NO Binding and Dynamics in Reduced Heme−Copper Oxidases aa3 from Paracoccus denitrificans and ba3 from Thermus thermophilus†
- Eric Pilet
- ,
- Wolfgang Nitschke
- ,
- Fabrice Rappaport
- ,
- Tewfik Soulimane
- ,
- Jean-Christophe Lambry
- ,
- Ursula Liebl
- , and
- Marten H. Vos
Abstract

Cytochrome c oxidase (CcO) has a high affinity for nitric oxide (NO), a property involved in the regulation of respiration. It has been shown that the recombination kinetics of photolyzed NO with reduced CcO from Paracoccus denitrificans on the picosecond time scale depend strongly on the NO/enzyme stoichiometry and inferred that more than one NO can be accommodated by the active site, already at mildly suprastoichiometric NO concentrations. We have largely extended these studies by monitoring rebinding dynamics from the picosecond to the microsecond time scale, by performing parallel steady-state low-temperature electron paramagnetic resonance (EPR) characterizations on samples prepared similarly as for the optical experiments and comparing them with molecular-modeling results. A comparative study was performed on CcO ba3 from Thermus thermophilus, where two NO molecules cannot be copresent in the active site in the steady state because of its NO reductase activity. The kinetic results allow discrimination between different models of NO-dependent recombination and show that the overall NO escape probability out of the protein is high when only one NO is bound to CcO aa3, whereas strong rebinding on the 15-ns time scale was observed for CcO ba3. The EPR characterizations show similar results for aa3 at substoichiometric NO/enzyme ratios and for ba3, indicating formation of a 6-coordinate heme−NO complex. The presence of a second NO molecule in the aa3 active site strongly modifies the heme−NO EPR spectrum and can be rationalized by a rotation of the Fe−N−O plane with respect to the histidine that coordinates the heme iron. This proposal is supported by molecular-modeling studies that indicate a ∼63° rotation of heme-bound NO upon binding of a second NO to the close-lying copper center CuB. It is argued that the second NO binds to CuB.
†
This work was supported by the CNRS program “Physique et Chimie du Vivant”.
‡
Ecole Polytechnique-ENSTA.
§
Institut de Biologie Structurale et Microbiologie.
‖
Institut de Biologie Physico-Chimique.
⊥
Paul Scherrer Institute.
*
To whom correspondence should be addressed. Phone: +33-1-69334777. Fax: +33-3-69333017. E-mail: [email protected].
Cited By
This article is cited by 20 publications.
- Andreas Loullis, Mohamed Radzi Noor, Tewfik Soulimane, and Eftychia Pinakoulaki . Observation of Ligand Transfer in ba3 Oxidase from Thermus thermophilus: Simultaneous FTIR Detection of Photolabile Heme a32+–CN and Transient CuB2+–CN Complexes. The Journal of Physical Chemistry B 2012, 116
(30)
, 8955-8960. https://doi.org/10.1021/jp305096y
- Changyuan Lu, Xuan Zhao, Yi Lu, Denis L. Rousseau and Syun-Ru Yeh . Role of Copper Ion in Regulating Ligand Binding in a Myoglobin-Based Cytochrome c Oxidase Model. Journal of the American Chemical Society 2010, 132
(5)
, 1598-1605. https://doi.org/10.1021/ja907777f
- Takahiro Hayashi, Myat T. Lin, Krithika Ganesan, Ying Chen, James A. Fee, Robert B. Gennis and Pierre Moënne-Loccoz . Accommodation of Two Diatomic Molecules in Cytochrome bo3: Insights into NO Reductase Activity in Terminal Oxidases. Biochemistry 2009, 48
(5)
, 883-890. https://doi.org/10.1021/bi801915r
- Stefan Franzen,, Audrius Jasaitis,, Jennifer Belyea,, Scott H. Brewer,, Robin Casey,, Alexander W. MacFarlane IV,, Robert J. Stanley,, Marten H. Vos, and, Jean-Louis Martin. Hydrophobic Distal Pocket Affects NO−Heme Geminate Recombination Dynamics in Dehaloperoxidase and H64V Myoglobin. The Journal of Physical Chemistry B 2006, 110
(29)
, 14483-14493. https://doi.org/10.1021/jp056790m
- Michael J. Russell, Wolfgang Nitschke. Methane: Fuel or Exhaust at the Emergence of Life?. Astrobiology 2017, 17
(10)
, 1053-1066. https://doi.org/10.1089/ast.2016.1599
