ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Biochemical and Biophysical Characterization of Serotonin 5-HT2C Receptor Homodimers on the Plasma Membrane of Living Cells

View Author Information
Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208
Cite this: Biochemistry 2004, 43, 44, 13963–13971
Publication Date (Web):October 16, 2004
https://doi.org/10.1021/bi048398p
Copyright © 2004 American Chemical Society

    Article Views

    903

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    While many studies have provided evidence of homodimerization and heterodimerization of G-protein-coupled receptors (GPCRs), few studies have used fluorescence resonance energy transfer (FRET) combined with confocal microscopy to visualize receptor dimerization on the plasma membrane, and there have been no reports demonstrating the expression of serotonin receptor dimers/oligomers on the plasma membrane of living cells. In the study presented here, biochemical and biophysical techniques were used to determine if 5-HT2C receptors exist as homodimers on the plasma membrane of living cells. Immunoprecipitation followed by Western blotting revealed the presence of immunoreactive bands the predicted size of 5-HT2C receptor monomers and homodimers that were detergent and cross-linker sensitive. Bioluminescence resonance energy transfer (BRET) was assessed in HEK293 cells expressing 5-HT2C receptors labeled with Renilla luciferase and yellow fluorescent protein. BRET levels were not altered by pretreatment with serotonin. Confocal microscopy provided direct visualization of FRET on the plasma membrane of live cells expressing 5-HT2C receptors labeled with cyan (donor) and yellow (acceptor) fluorescent proteins. FRET, assessed by acceptor photobleaching, was dependent on the donor/acceptor ratio and independent of acceptor expression levels, indicating that FRET resulted from receptor clustering and not from overexpression of randomly distributed receptors, providing evidence for GPCR dimers/oligomers in a clustered distribution on the plasma membrane. The results of this study suggest that 5-HT2C receptors exist as constitutive homodimers on the plasma membrane of living cells. In addition, a confocal-based FRET method for monitoring receptor dimerization directly on the plasma membrane of living cells is described.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by NIH Grant MH057019 to K.H.-D. and NIH Grant RR017926 to J.E.M.

    *

     To whom correspondence should be addressed:  Center for Neuropharmacology and Neuroscience, MC-136, Albany Medical College, 47 NewScotland Ave., Albany, NY 12208. Telephone:  (518) 262-6357. Fax:  (518) 262-5799. E-mail:  [email protected].

    Cited By

    This article is cited by 72 publications.

    1. Ying-Chu Chen, Rachel M. Hartley, Noelle C. Anastasio, Kathryn A. Cunningham, and Scott R. Gilbertson . Synthesis and Structure–Activity Relationships of Tool Compounds Based on WAY163909, a 5-HT2C Receptor Agonist. ACS Chemical Neuroscience 2017, 8 (5) , 1004-1010. https://doi.org/10.1021/acschemneuro.6b00439
    2. Rabindra V. Shivnaraine, Dennis D. Fernandes, Huiqiao Ji, Yuchong Li, Brendan Kelly, Zhenfu Zhang, Yi Rang Han, Fei Huang, Krishana S. Sankar, David N. Dubins, Jonathan V. Rocheleau, James W. Wells, and Claudiu C. Gradinaru . Single-Molecule Analysis of the Supramolecular Organization of the M2 Muscarinic Receptor and the Gαi1 Protein. Journal of the American Chemical Society 2016, 138 (36) , 11583-11598. https://doi.org/10.1021/jacs.6b04032
    3. Christine Hiller, Julia Kühhorn, and Peter Gmeiner . Class A G-Protein-Coupled Receptor (GPCR) Dimers and Bivalent Ligands. Journal of Medicinal Chemistry 2013, 56 (17) , 6542-6559. https://doi.org/10.1021/jm4004335
    4. Matthew J. Shashack, Kathryn A. Cunningham, Patricia K. Seitz, Andrew McGinnis, Thressa D. Smith, Cheryl S. Watson, and Scott R. Gilbertson . Synthesis and Evaluation of Dimeric Derivatives of 5-HT2A Receptor (5-HT2AR) Antagonist M-100907. ACS Chemical Neuroscience 2011, 2 (11) , 640-644. https://doi.org/10.1021/cn200077q
    5. David E. Nichols and Charles D. Nichols . Serotonin Receptors. Chemical Reviews 2008, 108 (5) , 1614-1641. https://doi.org/10.1021/cr078224o
    6. Elena V. Mitroshina, Ekaterina A. Marasanova, Maria V. Vedunova. Functional Dimerization of Serotonin Receptors: Role in Health and Depressive Disorders. International Journal of Molecular Sciences 2023, 24 (22) , 16416. https://doi.org/10.3390/ijms242216416
    7. Maleesha Ubhayarathna, Christopher J. Langmead, Natalie A. Diepenhorst, Gregory D. Stewart. Molecular and structural insights into the 5‐HT 2C receptor as a therapeutic target for substance use disorders. British Journal of Pharmacology 2023, 29 https://doi.org/10.1111/bph.16233
    8. Alfredo Ulloa-Aguirre, Teresa Zariñán, Rubén Gutiérrez-Sagal, Ya-Xiong Tao. Targeting trafficking as a therapeutic avenue for misfolded GPCRs leading to endocrine diseases. Frontiers in Endocrinology 2022, 13 https://doi.org/10.3389/fendo.2022.934685
    9. Dasiel O. Borroto-Escuela, Patrizia Ambrogini, Barbara Chruścicka, Maria Lindskog, Minerva Crespo-Ramirez, Juan C. Hernández-Mondragón, Miguel Perez de la Mora, Harriët Schellekens, Kjell Fuxe. The Role of Central Serotonin Neurons and 5-HT Heteroreceptor Complexes in the Pathophysiology of Depression: A Historical Perspective and Future Prospects. International Journal of Molecular Sciences 2021, 22 (4) , 1927. https://doi.org/10.3390/ijms22041927
    10. Alfredo Ulloa-Aguirre, Jo Ann Janovick, Teresa Zariñán, Aylin C. Hanyaloglu. Intracellular Trafficking of G Protein-Coupled Receptors to the Cell Surface Plasma Membrane in Health and Disease. 2021, 375-412. https://doi.org/10.1016/B978-0-12-819801-8.00018-1
    11. Nicholas M. Barnes, Gerard P. Ahern, Carine Becamel, Joël Bockaert, Michael Camilleri, Severine Chaumont-Dubel, Sylvie Claeysen, Kathryn A. Cunningham, Kevin C. Fone, Michael Gershon, Giuseppe Di Giovanni, Nathalie M. Goodfellow, Adam L. Halberstadt, Rachel M. Hartley, Ghérici Hassaine, Katharine Herrick-Davis, Ruud Hovius, Enza Lacivita, Evelyn K. Lambe, Marcello Leopoldo, Finn Olav Levy, Sarah C. R. Lummis, Philippe Marin, Luc Maroteaux, Andrew C. McCreary, David L. Nelson, John F. Neumaier, Adrian Newman-Tancredi, Hugues Nury, Alexander Roberts, Bryan L. Roth, Anne Roumier, Gareth J. Sanger, Milt Teitler, Trevor Sharp, Carlos M. Villalón, Horst Vogel, Stephanie W. Watts, Daniel Hoyer, . International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function. Pharmacological Reviews 2021, 73 (1) , 310-520. https://doi.org/10.1124/pr.118.015552
