. Ford, Zhengtong Pei, Paul A. Watkins, Robert K. Ernst, George A. Belov, . Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles. PLoS Pathogens 2013, 9 (6) , e1003401. https://doi.org/10.1371/journal.ppat.1003401
    70. Emre Koyuncu, John G. Purdy, Joshua D. Rabinowitz, Thomas Shenk, . Saturated Very Long Chain Fatty Acids Are Required for the Production of Infectious Human Cytomegalovirus Progeny. PLoS Pathogens 2013, 9 (5) , e1003333. https://doi.org/10.1371/journal.ppat.1003333
    71. Hiren R. Modi, Mireille Basselin, Ameer Y. Taha, Lei O. Li, Rosalind A. Coleman, Meir Bialer, Stanley I. Rapoport. Propylisopropylacetic acid (PIA), a constitutional isomer of valproic acid, uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: A potential drug for bipolar disorder. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2013, 1831 (4) , 880-886. https://doi.org/10.1016/j.bbalip.2013.01.008
    72. J. Corominas, Y. Ramayo‐Caldas, A. Castelló, M. Muñoz, N. Ibáñez‐Escriche, J. M. Folch, M. Ballester. Evaluation of the porcine ACSL4 gene as a candidate gene for meat quality traits in pigs. Animal Genetics 2012, 43 (6) , 714-720. https://doi.org/10.1111/j.1365-2052.2012.02335.x
    73. Paul A. Watkins, Jessica M. Ellis. Peroxisomal acyl-CoA synthetases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2012, 1822 (9) , 1411-1420. https://doi.org/10.1016/j.bbadis.2012.02.010
    74. Ulises D. Orlando, Juan Garona, Giselle V. Ripoll, Paula M. Maloberti, Ángela R. Solano, Alejandra Avagnina, Daniel E. Gomez, Daniel F. Alonso, Ernesto J. Podestá, . The Functional Interaction between Acyl-CoA Synthetase 4, 5-Lipooxygenase and Cyclooxygenase-2 Controls Tumor Growth: A Novel Therapeutic Target. PLoS ONE 2012, 7 (7) , e40794. https://doi.org/10.1371/journal.pone.0040794
    75. Alex P. Kitson, Ken D. Stark, Robin E. Duncan. Enzymes in brain phospholipid docosahexaenoic acid accretion: A PL-ethora of potential PL-ayers. Prostaglandins, Leukotrienes and Essential Fatty Acids 2012, 87 (1) , 1-10. https://doi.org/10.1016/j.plefa.2012.06.001
    76. Margarete Poppelreuther, Berenice Rudolph, Chen Du, Regina Großmann, Melanie Becker, Christoph Thiele, Robert Ehehalt, Joachim Füllekrug. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. Journal of Lipid Research 2012, 53 (5) , 888-900. https://doi.org/10.1194/jlr.M024562
    77. Jenny E. Kanter, Chongren Tang, John F. Oram, Karin E. Bornfeldt. Acyl-CoA synthetase 1 is required for oleate and linoleate mediated inhibition of cholesterol efflux through ATP-binding cassette transporter A1 in macrophages. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2012, 1821 (3) , 358-364. https://doi.org/10.1016/j.bbalip.2011.10.008
    78. Jingchun Chen, Darlene H. Brunzell, Kia Jackson, Andrew van der Vaart, Jennie Z. Ma, Thomas J. Payne, Richard Sherva, Lindsay A. Farrer, Pablo Gejman, Douglas F. Levinson, Peter Holmans, Steven H. Aggen, Imad Damaj, Po-Hsiu Kuo, Bradley T. Webb, Raymond Anton, Henry R. Kranzler, Joel Gelernter, Ming D. Li, Kenneth S. Kendler, Xiangning Chen, . ACSL6 Is Associated with the Number of Cigarettes Smoked and Its Expression Is Altered by Chronic Nicotine Exposure. PLoS ONE 2011, 6 (12) , e28790. https://doi.org/10.1371/journal.pone.0028790
    79. Margarete Digel, Simone Staffer, Friedrich Ehehalt, Wolfgang Stremmel, Robert Ehehalt, Joachim Füllekrug. FATP4 contributes as an enzyme to the basal and insulin-mediated fatty acid uptake of C 2 C 12 muscle cells. American Journal of Physiology-Endocrinology and Metabolism 2011, 301 (5) , E785-E796. https://doi.org/10.1152/ajpendo.00079.2011
    80. Mariana Cooke, Ulises Orlando, Paula Maloberti, Ernesto J. Podestá, Fabiana Cornejo Maciel. Tyrosine phosphatase SHP2 regulates the expression of acyl-CoA synthetase ACSL4. Journal of Lipid Research 2011, 52 (11) , 1936-1948. https://doi.org/10.1194/jlr.M015552
    81. Deidre L. Golej, Bardia Askari, Farah Kramer, Shelley Barnhart, Anuradha Vivekanandan-Giri, Subramaniam Pennathur, Karin E. Bornfeldt. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells. Journal of Lipid Research 2011, 52 (4) , 782-793. https://doi.org/10.1194/jlr.M013292
    82. Sang-Yoon Kim, Won-Sik Kong, Jae-Yong Cho. Identification of Differentially Expressed Genes in Flammulina velutipes with Anti-Tyrosinase Activity. Current Microbiology 2011, 62 (2) , 452-457. https://doi.org/10.1007/s00284-010-9728-9
    83. Akhlaq A. Farooqui. Metabolism, Roles, and Involvement of Lyso-glycerophospholipids in Neurological Disorders. 2011, 73-105. https://doi.org/10.1007/978-1-4419-9940-5_3
    84. M. Susanne Weedon-Fekjaer, Knut Tomas Dalen, Karianne Solaas, Anne Cathrine Staff, Asim K. Duttaroy, Hilde Irene Nebb. Activation of LXR increases acyl-CoA synthetase activity through direct regulation of ACSL3 in human placental trophoblast cells. Journal of Lipid Research 2010, 51 (7) , 1886-1896. https://doi.org/10.1194/jlr.M004978
    85. Marie E. Monaco, Chad J. Creighton, Peng Lee, Xuanyi Zou, Matthew K. Topham, Diana M. Stafforini. Expression of Long-chain Fatty Acyl-CoA Synthetase 4 in Breast and Prostate Cancers Is Associated with Sex Steroid Hormone Receptor Negativity. Translational Oncology 2010, 3 (2) , 91-98. https://doi.org/10.1593/tlo.09202
    86. Lei O. Li, Eric L. Klett, Rosalind A. Coleman. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2010, 1801 (3) , 246-251. https://doi.org/10.1016/j.bbalip.2009.09.024
    87. Gema Pérez-Chacón, Alma M. Astudillo, Violeta Ruipérez, María A. Balboa, Jesús Balsinde. Signaling Role for Lysophosphatidylcholine Acyltransferase 3 in Receptor-Regulated Arachidonic Acid Reacylation Reactions in Human Monocytes. The Journal of Immunology 2010, 184 (2) , 1071-1078. https://doi.org/10.4049/jimmunol.0902257
    88. Zhengtong Pei, Peng Sun, Ping Huang, Bachchu Lal, John Laterra, Paul A. Watkins. Acyl-CoA Synthetase VL3 Knockdown Inhibits Human Glioma Cell Proliferation and Tumorigenicity. Cancer Research 2009, 69 (24) , 9175-9182. https://doi.org/10.1158/0008-5472.CAN-08-4689
    89. Gema Pérez-Chacón, Alma M. Astudillo, David Balgoma, María A. Balboa, Jesús Balsinde. Control of free arachidonic acid levels by phospholipases A2 and lysophospholipid acyltransferases. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2009, 1791 (12) , 1103-1113. https://doi.org/10.1016/j.bbalip.2009.08.007
    90. Minhao Wu, Haiyan Liu, Wei Chen, Yasuyuki Fujimoto, Jingwen Liu. Hepatic Expression of Long‐Chain Acyl‐CoA Synthetase 3 is Upregulated in Hyperlipidemic Hamsters. Lipids 2009, 44 (11) https://doi.org/10.1007/s11745-009-3341-3
    91. Joel M. Goodman. Demonstrated and inferred metabolism associated with cytosolic lipid droplets. Journal of Lipid Research 2009, 50 (11) , 2148-2156. https://doi.org/10.1194/jlr.R001446
    92. Viswanathan Saraswathi, Alyssa H. Hasty. Inhibition of Long-Chain Acyl Coenzyme A Synthetases During Fatty Acid Loading Induces Lipotoxicity in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology 2009, 29 (11) , 1937-1943. https://doi.org/10.1161/ATVBAHA.109.195362
    93. So Young Bu, Mara T. Mashek, Douglas G. Mashek. Suppression of Long Chain Acyl-CoA Synthetase 3 Decreases Hepatic de Novo Fatty Acid Synthesis through Decreased Transcriptional Activity. Journal of Biological Chemistry 2009, 284 (44) , 30474-30483. https://doi.org/10.1074/jbc.M109.036665
    94. Margarete Digel, Robert Ehehalt, Wolfgang Stremmel, Joachim Füllekrug. Acyl-CoA synthetases: fatty acid uptake and metabolic channeling. Molecular and Cellular Biochemistry 2009, 326 (1-2) , 23-28. https://doi.org/10.1007/s11010-008-0003-3
    95. Mikhail Y. Golovko, Gwendolyn Barceló-Coblijn, Paula I. Castagnet, Susan Austin, Colin K. Combs, Eric J. Murphy. The role of α-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Molecular and Cellular Biochemistry 2009, 326 (1-2) , 55-66. https://doi.org/10.1007/s11010-008-0008-y
    96. Frederica Perera, Wan-yee Tang, Julie Herbstman, Deliang Tang, Linda Levin, Rachel Miller, Shuk-mei Ho, . Relation of DNA Methylation of 5′-CpG Island of ACSL3 to Transplacental Exposure to Airborne Polycyclic Aromatic Hydrocarbons and Childhood Asthma. PLoS ONE 2009, 4 (2) , e4488. https://doi.org/10.1371/journal.pone.0004488
    97. Akhlaq A. Farooqui. Transport, Synthesis, and Incorporation of n–3 and n–6 Fatty Acids in Brain Glycerophospholipids. 2009, 47-78. https://doi.org/10.1007/978-1-4419-0543-7_2
    98. Stanley I. Rapoport. Arachidonic Acid and the Brain. The Journal of Nutrition 2008, 138 (12) , 2515-2520. https://doi.org/10.1093/jn/138.12.2515
    99. Stanley I. Rapoport. Brain arachidonic and docosahexaenoic acid cascades are selectively altered by drugs, diet and disease. Prostaglandins, Leukotrienes and Essential Fatty Acids 2008, 79 (3-5) , 153-156. https://doi.org/10.1016/j.plefa.2008.09.010
    100. J S Rao, H-J Lee, S I Rapoport, R P Bazinet. Mode of action of mood stabilizers: is the arachidonic acid cascade a common target?. Molecular Psychiatry 2008, 13 (6) , 585-596. https://doi.org/10.1038/mp.2008.31
    Load all citations

    Biochemistry

    Cite this: Biochemistry 2005, 44, 5, 1635–1642
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi047721l
    Published January 11, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    1985

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.