- Ólöf Einarsdóttir, William McDonald, Chie Funatogawa, Istvan Szundi, William H. Woodruff, R. Brian Dyer. The pathway of O 2 to the active site in heme–copper oxidases. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2015, 1847
(1)
, 109-118. https://doi.org/10.1016/j.bbabio.2014.06.008
- Marten H. Vos, Ursula Liebl. Time-resolved infrared spectroscopic studies of ligand dynamics in the active site from cytochrome c oxidase. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2015, 1847
(1)
, 79-85. https://doi.org/10.1016/j.bbabio.2014.07.018
- Constantinos Koutsoupakis, Tewfik Soulimane, Constantinos Varotsis. Spectroscopic and Kinetic Investigation of the Fully Reduced and Mixed Valence States of ba3-Cytochrome c Oxidase from Thermus thermophilus. Journal of Biological Chemistry 2012, 287
(44)
, 37495-37507. https://doi.org/10.1074/jbc.M112.403600
- Ólöf Einarsdóttir, Chie Funatogawa, Tewfik Soulimane, Istvan Szundi. Kinetic studies of the reactions of O2 and NO with reduced Thermus thermophilus ba3 and bovine aa3 using photolabile carriers. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2012, 1817
(4)
, 672-679. https://doi.org/10.1016/j.bbabio.2011.12.005
- Massimiliano Porrini, Vangelis Daskalakis, Stavros C. Farantos. Exploring the topography of free energy surfaces and kinetics of cytochrome c oxidases interacting with small ligands. RSC Advances 2012, 2
(13)
, 5828. https://doi.org/10.1039/c2ra20625k
- Istvan Szundi, Chie Funatogawa, James A. Fee, Tewfik Soulimane, Ólöf Einarsdóttir. CO impedes superfast O
2
binding in
ba
3
cytochrome oxidase from
Thermus thermophilus. Proceedings of the National Academy of Sciences 2010, 107
(49)
, 21010-21015. https://doi.org/10.1073/pnas.1008603107
- Dzmitry Parul, Graham Palmer, Marian Fabian. Ligand Trapping by Cytochrome c Oxidase. Journal of Biological Chemistry 2010, 285
(7)
, 4536-4543. https://doi.org/10.1074/jbc.M109.078618
- Sofia M. Kapetanaki, Sarah J. Field, Ross J.L. Hughes, Nicholas J. Watmough, Ursula Liebl, Marten H. Vos. Ultrafast ligand binding dynamics in the active site of native bacterial nitric oxide reductase. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2008, 1777
(7-8)
, 919-924. https://doi.org/10.1016/j.bbabio.2008.03.012
- Marten H. Vos. Ultrafast dynamics of ligands within heme proteins. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2008, 1777
(1)
, 15-31. https://doi.org/10.1016/j.bbabio.2007.10.004
- Takahiro Hayashi, I-Jin Lin, Ying Chen, James A. Fee, Pierre Moënne-Loccoz. Fourier Transform Infrared Characterization of a Cu
B
−Nitrosyl Complex in Cytochrome
ba
3
from
Thermus thermophilus
: Relevance to NO Reductase Activity in Heme−Copper Terminal Oxidases. Journal of the American Chemical Society 2007, 129
(48)
, 14952-14958. https://doi.org/10.1021/ja074600a
- Eric Pilet, Wolfgang Nitschke, Ursula Liebl, Marten H. Vos. Accommodation of NO in the active site of mammalian and bacterial cytochrome c oxidase aa3. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2007, 1767
(5)
, 387-392. https://doi.org/10.1016/j.bbabio.2007.03.001
- Pierre Moënne-Loccoz. Spectroscopic characterization of heme iron–nitrosyl species and their role in NO reductase mechanisms in diiron proteins. Nat. Prod. Rep. 2007, 24
(3)
, 610-620. https://doi.org/10.1039/B604194A
- Maria G. Mason, Peter Nicholls, Michael T. Wilson, Christopher E. Cooper. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome
c
oxidase. Proceedings of the National Academy of Sciences 2006, 103
(3)
, 708-713. https://doi.org/10.1073/pnas.0506562103
- Eftychia Pinakoulaki, Takehiro Ohta, Tewfik Soulimane, Teizo Kitagawa, Constantinos Varotsis. Detection of the His-Heme Fe
2+
−NO Species in the Reduction of NO to N
2
O by
b
a
3
-Oxidase from
Thermus
t
hermophilus. Journal of the American Chemical Society 2005, 127
(43)
, 15161-15167. https://doi.org/10.1021/ja0539490
- Ilya Belevich, Vitaliy B. Borisov, Alexander A. Konstantinov, Michael I. Verkhovsky. Oxygenated complex of cytochrome
bd
from
Escherichia coli
: Stability and photolability. FEBS Letters 2005, 579
(21)
, 4567-4570. https://doi.org/10.1016/j.febslet.2005.07.011