    12. Chih Hung Lo, Evan C. Huber, Jonathan N. Sachs. Conformational states of TNFR1 as a molecular switch for receptor function. Protein Science 2020, 29 (6) , 1401-1415. https://doi.org/10.1002/pro.3829
    13. Michael J. Rizzo, Erik C. Johnson. Homodimerization of Drosophila Class A neuropeptide GPCRs: Evidence for conservation of GPCR dimerization throughout metazoan evolution. Biochemical and Biophysical Research Communications 2020, 523 (2) , 322-327. https://doi.org/10.1016/j.bbrc.2019.12.019
    14. Alfredo Ulloa-Aguirre, Aylin C. Hanyaloglu, Teresa Zariñán, Jo Ann Janovick. Protein homeostasis and regulation of intracellular trafficking of G protein-coupled receptors. 2020, 247-277. https://doi.org/10.1016/B978-0-12-819132-3.00012-9
    15. Urjita Shah, Hanna Pincas, Stuart C. Sealfon, Javier González-Maeso. Structure and function of serotonin GPCR heteromers. 2020, 217-238. https://doi.org/10.1016/B978-0-444-64125-0.00011-6
    16. Luc Maroteaux, Catherine Béchade, Anne Roumier. Dimers of serotonin receptors: Impact on ligand affinity and signaling. Biochimie 2019, 161 , 23-33. https://doi.org/10.1016/j.biochi.2019.01.009
    17. Verònica Casadó-Anguera, Estefanía Moreno, Josefa Mallol, Sergi Ferré, Enric I. Canela, Antoni Cortés, Vicent Casadó. Reinterpreting anomalous competitive binding experiments within G protein-coupled receptor homodimers using a dimer receptor model. Pharmacological Research 2019, 139 , 337-347. https://doi.org/10.1016/j.phrs.2018.11.032
    18. Daniel E. Felsing, Noelle C. Anastasio, Joanna M. Miszkiel, Scott R. Gilbertson, John A. Allen, Kathryn A. Cunningham, . Biophysical validation of serotonin 5-HT2A and 5-HT2C receptor interaction. PLOS ONE 2018, 13 (8) , e0203137. https://doi.org/10.1371/journal.pone.0203137
    19. Maya Abe, Kanae Watanabe, Yoshiyuki Kuroda, Tetsuto Nakagawa, Hideyoshi Higashi. Homodimer formation by the ATP/UTP receptor P2Y2 via disulfide bridges. The Journal of Biochemistry 2018, 163 (6) , 475-480. https://doi.org/10.1093/jb/mvy010
    20. Stefan Stamm, Samuel B. Gruber, Alexander G. Rabchevsky, Ronald B. Emeson. The activity of the serotonin receptor 2C is regulated by alternative splicing. Human Genetics 2017, 136 (9) , 1079-1091. https://doi.org/10.1007/s00439-017-1826-3
    21. Jose M. Palacios, Angel Pazos, Daniel Hoyer. A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment. Psychopharmacology 2017, 234 (9-10) , 1395-1418. https://doi.org/10.1007/s00213-017-4545-5
    22. Luc Maroteaux, Estelle Ayme-Dietrich, Gaëlle Aubertin-Kirch, Sophie Banas, Emily Quentin, Roland Lawson, Laurent Monassier. New therapeutic opportunities for 5-HT2 receptor ligands. Pharmacology & Therapeutics 2017, 170 , 14-36. https://doi.org/10.1016/j.pharmthera.2016.10.008
    23. Alfredo Ulloa-Aguirre, Teresa Zariñán, Rubén Gutiérrez-Sagal, James A. Dias. Intracellular Trafficking of Gonadotropin Receptors in Health and Disease. 2017, 1-39. https://doi.org/10.1007/164_2017_49
    24. Ellinor Grinde, Katharine Herrick-Davis. Class A GPCR: Serotonin Receptors. 2017, 129-172. https://doi.org/10.1007/978-3-319-60174-8_6
    25. Ya-Han Huang, Yeu-Shiuan Su, Chung-Jen Chang, Wei-Hsin Sun. Heteromerization of G2A and OGR1 enhances proton sensitivity and proton-induced calcium signals. Journal of Receptors and Signal Transduction 2016, 36 (6) , 633-644. https://doi.org/10.3109/10799893.2016.1155064
    26. Joseph E. Mazurkiewicz, Katharine Herrick-Davis, Margarida Barroso, Alfredo Ulloa-Aguirre, Barbara Lindau-Shepard, Richard M. Thomas, James A. Dias. Single-Molecule Analyses of Fully Functional Fluorescent Protein-Tagged Follitropin Receptor Reveal Homodimerization and Specific Heterodimerization with Lutropin Receptor1. Biology of Reproduction 2015, 92 (4) https://doi.org/10.1095/biolreprod.114.125781
    27. Katharine Herrick-Davis, Ellinor Grinde, Tara Lindsley, Milt Teitler, Filippo Mancia, Ann Cowan, Joseph E. Mazurkiewicz. Native Serotonin 5-HT 2C Receptors Are Expressed as Homodimers on the Apical Surface of Choroid Plexus Epithelial Cells. Molecular Pharmacology 2015, 87 (4) , 660-673. https://doi.org/10.1124/mol.114.096636
    28. Rodrigo Arreola, Enrique Becerril-Villanueva, Carlos Cruz-Fuentes, Marco Antonio Velasco-Velázquez, María Eugenia Garcés-Alvarez, Gabriela Hurtado-Alvarado, Saray Quintero-Fabian, Lenin Pavón. Immunomodulatory Effects Mediated by Serotonin. Journal of Immunology Research 2015, 2015 , 1-21. https://doi.org/10.1155/2015/354957
    29. P. Michael Conn, David C. Smithson, Peter S. Hodder, M. David Stewart, Richard R. Behringer, Emery Smith, Alfredo Ulloa-Aguirre, Jo Ann Janovick. Transitioning pharmacoperones to therapeutic use: In vivo proof-of-principle and design of high throughput screens. Pharmacological Research 2014, 83 , 38-51. https://doi.org/10.1016/j.phrs.2013.12.004
    30. Alfredo Ulloa-Aguirre, P. Michael Conn. Intracellular Trafficking of G Protein-Coupled Receptors to the Plasma Membrane in Health and Disease. 2014, 341-364. https://doi.org/10.1016/B978-0-12-408134-5.00021-4
    31. Katharine Herrick-Davis. Functional significance of serotonin receptor dimerization. Experimental Brain Research 2013, 230 (4) , 375-386. https://doi.org/10.1007/s00221-013-3622-1
    32. Clinton E. Canal, Raymond G. Booth, Drake Morgan. Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model. Neuropharmacology 2013, 70 , 112-121. https://doi.org/10.1016/j.neuropharm.2013.01.007
    33. C B P Martin, F Ramond, D T Farrington, A S Aguiar, C Chevarin, A-S Berthiau, S Caussanel, L Lanfumey, K Herrick-Davis, M Hamon, J J Madjar, R Mongeau. RNA splicing and editing modulation of 5-HT2C receptor function: relevance to anxiety and aggression in VGV mice. Molecular Psychiatry 2013, 18 (6) , 656-665. https://doi.org/10.1038/mp.2012.171
    34. Sylvie Claeysen, Romain Donneger, Patrizia Giannoni, Florence Gaven, Lucie P. Pellissier. Serotonin Type 4 Receptor Dimers. 2013, 123-139. https://doi.org/10.1016/B978-0-12-408143-7.00007-4
    35. Katharine Herrick-Davis, Ellinor Grinde, Tara Lindsley, Ann Cowan, Joseph E. Mazurkiewicz. Oligomer Size of the Serotonin 5-Hydroxytryptamine 2C (5-HT2C) Receptor Revealed by Fluorescence Correlation Spectroscopy with Photon Counting Histogram Analysis. Journal of Biological Chemistry 2012, 287 (28) , 23604-23614. https://doi.org/10.1074/jbc.M112.350249
    36. Martin J. Lohse, Susanne Nuber, Carsten Hoffmann, . Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling. Pharmacological Reviews 2012, 64 (2) , 299-336. https://doi.org/10.1124/pr.110.004309
    37. María de la Fuente, Daniel N. Noble, Sheetal Verma, Marvin T. Nieman. Mapping Human Protease-activated Receptor 4 (PAR4) Homodimer Interface to Transmembrane Helix 4. Journal of Biological Chemistry 2012, 287 (13) , 10414-10423. https://doi.org/10.1074/jbc.M112.341438
    38. Philippe Huot, Susan H. Fox, Jonathan M. Brotchie. The serotonergic system in Parkinson's disease. Progress in Neurobiology 2011, 95 (2) , 163-212. https://doi.org/10.1016/j.pneurobio.2011.08.004
    39. Maria N. Garnovskaya, John R. Raymond. Serotonin 5-HT2C Receptor Signal Transduction. 2011, 75-96. https://doi.org/10.1007/978-1-60761-941-3_5
    40. Katharine Herrick-Davis, Dinah T. Farrington. 5-HT2C Receptor Dimerization. 2011, 129-155. https://doi.org/10.1007/978-1-60761-941-3_7
    41. P. Michael Conn, Alfredo Ulloa-Aguirre. Pharmacological Chaperones for Misfolded Gonadotropin-Releasing Hormone Receptors. 2011, 109-141. https://doi.org/10.1016/B978-0-12-385952-5.00008-7
    42. Elisa Alvarez-Curto, John D. Pediani, Graeme Milligan. Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors. Analytical and Bioanalytical Chemistry 2010, 398 (1) , 167-180. https://doi.org/10.1007/s00216-010-3823-4
    43. Noelle C. Anastasio, Maria Fe Lanfranco, Marcy J. Bubar, Patricia K. Seitz, Sonja J. Stutz, Andrew G. McGinnis, Cheryl S. Watson, Kathryn A. Cunningham. Serotonin 5‐HT 2C receptor protein expression is enriched in synaptosomal and post‐synaptic compartments of rat cortex. Journal of Neurochemistry 2010, 113 (6) , 1504-1515. https://doi.org/10.1111/j.1471-4159.2010.06694.x
    44. Elizabeth D. Brookins Danz, Jeremy Skramsted, Nicholas Henry, James A. Bennett, Rebecca S. Keller. Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radical Biology and Medicine 2009, 46 (12) , 1589-1597. https://doi.org/10.1016/j.freeradbiomed.2009.03.011
    45. José Brea, Marián Castro, Jesús Giraldo, Juan F. López-Giménez, Juan Fernando Padín, Fátima Quintián, Maria Isabel Cadavid, Maria Teresa Vilaró, Guadalupe Mengod, Kelly A. Berg, William P. Clarke, Jean-Pierre Vilardaga, Graeme Milligan, Maria Isabel Loza. Evidence for Distinct Antagonist-Revealed Functional States of 5-Hydroxytryptamine 2A Receptor Homodimers. Molecular Pharmacology 2009, 75 (6) , 1380-1391. https://doi.org/10.1124/mol.108.054395
    46. Therese Mikaelsson, Radek Šachl, Lennart B.-Å. Johansson. Electronic Energy Transport and Fluorescence Spectroscopy for Structural Insights into Proteins, Regular Protein Aggregates and Lipid Systems. 2009, 53-86. https://doi.org/10.1007/978-0-387-88722-7_3
    47. Kelly A. Berg, William P. Clarke, Kathryn A. Cunningham, Umberto Spampinato. Fine-tuning serotonin2c receptor function in the brain: Molecular and functional implications. Neuropharmacology 2008, 55 (6) , 969-976. https://doi.org/10.1016/j.neuropharm.2008.06.014
    48. Carine Becamel. 5-Hydroxytryptamine receptor 2C. AfCS-Nature Molecule Pages 2008, https://doi.org/10.1038/mp.a000152.01
    49. Fritz Kobe, Ute Renner, Andrew Woehler, Jakub Wlodarczyk, Ekaterina Papusheva, Guobin Bao, Andre Zeug, Diethelm W. Richter, Erwin Neher, Evgeni Ponimaskin. Stimulation- and palmitoylation-dependent changes in oligomeric conformation of serotonin 5-HT1A receptorsi. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2008, 1783 (8) , 1503-1516. https://doi.org/10.1016/j.bbamcr.2008.02.021
    50. G. D. Vivek Sagar, Balázs Gereben, Isabelle Callebaut, Jean-Paul Mornon, Anikó Zeöld, Cyntia Curcio-Morelli, John W. Harney, Cristina Luongo, Michelle A. Mulcahey, P. Reed Larsen, Stephen A. Huang, Antonio C. Bianco. The Thyroid Hormone-Inactivating Deiodinase Functions as a Homodimer. Molecular Endocrinology 2008, 22 (6) , 1382-1393. https://doi.org/10.1210/me.2007-0490
    51. Filippo Mancia, Zahra Assur, Ariel G Herman, Risa Siegel, Wayne A Hendrickson. Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor. EMBO reports 2008, 9 (4) , 363-369. https://doi.org/10.1038/embor.2008.27
    52. Jason R. Juhasz, Ahmed Hasbi, Asim J. Rashid, Christopher H. So, Susan R. George, Brian F. O'Dowd. Mu-opioid receptor heterooligomer formation with the dopamine D1 receptor as directly visualized in living cells. European Journal of Pharmacology 2008, 581 (3) , 235-243. https://doi.org/10.1016/j.ejphar.2007.11.060
    53. Ammasi Periasamy, Horst Wallrabe, Ye Chen, Margarida Barroso. Chapter 22 Quantitation of Protein–Protein Interactions. 2008, 569-598. https://doi.org/10.1016/S0091-679X(08)00622-5
    54. Katharine Herrick-Davis, Ellinor Grinde, Barbara A. Weaver. Serotonin 5-HT2C receptor homodimerization is not regulated by agonist or inverse agonist treatment. European Journal of Pharmacology 2007, 568 (1-3) , 45-53. https://doi.org/10.1016/j.ejphar.2007.04.030
    55. G. D. Vivek Sagar, Balázs Gereben, Isabelle Callebaut, Jean-Paul Mornon, Anikó Zeöld, Wagner S. da Silva, Cristina Luongo, Monica Dentice, Susana M. Tente, Beatriz C. G. Freitas, John W. Harney, Ann Marie Zavacki, Antonio C. Bianco. Ubiquitination-Induced Conformational Change within the Deiodinase Dimer Is a Switch Regulating Enzyme Activity. Molecular and Cellular Biology 2007, 27 (13) , 4774-4783. https://doi.org/10.1128/MCB.00283-07
    56. Agnes Janoshazi, Maud Deraet, Jacques Callebert, Vincent Setola, Silke Guenther, Bruno Saubamea, Philippe Manivet, Jean-Marie Launay, Luc Maroteaux. Modified Receptor Internalization upon Coexpression of 5-HT 1B Receptor and 5-HT 2B Receptors. Molecular Pharmacology 2007, 71 (6) , 1463-1474. https://doi.org/10.1124/mol.106.032656
    57. Mitradas Panicker, Ishier Raote, Aditi Bhattacharya. Serotonin 2A (5-HT 2A) Receptor Function. 2007, 105-132. https://doi.org/10.1201/9781420005752.ch6
    58. Richard M. Thomas, Cheryl A. Nechamen, Joseph E. Mazurkiewicz, Marco Muda, Stephen Palmer, James A. Dias. Follice-Stimulating Hormone Receptor Forms Oligomers and Shows Evidence of Carboxyl-Terminal Proteolytic Processing. Endocrinology 2007, 148 (5) , 1987-1995. https://doi.org/10.1210/en.2006-1672
    59. Zhenlong Chen, Peter A. Deddish, Richard D. Minshall, Robert P. Becker, Ervin G. Erdös, Fulong Tan. Human ACE and bradykinin B 2 receptors form a complex at the plasma membrane. The FASEB Journal 2006, 20 (13) , 2261-2270. https://doi.org/10.1096/fj.06-6113com
    60. Samarjit Bhattacharyya, Ishier Raote, Aditi Bhattacharya, Ricardo Miledi, Mitradas M. Panicker. Activation, internalization, and recycling of the serotonin 2A receptor by dopamine. Proceedings of the National Academy of Sciences 2006, 103 (41) , 15248-15253. https://doi.org/10.1073/pnas.0606578103
    61. Katharine Herrick-Davis, Barbara A. Weaver, Ellinor Grinde, Joseph E. Mazurkiewicz. Serotonin 5-HT2C Receptor Homodimer Biogenesis in the Endoplasmic Reticulum. Journal of Biological Chemistry 2006, 281 (37) , 27109-27116. https://doi.org/10.1074/jbc.M604390200
    62. Esperanza Fernández, Maite Jiménez-Vidal, María Calvo, Antonio Zorzano, Francesc Tebar, Manuel Palacín, Josep Chillarón. The Structural and Functional Units of Heteromeric Amino Acid Transporters. Journal of Biological Chemistry 2006, 281 (36) , 26552-26561. https://doi.org/10.1074/jbc.M604049200
    63. Mark J. Millan. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacology & Therapeutics 2006, 110 (2) , 135-370. https://doi.org/10.1016/j.pharmthera.2005.11.006
    64. Dimitrios Fotiadis, Beata Jastrzebska, Ansgar Philippsen, Daniel J Müller, Krzysztof Palczewski, Andreas Engel. Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Current Opinion in Structural Biology 2006, 16 (2) , 252-259. https://doi.org/10.1016/j.sbi.2006.03.013
    65. Horst Wallrabe, Ye Chen, Ammasi Periasamy, Margarida Barroso. Issues in confocal microscopy for quantitative FRET analysis. Microscopy Research and Technique 2006, 69 (3) , 196-206. https://doi.org/10.1002/jemt.20281
    66. Bruno H. Meyer, Jean-Manuel Segura, Karen L. Martinez, Ruud Hovius, Nathalie George, Kai Johnsson, Horst Vogel. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proceedings of the National Academy of Sciences 2006, 103 (7) , 2138-2143. https://doi.org/10.1073/pnas.0507686103
    67. Rika A. Furuta, Masao Nishikawa, Jun-ichi Fujisawa. Real-time analysis of human immunodeficiency virus type 1 Env-mediated membrane fusion by fluorescence resonance energy transfer. Microbes and Infection 2006, 8 (2) , 520-532. https://doi.org/10.1016/j.micinf.2005.08.004
    68. Sebastian A. Wirz, Christopher N. Davis, Xiaoying Lu, Tomasz Zal, Tamas Bartfai. Homodimerization and internalization of galanin type 1 receptor in living CHO cells. Neuropeptides 2005, 39 (6) , 535-546. https://doi.org/10.1016/j.npep.2005.09.001
    69. Katharine Herrick-Davis, Ellinor Grinde, Timothy J. Harrigan, Joseph E. Mazurkiewicz. Inhibition of Serotonin 5-Hydroxytryptamine2C Receptor Function through Heterodimerization. Journal of Biological Chemistry 2005, 280 (48) , 40144-40151. https://doi.org/10.1074/jbc.M507396200
    70. Mark John Millan. Serotonin 5-HT2C Receptors as a Target for the Treatment of Depressive and Anxious States: Focus on Novel Therapeutic Strategies. Therapies 2005, 60 (5) , 441-460. https://doi.org/10.2515/therapie:2005065
    71. H M Fentress, E Grinde, J E Mazurkiewicz, J R Backstrom, K Herrick-Davis, E Sanders-Bush. Pharmacological properties of the Cys23Ser single nucleotide polymorphism in human 5-HT2C receptor isoforms. The Pharmacogenomics Journal 2005, 5 (4) , 244-254. https://doi.org/10.1038/sj.tpj.6500315
    72. Graeme Milligan, Michel Bouvier. Methods to monitor the quaternary structure of G protein‐coupled receptors. The FEBS Journal 2005, 272 (12) , 2914-2925. https://doi.org/10.1111/j.1742-4658.2005.04731.x

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect