ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVAccelerated Publicat...Accelerated PublicationNEXT

Lipoyl Synthase Requires Two Equivalents of S-Adenosyl-l-methionine To Synthesize One Equivalent of Lipoic Acid

View Author Information
Departments of Biochemistry and Molecular Biology and of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
Cite this: Biochemistry 2004, 43, 21, 6378–6386
Publication Date (Web):May 4, 2004
https://doi.org/10.1021/bi049528x
Copyright © 2004 American Chemical Society

    Article Views

    2310

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (96 KB)

    Abstract

    Lipoyl synthase (LipA) catalyzes the formation of the lipoyl cofactor, which is employed by several multienzyme complexes for the oxidative decarboxylation of various α-keto acids, as well as the cleavage of glycine into CO2 and NH3, with concomitant transfer of its α-carbon to tetrahydrofolate, generating N5,N10-methylenetetrahydrofolate. In each case, the lipoyl cofactor is tethered covalently in an amide linkage to a conserved lysine residue located on a designated lipoyl-bearing subunit of the complex. Genetic and biochemical studies suggest that lipoyl synthase is a member of a newly established class of metalloenzymes that use S-adenosyl-l-methionine (AdoMet) as a source of a 5‘-deoxyadenosyl radical (5‘-dA), which is an obligate intermediate in each reaction. These enzymes contain iron−sulfur clusters, which provide an electron during the cleavage of AdoMet, forming l-methionine in addition to the primary radical. Recently, one substrate for lipoyl synthase has been shown to be the octanoylated derivative of the lipoyl-bearing subunit (E2) of the pyruvate dehydrogenase complex [Zhao, S., Miller, J. R., Jian, Y., Marletta, M. A., and Cronan, J. E., Jr. (2003) Chem. Biol. 10, 1293−1302]. Herein, we show that the octanoylated derivative of the lipoyl-bearing subunit of the glycine cleavage system (H-protein) is also a substrate for LipA, providing further evidence that the cofactor is synthesized on its target protein. Moreover, we show that the 5‘-dA acts directly on the octanoyl substrate, as evidenced by deuterium transfer from [octanoyl-d15]H-protein to 5‘-deoxyadenosine. Last, our data indicate that 2 equiv of AdoMet are cleaved irreversibly in forming 1 equiv of [lipoyl]H-protein and are consistent with a model in which two LipA proteins are required to synthesize one lipoyl group.

     This work was supported by NIH Grant GM-63847 (S.J.B.) and NIH Minority Predoctoral Fellowship Grant GM-64033 (N.M.N.).

     Department of Biochemistry and Molecular Biology, The Pennsylvania State University.

    §

     Department of Chemistry, The Pennsylvania State University.

    *

     To whom correspondence should be addressed. Phone:  814-865-8793. Fax:  814-863-7024. E-mail:  [email protected].

    Cited By

    This article is cited by 159 publications.

    1. Rongrong Huang, Ning Zhi, Lu Yu, Yaoyang Li, Xiangyu Wu, Jiale He, Hongji Zhu, Jianjun Qiao, Xiaohong Liu, Changlin Tian, Jiangyun Wang, Min Dong. Genetically Encoded Photosensitizer Protein Reduces Iron–Sulfur Clusters of Radical SAM Enzymes. ACS Catalysis 2023, 13 (2) , 1240-1245. https://doi.org/10.1021/acscatal.2c05143
    2. Douglas M. Warui, Debangsu Sil, Kyung-Hoon Lee, Syam Sundar Neti, Olga A. Esakova, Hayley L. Knox, Carsten Krebs, Squire J. Booker. In Vitro Demonstration of Human Lipoyl Synthase Catalytic Activity in the Presence of NFU1. ACS Bio & Med Chem Au 2022, 2 (5) , 456-468. https://doi.org/10.1021/acsbiomedchemau.2c00020
    3. Syam Sundar Neti, Debangsu Sil, Douglas M. Warui, Olga A. Esakova, Amy E. Solinski, Dante A. Serrano, Carsten Krebs, Squire J. Booker. Characterization of LipS1 and LipS2 from Thermococcus kodakarensis: Proteins Annotated as Biotin Synthases, which Together Catalyze Formation of the Lipoyl Cofactor. ACS Bio & Med Chem Au 2022, 2 (5) , 509-520. https://doi.org/10.1021/acsbiomedchemau.2c00018
    4. Mengshan Ye, Alexandra C. Brown, Daniel L. M. Suess. Reversible Alkyl-Group Migration between Iron and Sulfur in [Fe4S4] Clusters. Journal of the American Chemical Society 2022, 144 (29) , 13184-13195. https://doi.org/10.1021/jacs.2c03195
    5. Erica K. Sinner, Daniel R. Marous, Craig A. Townsend. Evolution of Methods for the Study of Cobalamin-Dependent Radical SAM Enzymes. ACS Bio & Med Chem Au 2022, 2 (1) , 4-10. https://doi.org/10.1021/acsbiomedchemau.1c00032
    6. Christian J. Suess, Floriane L. Martins, Anna K. Croft, Christof M. Jäger. Radical Stabilization Energies for Enzyme Engineering: Tackling the Substrate Scope of the Radical Enzyme QueE. Journal of Chemical Information and Modeling 2019, 59 (12) , 5111-5125. https://doi.org/10.1021/acs.jcim.9b00017
    7. Bo Wang, Anthony J. Blaszczyk, Hayley L. Knox, Shengbin Zhou, Elizabeth J. Blaesi, Carsten Krebs, Roy X. Wang, Squire J. Booker. Stereochemical and Mechanistic Investigation of the Reaction Catalyzed by Fom3 from Streptomyces fradiae, a Cobalamin-Dependent Radical S-Adenosylmethionine Methylase. Biochemistry 2018, 57 (33) , 4972-4984. https://doi.org/10.1021/acs.biochem.8b00693
    8. Tsehai A. J. Grell, Anthony P. Young, Catherine L. Drennan, Vahe Bandarian. Biochemical and Structural Characterization of a Schiff Base in the Radical-Mediated Biosynthesis of 4-Demethylwyosine by TYW1. Journal of the American Chemical Society 2018, 140 (22) , 6842-6852. https://doi.org/10.1021/jacs.8b01493
    9. Nathan A. Bruender, Jarett Wilcoxen, R. David Britt, and Vahe Bandarian . Biochemical and Spectroscopic Characterization of a Radical S-Adenosyl-l-methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link. Biochemistry 2016, 55 (14) , 2122-2134. https://doi.org/10.1021/acs.biochem.6b00145
    10. Anthony J. Blaszczyk, Alexey Silakov, Bo Zhang, Stephanie J. Maiocco, Nicholas D. Lanz, Wendy L. Kelly, Sean J. Elliott, Carsten Krebs, and Squire J. Booker . Spectroscopic and Electrochemical Characterization of the Iron–Sulfur and Cobalamin Cofactors of TsrM, an Unusual Radical S-Adenosylmethionine Methylase. Journal of the American Chemical Society 2016, 138 (10) , 3416-3426. https://doi.org/10.1021/jacs.5b12592
    11. Bradley J. Landgraf and Squire J. Booker . Stereochemical Course of the Reaction Catalyzed by RimO, a Radical SAM Methylthiotransferase. Journal of the American Chemical Society 2016, 138 (9) , 2889-2892. https://doi.org/10.1021/jacs.5b11035
    12. Nicholas D. Lanz, Kyung-Hoon Lee, Abigail K. Horstmann, Maria-Eirini Pandelia, Robert M. Cicchillo, Carsten Krebs, and Squire J. Booker . Characterization of Lipoyl Synthase from Mycobacterium tuberculosis. Biochemistry 2016, 55 (9) , 1372-1383. https://doi.org/10.1021/acs.biochem.5b01216
    13. Nicholas D. Lanz, Justin M. Rectenwald, Bo Wang, Elizabeth S. Kakar, Tatiana N. Laremore, Squire J. Booker, and Alexey Silakov . Characterization of a Radical Intermediate in Lipoyl Cofactor Biosynthesis. Journal of the American Chemical Society 2015, 137 (41) , 13216-13219. https://doi.org/10.1021/jacs.5b04387
    14. Nathan A. Bruender, Anthony P. Young, and Vahe Bandarian . Chemical and Biological Reduction of the Radical SAM Enzyme CPH4 Synthase. Biochemistry 2015, 54 (18) , 2903-2910. https://doi.org/10.1021/acs.biochem.5b00210
    15. Nicholas D. Lanz, Maria-Eirini Pandelia, Elizabeth S. Kakar, Kyung-Hoon Lee, Carsten Krebs, and Squire J. Booker . Evidence for a Catalytically and Kinetically Competent Enzyme–Substrate Cross-Linked Intermediate in Catalysis by Lipoyl Synthase. Biochemistry 2014, 53 (28) , 4557-4572. https://doi.org/10.1021/bi500432r
    16. Joan B. Broderick, Benjamin R. Duffus, Kaitlin S. Duschene, and Eric M. Shepard . Radical S-Adenosylmethionine Enzymes. Chemical Reviews 2014, 114 (8) , 4229-4317. https://doi.org/10.1021/cr4004709
    17. Min Dong, Xiaoyang Su, Boris Dzikovski, Emily E. Dando, Xuling Zhu, Jintang Du, Jack H. Freed, and Hening Lin . Dph3 Is an Electron Donor for Dph1-Dph2 in the First Step of Eukaryotic Diphthamide Biosynthesis. Journal of the American Chemical Society 2014, 136 (5) , 1754-1757. https://doi.org/10.1021/ja4118957
    18. Bradley J. Landgraf, Arthur J. Arcinas, Kyung-Hoon Lee, and Squire J. Booker . Identification of an Intermediate Methyl Carrier in the Radical S-Adenosylmethionine Methylthiotransferases RimO and MiaB. Journal of the American Chemical Society 2013, 135 (41) , 15404-15416. https://doi.org/10.1021/ja4048448
    19. Bradley M. Hover, Anna Loksztejn, Anthony A. Ribeiro, and Kenichi Yokoyama . Identification of a Cyclic Nucleotide as a Cryptic Intermediate in Molybdenum Cofactor Biosynthesis. Journal of the American Chemical Society 2013, 135 (18) , 7019-7032. https://doi.org/10.1021/ja401781t
    20. Tyler L. Grove, Jessica H. Ahlum, Rosie M. Qin, Nicholas D. Lanz, Matthew I. Radle, Carsten Krebs, and Squire J. Booker . Further Characterization of Cys-Type and Ser-Type Anaerobic Sulfatase Maturating Enzymes Suggests a Commonality in the Mechanism of Catalysis. Biochemistry 2013, 52 (17) , 2874-2887. https://doi.org/10.1021/bi400136u
    21. Reid M. McCarty, Carsten Krebs, and Vahe Bandarian . Spectroscopic, Steady-State Kinetic, and Mechanistic Characterization of the Radical SAM Enzyme QueE, Which Catalyzes a Complex Cyclization Reaction in the Biosynthesis of 7-Deazapurines. Biochemistry 2013, 52 (1) , 188-198. https://doi.org/10.1021/bi301156w
    22. Kevin P. McCusker, Katalin F. Medzihradszky, Anthony L. Shiver, Robert J. Nichols, Feng Yan, David A. Maltby, Carol A. Gross, and Danica Galonić Fujimori . Covalent Intermediate in the Catalytic Mechanism of the Radical S-Adenosyl-l-methionine Methyl Synthase RlmN Trapped by Mutagenesis. Journal of the American Chemical Society 2012, 134 (43) , 18074-18081. https://doi.org/10.1021/ja307855d
    23. Andrew M. Taylor, Stefan Stoll, R. David Britt, and Joseph T. Jarrett . Reduction of the [2Fe–2S] Cluster Accompanies Formation of the Intermediate 9-Mercaptodethiobiotin in Escherichia coli Biotin Synthase. Biochemistry 2011, 50 (37) , 7953-7963. https://doi.org/10.1021/bi201042r
    24. Linlin Yang, Gengjie Lin, Degang Liu, Karl J. Dria, Joshua Telser, and Lei Li . Probing the Reaction Mechanism of Spore Photoproduct Lyase (SPL) via Diastereoselectively Labeled Dinucleotide SP TpT Substrates. Journal of the American Chemical Society 2011, 133 (27) , 10434-10447. https://doi.org/10.1021/ja110196d
    25. Jessica L. Vey and Catherine L. Drennan . Structural Insights into Radical Generation by the Radical SAM Superfamily. Chemical Reviews 2011, 111 (4) , 2487-2506. https://doi.org/10.1021/cr9002616
    26. Feng Yan, Jacqueline M. LaMarre, Rene Röhrich, Jochen Wiesner, Hassan Jomaa, Alexander S. Mankin and Danica Galonić Fujimori . RlmN and Cfr are Radical SAM Enzymes Involved in Methylation of Ribosomal RNA. Journal of the American Chemical Society 2010, 132 (11) , 3953-3964. https://doi.org/10.1021/ja910850y
    27. Mark W. Ruszczycky, Sei-hyun Choi and Hung-wen Liu. Stoichiometry of the Redox Neutral Deamination and Oxidative Dehydrogenation Reactions Catalyzed by the Radical SAM Enzyme DesII. Journal of the American Chemical Society 2010, 132 (7) , 2359-2369. https://doi.org/10.1021/ja909451a
    28. Patrina Paraskevopoulou, Lin Ai, Qiuwen Wang, Devender Pinnapareddy, Rama Acharyya, Rupam Dinda, Purak Das, Remle Çelenligil-Çetin, Georgios Floros, Yiannis Sanakis, Amitava Choudhury, Nigam P. Rath and Pericles Stavropoulos . Synthesis and Characterization of a Series of Structurally and Electronically Diverse Fe(II) Complexes Featuring a Family of Triphenylamido-Amine Ligands. Inorganic Chemistry 2010, 49 (1) , 108-122. https://doi.org/10.1021/ic9015838
    29. Stephen R. Wecksler, Stefan Stoll, Ha Tran, Olafur T. Magnusson, Shu-pao Wu, David King, R. David Britt and Judith P. Klinman . Pyrroloquinoline Quinone Biogenesis: Demonstration That PqqE from Klebsiella pneumoniae Is a Radical S-Adenosyl-l-methionine Enzyme. Biochemistry 2009, 48 (42) , 10151-10161. https://doi.org/10.1021/bi900918b
    30. Kyung-Hoon Lee, Lana Saleh, Brian P. Anton, Catherine L. Madinger, Jack S. Benner, David F. Iwig, Richard J. Roberts, Carsten Krebs and Squire J. Booker . Characterization of RimO, a New Member of the Methylthiotransferase Subclass of the Radical SAM Superfamily. Biochemistry 2009, 48 (42) , 10162-10174. https://doi.org/10.1021/bi900939w
    31. Ping-Hui Szu, Mark W. Ruszczycky, Sei-hyun Choi, Feng Yan and Hung-wen Liu. Characterization and Mechanistic Studies of DesII: A Radical S-Adenosyl-l-methionine Enzyme Involved in the Biosynthesis of TDP-d-Desosamine. Journal of the American Chemical Society 2009, 131 (39) , 14030-14042. https://doi.org/10.1021/ja903354k
    32. Allison H. Saunders, Amy E. Griffiths, Kyung-Hoon Lee, Robert M. Cicchillo, Loretta Tu, Jeffrey A. Stromberg, Carsten Krebs and Squire J. Booker . Characterization of Quinolinate Synthases from Escherichia coli, Mycobacterium tuberculosis, and Pyrococcus horikoshii Indicates That [4Fe-4S] Clusters Are Common Cofactors throughout This Class of Enzymes. Biochemistry 2008, 47 (41) , 10999-11012. https://doi.org/10.1021/bi801268f
    33. Andrew M. Taylor, Christine E. Farrar and Joseph T. Jarrett. 9-Mercaptodethiobiotin Is Formed as a Competent Catalytic Intermediate by Escherichia coli Biotin Synthase. Biochemistry 2008, 47 (35) , 9309-9317. https://doi.org/10.1021/bi801035b
    34. Tyler L. Grove, Kyung-Hoon Lee, Jennifer St. Clair, Carsten Krebs and Squire J. Booker . In Vitro Characterization of AtsB, a Radical SAM Formylglycine-Generating Enzyme That Contains Three [4Fe-4S] Clusters. Biochemistry 2008, 47 (28) , 7523-7538. https://doi.org/10.1021/bi8004297
    35. Ming Yuan, Hiroe Sano, Takaaki Nishino, Hongbin Chen, Ren-shi Li, Yuki Matsuo, Kyoko Nishida, Takayuki Koga, Tomoki Takeda, Yoshitaka Tanaka, Yuji Ishii. α-Lipoic acid eliminates dioxin-induced offspring sexual immaturity by improving abnormalities in folic acid metabolism. Biochemical Pharmacology 2023, 210 , 115490. https://doi.org/10.1016/j.bcp.2023.115490
    36. Hong Li, Wancai Xia, Xingyu Liu, Xueyu Wang, Guoqi Liu, Hua Chen, Lifeng Zhu, Dayong Li. Food provisioning results in functional, but not compositional, convergence of the gut microbiomes of two wild Rhinopithecus species: Evidence of functional redundancy in the gut microbiome. Science of The Total Environment 2023, 858 , 159957. https://doi.org/10.1016/j.scitotenv.2022.159957
    37. Hermann Bauwe. Photorespiration – Rubisco's repair crew. Journal of Plant Physiology 2023, 280 , 153899. https://doi.org/10.1016/j.jplph.2022.153899
    38. Anna Bilska-Wilkosz. The S-adenosyl-l-methionine radical enzymes. 2023, 177-206. https://doi.org/10.1016/B978-0-443-18827-5.00008-X
    39. Vinzent Schulz, Sven‐A. Freibert, Linda Boss, Ulrich Mühlenhoff, Oliver Stehling, Roland Lill. Mitochondrial [ 2Fe‐2S ] ferredoxins: new functions for old dogs. FEBS Letters 2023, 597 (1) , 102-121. https://doi.org/10.1002/1873-3468.14546
    40. Sanjay Kumar Rohaun, James A. Imlay. The vulnerability of radical SAM enzymes to oxidants and soft metals. Redox Biology 2022, 57 , 102495. https://doi.org/10.1016/j.redox.2022.102495
    41. Peter Spanogiannopoulos, Than S. Kyaw, Ben G. H. Guthrie, Patrick H. Bradley, Joyce V. Lee, Jonathan Melamed, Ysabella Noelle Amora Malig, Kathy N. Lam, Daryll Gempis, Moriah Sandy, Wesley Kidder, Erin L. Van Blarigan, Chloe E. Atreya, Alan Venook, Roy R. Gerona, Andrei Goga, Katherine S. Pollard, Peter J. Turnbaugh. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism. Nature Microbiology 2022, 7 (10) , 1605-1620. https://doi.org/10.1038/s41564-022-01226-5
    42. Erica K. Sinner, Rongfeng Li, Daniel R. Marous, Craig A. Townsend. ThnL, a B12-dependent radical S -adenosylmethionine enzyme, catalyzes thioether bond formation in carbapenem biosynthesis. Proceedings of the National Academy of Sciences 2022, 119 (34) https://doi.org/10.1073/pnas.2206494119
    43. Jian-qiang Jin, Takaaki Sato, Shin-ichi Hachisuka, Haruyuki Atomi, . A Lipoate-Protein Ligase Is Required for De Novo Lipoyl-Protein Biosynthesis in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Applied and Environmental Microbiology 2022, 88 (13) https://doi.org/10.1128/aem.00644-22
    44. Francesca Camponeschi, Simone Ciofi-Baffoni, Vito Calderone, Lucia Banci. Molecular Basis of Rare Diseases Associated to the Maturation of Mitochondrial [4Fe-4S]-Containing Proteins. Biomolecules 2022, 12 (7) , 1009. https://doi.org/10.3390/biom12071009
    45. Federico Zannier, Luciano R. Portero, Thierry Douki, Wolfgang Gärtner, María E. Farías, Virginia H. Albarracín. Proteomic Signatures of Microbial Adaptation to the Highest Ultraviolet-Irradiation on Earth: Lessons From a Soil Actinobacterium. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.791714
    46. A. M. Usacheva, A. V. Chernikov, E. E. Karmanova, V. I. Bruskov. Pharmacological Aspects of the Use of Lipoic Acid (Review). Pharmaceutical Chemistry Journal 2022, 55 (11) , 1138-1146. https://doi.org/10.1007/s11094-022-02549-7
    47. Shusuke Sato, Fumitaka Kudo, Tadashi Eguchi. Characterization of the cobalamin-dependent radical S-adenosyl-l-methionine enzyme C-methyltransferase Fom3 in fosfomycin biosynthesis. 2022, 45-70. https://doi.org/10.1016/bs.mie.2021.11.025
    48. Hayley L. Knox, Squire J. Booker. Structural characterization of cobalamin-dependent radical S-adenosylmethionine methylases. 2022, 3-27. https://doi.org/10.1016/bs.mie.2021.12.013
    49. Marley A. Brimberry, Liju Mathew, William Lanzilotta. Making and breaking carbon-carbon bonds in class C radical SAM methyltransferases. Journal of Inorganic Biochemistry 2022, 226 , 111636. https://doi.org/10.1016/j.jinorgbio.2021.111636
    50. Amber L. Hendricks, Christine Wachnowsky, Brian Fries, Insiya Fidai, James A. Cowan. Characterization and Reconstitution of Human Lipoyl Synthase (LIAS) Supports ISCA2 and ISCU as Primary Cluster Donors and an Ordered Mechanism of Cluster Assembly. International Journal of Molecular Sciences 2021, 22 (4) , 1598. https://doi.org/10.3390/ijms22041598
    51. Vivian Robert Jeyachandran, Jay V. Pendyala, Erin L. McCarthy, Amie K. Boal, Squire J. Booker. Biochemical Approaches to Probe the Role of the Auxiliary Iron-Sulfur Cluster of Lipoyl Synthase from Mycobacterium Tuberculosis. 2021, 307-332. https://doi.org/10.1007/978-1-0716-1605-5_16
    52. Jian-qiang Jin, Shin-ichi Hachisuka, Takaaki Sato, Tsuyoshi Fujiwara, Haruyuki Atomi, . A Structurally Novel Lipoyl Synthase in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Applied and Environmental Microbiology 2020, 86 (23) https://doi.org/10.1128/AEM.01359-20
    53. Binbin Chen, Jee Loon Foo, Hua Ling, Matthew Wook Chang. Mechanism-Driven Metabolic Engineering for Bio-Based Production of Free R-Lipoic Acid in Saccharomyces cerevisiae Mitochondria. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.00965
    54. Clarisse Roblin, Steve Chiumento, Olivier Bornet, Matthieu Nouailler, Christina S. Müller, Katy Jeannot, Christian Basset, Sylvie Kieffer-Jaquinod, Yohann Couté, Stéphane Torelli, Laurent Le Pape, Volker Schünemann, Hamza Olleik, Bruno De La Villeon, Philippe Sockeel, Eric Di Pasquale, Cendrine Nicoletti, Nicolas Vidal, Leonora Poljak, Olga Iranzo, Thierry Giardina, Michel Fons, Estelle Devillard, Patrice Polard, Marc Maresca, Josette Perrier, Mohamed Atta, Françoise Guerlesquin, Mickael Lafond, Victor Duarte. The unusual structure of Ruminococcin C1 antimicrobial peptide confers clinical properties. Proceedings of the National Academy of Sciences 2020, 117 (32) , 19168-19177. https://doi.org/10.1073/pnas.2004045117
    55. Jorge Araya-Flores, Simón Miranda, María Paz Covarrubias, Claudia Stange, Michael Handford. Solanum lycopersicum (tomato) possesses mitochondrial and plastidial lipoyl synthases capable of increasing lipoylation levels when expressed in bacteria. Plant Physiology and Biochemistry 2020, 151 , 264-270. https://doi.org/10.1016/j.plaphy.2020.03.031
    56. John E. Cronan. Progress in the Enzymology of the Mitochondrial Diseases of Lipoic Acid Requiring Enzymes. Frontiers in Genetics 2020, 11 https://doi.org/10.3389/fgene.2020.00510
    57. Erin L. McCarthy, Squire J. Booker. The Biosynthesis of Lipoic Acid. 2020, 3-23. https://doi.org/10.1016/B978-0-12-409547-2.14861-9
    58. Francesca Camponeschi, Riccardo Muzzioli, Simone Ciofi-Baffoni, Mario Piccioli, Lucia Banci. Paramagnetic 1H NMR Spectroscopy to Investigate the Catalytic Mechanism of Radical S-Adenosylmethionine Enzymes. Journal of Molecular Biology 2019, 431 (22) , 4514-4522. https://doi.org/10.1016/j.jmb.2019.08.018
    59. Anthony J. Blaszczyk, Hayley L. Knox, Squire J. Booker. Understanding the role of electron donors in the reaction catalyzed by Tsrm, a cobalamin-dependent radical S-adenosylmethionine methylase. JBIC Journal of Biological Inorganic Chemistry 2019, 24 (6) , 831-839. https://doi.org/10.1007/s00775-019-01689-8
    60. Kazuki Tajima, Kenji Ikeda, Hsin-Yi Chang, Chih-Hsiang Chang, Takeshi Yoneshiro, Yasuo Oguri, Heejin Jun, Jun Wu, Yasushi Ishihama, Shingo Kajimura. Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis. Nature Metabolism 2019, 1 (9) , 886-898. https://doi.org/10.1038/s42255-019-0106-z
    61. Matthew I. Radle, Danielle V. Miller, Tatiana N. Laremore, Squire J. Booker. Methanogenesis marker protein 10 (Mmp10) from Methanosarcina acetivorans is a radical S-adenosylmethionine methylase that unexpectedly requires cobalamin. Journal of Biological Chemistry 2019, 294 (31) , 11712-11725. https://doi.org/10.1074/jbc.RA119.007609
    62. Erin L. McCarthy, Ananda N. Rankin, Zerick R. Dill, Squire J. Booker. The A-type domain in Escherichia coli NfuA is required for regenerating the auxiliary [4Fe–4S] cluster in Escherichia coli lipoyl synthase. Journal of Biological Chemistry 2019, 294 (5) , 1609-1617. https://doi.org/10.1074/jbc.RA118.006171
    63. Stephanie J. Maiocco, Arthur J. Arcinas, Squire J. Booker, Sean J. Elliott. Parsing redox potentials of five ferredoxins found within Thermotoga maritima. Protein Science 2019, 28 (1) , 257-266. https://doi.org/10.1002/pro.3547
    64. Arthur J. Arcinas, Stephanie J. Maiocco, Sean J. Elliott, Alexey Silakov, Squire J. Booker. Ferredoxins as interchangeable redox components in support of MiaB, a radical S‐adenosylmethionine methylthiotransferase. Protein Science 2019, 28 (1) , 267-282. https://doi.org/10.1002/pro.3548
    65. Tsehai A.J. Grell, Benjamin N. Bell, Chi Nguyen, Daniel P. Dowling, Nathan A. Bruender, Vahe Bandarian, Catherine L. Drennan. Crystal structure of AdoMet radical enzyme 7‐carboxy‐7‐deazaguanine synthase from Escherichia coli suggests how modifications near [4Fe–4S] cluster engender flavodoxin specificity. Protein Science 2019, 28 (1) , 202-215. https://doi.org/10.1002/pro.3529
    66. Christof M. Jäger, Anna K. Croft. Anaerobic Radical Enzymes for Biotechnology. ChemBioEng Reviews 2018, 5 (3) , 143-162. https://doi.org/10.1002/cben.201800003
    67. Hermann Bauwe. Photorespiration – Damage Repair Pathway of the Calvin–Benson Cycle. 2018, 293-342. https://doi.org/10.1002/9781119312994.apr0552
    68. Geng Dong, Lili Cao, Ulf Ryde. Insight into the reaction mechanism of lipoyl synthase: a QM/MM study. JBIC Journal of Biological Inorganic Chemistry 2018, 23 (2) , 221-229. https://doi.org/10.1007/s00775-017-1522-8
    69. Gemma L. Holliday, Eyal Akiva, Elaine C. Meng, Shoshana D. Brown, Sara Calhoun, Ursula Pieper, Andrej Sali, Squire J. Booker, Patricia C. Babbitt. Atlas of the Radical SAM Superfamily: Divergent Evolution of Function Using a “Plug and Play” Domain. 2018, 1-71. https://doi.org/10.1016/bs.mie.2018.06.004
    70. Erin L. McCarthy, Squire J. Booker. Biochemical Approaches for Understanding Iron–Sulfur Cluster Regeneration in Escherichia coli Lipoyl Synthase During Catalysis. 2018, 217-239. https://doi.org/10.1016/bs.mie.2018.06.006
    71. Mark W. Ruszczycky, Aoshu Zhong, Hung-wen Liu. Following the electrons: peculiarities in the catalytic cycles of radical SAM enzymes. Natural Product Reports 2018, 35 (7) , 615-621. https://doi.org/10.1039/C7NP00058H
    72. Susan C. Wang. Cobalamin-dependent radical S -adenosyl- l -methionine enzymes in natural product biosynthesis. Natural Product Reports 2018, 35 (8) , 707-720. https://doi.org/10.1039/C7NP00059F
    73. Bo Wang, Joseph W. LaMattina, Edward D. Badding, Lauren K. Gadsby, Tyler L. Grove, Squire J. Booker. Using Peptide Mimics to Study the Biosynthesis of the Side-Ring System of Nosiheptide. 2018, 241-268. https://doi.org/10.1016/bs.mie.2018.06.005
    74. Hermann Bauwe. PHOTORESPIRATION - DAMAGE REPAIR PATHWAY OF THE CALVIN-BENSON CYCLE. 2017, 293-342. https://doi.org/10.1002/9781118906583.ch10
    75. Erin L. McCarthy, Squire J. Booker. Destruction and reformation of an iron-sulfur cluster during catalysis by lipoyl synthase. Science 2017, 358 (6361) , 373-377. https://doi.org/10.1126/science.aan4574
    76. . S -Adenosyl Methionine: One Electron and Two Electron Reaction Manifolds in Biosyntheses. 2017, 524-568. https://doi.org/10.1039/BK9781788010764-00524
    77. Etienne Mulliez, Victor Duarte, Simon Arragain, Marc Fontecave, Mohamed Atta. On the Role of Additional [4Fe-4S] Clusters with a Free Coordination Site in Radical-SAM Enzymes. Frontiers in Chemistry 2017, 5 https://doi.org/10.3389/fchem.2017.00017
    78. P. Fan, Y. Tan, K. Jin, C. Lin, S. Xia, B. Han, F. Zhang, L. Wu, X. Ma. Supplemental lipoic acid relieves post-weaning diarrhoea by decreasing intestinal permeability in rats. Journal of Animal Physiology and Animal Nutrition 2017, 101 (1) , 136-146. https://doi.org/10.1111/jpn.12427
    79. Christof M. Jäger, Anna K. Croft. Radical Reaction Control in the AdoMet Radical Enzyme CDG Synthase (QueE): Consolidate, Destabilize, Accelerate. Chemistry - A European Journal 2017, 23 (4) , 953-962. https://doi.org/10.1002/chem.201604719
    80. Yirong Sun, Wenbin Zhang, Jincheng Ma, Hongshen Pang, Haihong Wang, . Overproduction of α-Lipoic Acid by Gene Manipulated Escherichia coli. PLOS ONE 2017, 12 (1) , e0169369. https://doi.org/10.1371/journal.pone.0169369
    81. Anthony J. Blaszczyk, Roy X. Wang, Squire J. Booker. TsrM as a Model for Purifying and Characterizing Cobalamin-Dependent Radical S -Adenosylmethionine Methylases. 2017, 303-329. https://doi.org/10.1016/bs.mie.2017.07.007
    82. Katherine M. Davis, Amie K. Boal. Mechanism-Based Strategies for Structural Characterization of Radical SAM Reaction Intermediates. 2017, 331-359. https://doi.org/10.1016/bs.mie.2017.07.008
    83. Linlin Yang, Jagat Adhikari, Michael L. Gross, Lei Li. Kinetic Isotope Effects and Hydrogen/Deuterium Exchange Reveal Large Conformational Changes During the Catalysis of the Clostridium acetobutylicum Spore Photoproduct Lyase. Photochemistry and Photobiology 2017, 93 (1) , 331-342. https://doi.org/10.1111/php.12697
    84. Gayle J. Bentley, Wen Jiang, Linda P. Guamán, Yi Xiao, Fuzhong Zhang. Engineering Escherichia coli to produce branched-chain fatty acids in high percentages. Metabolic Engineering 2016, 38 , 148-158. https://doi.org/10.1016/j.ymben.2016.07.003
    85. Martin I. McLaughlin, Nicholas D. Lanz, Peter J. Goldman, Kyung-Hoon Lee, Squire J. Booker, Catherine L. Drennan. Crystallographic snapshots of sulfur insertion by lipoyl synthase. Proceedings of the National Academy of Sciences 2016, 113 (34) , 9446-9450. https://doi.org/10.1073/pnas.1602486113
    86. Bradley J. Landgraf, Erin L. McCarthy, Squire J. Booker. Radical S -Adenosylmethionine Enzymes in Human Health and Disease. Annual Review of Biochemistry 2016, 85 (1) , 485-514. https://doi.org/10.1146/annurev-biochem-060713-035504
    87. John E. Cronan. Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway. Microbiology and Molecular Biology Reviews 2016, 80 (2) , 429-450. https://doi.org/10.1128/MMBR.00073-15
    88. Bastian Dörsam, Jörg Fahrer. The disulfide compound α-lipoic acid and its derivatives: A novel class of anticancer agents targeting mitochondria. Cancer Letters 2016, 371 (1) , 12-19. https://doi.org/10.1016/j.canlet.2015.11.019
    89. Hongliang Guo, Chuan Chen, Duu-Jong Lee, Aijie Wang, Nanqi Ren. Mixotrophic growth of Pseudomonas sp. C27 at different C/N ratios: Quantitative proteomic analysis. Journal of the Taiwan Institute of Chemical Engineers 2015, 54 , 91-95. https://doi.org/10.1016/j.jtice.2015.03.007
    90. Katherine A. Black, Patricia C. Dos Santos. Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2015, 1853 (6) , 1470-1480. https://doi.org/10.1016/j.bbamcr.2014.10.018
    91. Nicholas D. Lanz, Squire J. Booker. Auxiliary iron–sulfur cofactors in radical SAM enzymes. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2015, 1853 (6) , 1316-1334. https://doi.org/10.1016/j.bbamcr.2015.01.002
    92. Maria-Eirini Pandelia, Nicholas D. Lanz, Squire J. Booker, Carsten Krebs. Mössbauer spectroscopy of Fe/S proteins. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2015, 1853 (6) , 1395-1405. https://doi.org/10.1016/j.bbamcr.2014.12.005
    93. Martin McLaughlin, Nicholas Lanz, Peter Goldman, Kyung Hoon Lee, Squire Booker, Catherine Drennan. Caught in the Act: Snapshots of Sulfur Insertion by Lipoyl Synthase. The FASEB Journal 2015, 29 (S1) https://doi.org/10.1096/fasebj.29.1_supplement.895.4
    94. Tadashi Nakai, Hiroto Ito, Kazuo Kobayashi, Yasuhiro Takahashi, Hiroshi Hori, Motonari Tsubaki, Katsuyuki Tanizawa, Toshihide Okajima. The Radical S-Adenosyl-l-methionine Enzyme QhpD Catalyzes Sequential Formation of Intra-protein Sulfur-to-Methylene Carbon Thioether Bonds. Journal of Biological Chemistry 2015, 290 (17) , 11144-11166. https://doi.org/10.1074/jbc.M115.638320
    95. Joseph T. Jarrett. The Biosynthesis of Thiol- and Thioether-containing Cofactors and Secondary Metabolites Catalyzed by Radical S-Adenosylmethionine Enzymes. Journal of Biological Chemistry 2015, 290 (7) , 3972-3979. https://doi.org/10.1074/jbc.R114.599308
    96. Nora Frohnecke, Sandra Klein, Frank Seeber. Protein–protein interaction studies provide evidence for electron transfer from ferredoxin to lipoic acid synthase in Toxoplasma gondii. FEBS Letters 2015, 589 (1) , 31-36. https://doi.org/10.1016/j.febslet.2014.11.020
    97. Kylie D. Allen, Susan C. Wang. Spectroscopic characterization and mechanistic investigation of P-methyl transfer by a radical SAM enzyme from the marine bacterium Shewanella denitrificans OS217. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2014, 1844 (12) , 2135-2144. https://doi.org/10.1016/j.bbapap.2014.09.009
    98. John E. Cronan. The structure of lipoyl synthase, a remarkable enzyme that performs the last step of an extraordinary biosynthetic pathway. Biochemical Journal 2014, 464 (1) , e1-e3. https://doi.org/10.1042/BJ20141061
    99. Jenny E. Harmer, Martyn J. Hiscox, Pedro C. Dinis, Stephen J. Fox, Andreas Iliopoulos, James E. Hussey, James Sandy, Florian T. Van Beek, Jonathan W. Essex, Peter L. Roach. Structures of lipoyl synthase reveal a compact active site for controlling sequential sulfur insertion reactions. Biochemical Journal 2014, 464 (1) , 123-133. https://doi.org/10.1042/BJ20140895
    100. Cong Chen, Xiao Han, Xuan Zou, Yuan Li, Liang Yang, Ke Cao, Jie Xu, Jiangang Long, Jiankang Liu, Zhihui Feng. 4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic Acid (C75), an Inhibitor of Fatty-acid Synthase, Suppresses the Mitochondrial Fatty Acid Synthesis Pathway and Impairs Mitochondrial Function. Journal of Biological Chemistry 2014, 289 (24) , 17184-17194. https://doi.org/10.1074/jbc.M114.550806
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect