ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Staphylococcus aureus Sortase Transpeptidase SrtA:  Insight into the Kinetic Mechanism and Evidence for a Reverse Protonation Catalytic Mechanism

View Author Information
Department of Biochemistry and Biophysics and Johnson Research Foundation, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, and Department of Chemistry, University of Illinois, Urbana, Illinois 61801
Cite this: Biochemistry 2005, 44, 33, 11188–11200
Publication Date (Web):July 29, 2005
https://doi.org/10.1021/bi050141j
Copyright © 2005 American Chemical Society

    Article Views

    2329

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (313 KB)

    Abstract

    Abstract Image

    The Staphylococcus aureus transpeptidase SrtA catalyzes the covalent attachment of LPXTG-containing virulence and colonization-associated proteins to cell-wall peptidoglycan in Gram-positive bacteria. Recent structural characterizations of staphylococcal SrtA, and related transpeptidases SrtB from S. aureus and Bacillus anthracis, provide many details regarding the active site environment, yet raise questions with regard to the nature of catalysis and active site cysteine thiol activation. Here we re-evaluate the kinetic mechanism of SrtA and shed light on aspects of its catalytic mechanism. Using steady-state, pre-steady-state, bisubstrate kinetic studies, and high-resolution electrospray mass spectrometry, revised steady-state kinetic parameters and a ping-pong hydrolytic shunt kinetic mechanism were determined for recombinant SrtA. The pH dependencies of kinetic parameters kcat/Km and kcat for the substrate Abz-LPETG-Dap(Dnp)-NH2 were bell-shaped with pKa values of 6.3 ± 0.2 and 9.4 ± 0.2 for kcat and 6.2 ± 0.2 and 9.4 ± 0.2 for kcat/Km. Solvent isotope effect (SIE) measurements revealed inverse behavior, with a D2Okcat of 0.89 ± 0.01 and a D2O(kcat/Km) of 0.57 ± 0.03 reflecting an equilibrium SIE. In addition, SIE measurements strongly implicated Cys184 participation in the isotope-sensitive rate-determining chemical step when considered in conjunction with an inverse linear proton inventory for kcat. Last, the pH dependence of SrtA inactivation by iodoacetamide revealed a single ionization for inactivation. These studies collectively provide compelling evidence for a reverse protonation mechanism where a small fraction (ca. 0.06%) of SrtA is competent for catalysis at physiological pH, yet is highly active with an estimated kcat/Km of >105 M-1 s-1.

     This work was supported by NIH Grants AI46611 (to D.G.M.) and GM067725 (to N.L.K.) and an NSF Predoctoral Fellowship to B.A.F.

     University of Pennsylvania School of Medicine.

    §

     University of Illinois.

    *

     To whom correspondence should be addressed:  Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 905A Stellar-Chance Building, 422 Curie Blvd., Philadelphia, PA 19104-6059. Phone:  (215) 898-7619. Fax:  (215) 573-8052. E-mail:  [email protected].

    Cited By

    This article is cited by 110 publications.

    1. Eugene M. Obeng, David L. Steer, Alex Fulcher, Kylie M. Wagstaff. Steric-Deficient Oligoglycine Surrogates Facilitate Multivalent and Bifunctional Nanobody Synthesis via Combined Sortase A Transpeptidation and Click Chemistry. Bioconjugate Chemistry 2023, 34 (9) , 1667-1678. https://doi.org/10.1021/acs.bioconjchem.3c00319
    2. Jia-Liang Chen, Xiao Wang, Feng Yang, Bin Li, Gottfried Otting, Xun-Cheng Su. 3D Structure of the Transient Intermediate of the Enzyme–Substrate Complex of Sortase A Reveals How Calcium Binding and Substrate Recognition Cooperate in Substrate Activation. ACS Catalysis 2023, 13 (17) , 11610-11624. https://doi.org/10.1021/acscatal.3c02214
    3. Linghui Qian, Xuefen Lin, Xue Gao, Rizwan Ullah Khan, Jia-Yu Liao, Shubo Du, Jingyan Ge, Su Zeng, Shao Q. Yao. The Dawn of a New Era: Targeting the “Undruggables” with Antibody-Based Therapeutics. Chemical Reviews 2023, 123 (12) , 7782-7853. https://doi.org/10.1021/acs.chemrev.2c00915
    4. Jiahua Deng, Qiang Cui. Reverse Protonation of Buried Ion-Pairs in Staphylococcal Nuclease Mutants. Journal of Chemical Theory and Computation 2021, 17 (7) , 4550-4563. https://doi.org/10.1021/acs.jctc.1c00355
    5. Zhi Zou, Maximilian Nöth, Felix Jakob, Ulrich Schwaneberg. Designed Streptococcus pyogenes Sortase A Accepts Branched Amines as Nucleophiles in Sortagging. Bioconjugate Chemistry 2020, 31 (11) , 2476-2481. https://doi.org/10.1021/acs.bioconjchem.0c00486
    6. Christopher K. Sue, Scott A. McConnell, Ken Ellis-Guardiola, John M. Muroski, Rachel A. McAllister, Justin Yu, Ana I. Alvarez, Chungyu Chang, Rachel R. Ogorzalek Loo, Joseph A. Loo, Hung Ton-That, Robert T. Clubb. Kinetics and Optimization of the Lysine–Isopeptide Bond Forming Sortase Enzyme from Corynebacterium diphtheriae. Bioconjugate Chemistry 2020, 31 (6) , 1624-1634. https://doi.org/10.1021/acs.bioconjchem.0c00163
    7. Amy M. Weeks, James A. Wells. Subtiligase-Catalyzed Peptide Ligation. Chemical Reviews 2020, 120 (6) , 3127-3160. https://doi.org/10.1021/acs.chemrev.9b00372
    8. Han Gu, Saptarshi Ghosh, Richard J. Staples, Susan L. Bane. β-Hydroxy-Stabilized Boron–Nitrogen Heterocycles Enable Rapid and Efficient C-Terminal Protein Modification. Bioconjugate Chemistry 2019, 30 (10) , 2604-2613. https://doi.org/10.1021/acs.bioconjchem.9b00534
    9. Juan Zhang, Menglin Wang, Rui Tang, Yanan Liu, Chunyang Lei, Yan Huang, Zhou Nie, Shouzhuo Yao. Transpeptidation-Mediated Assembly of Tripartite Split Green Fluorescent Protein for Label-Free Assay of Sortase Activity. Analytical Chemistry 2018, 90 (5) , 3245-3252. https://doi.org/10.1021/acs.analchem.7b04756
    10. Chasper Puorger, Salvatore Di Girolamo, and Georg Lipps . Elucidation of the Recognition Sequence of Sortase B from Bacillus anthracis by Using a Newly Developed Liquid Chromatography–Mass Spectrometry-Based Method. Biochemistry 2017, 56 (21) , 2641-2650. https://doi.org/10.1021/acs.biochem.7b00108
    11. Tora Biswas, Vijaykumar S. Pawale, Devapriya Choudhury, and Rajendra P. Roy . Sorting of LPXTG Peptides by Archetypal Sortase A: Role of Invariant Substrate Residues in Modulating the Enzyme Dynamics and Conformational Signature of a Productive Substrate. Biochemistry 2014, 53 (15) , 2515-2524. https://doi.org/10.1021/bi4016023
    12. John M. Robbins and Holly R. Ellis . Steady-State Kinetic Isotope Effects Support a Complex Role of Arg226 in the Proposed Desulfonation Mechanism of Alkanesulfonate Monooxygenase. Biochemistry 2014, 53 (1) , 161-168. https://doi.org/10.1021/bi401234e
    13. Scott A. Robson, Alex W. Jacobitz, Martin L. Phillips, and Robert T. Clubb . Solution Structure of the Sortase Required for Efficient Production of Infectious Bacillus anthracis Spores. Biochemistry 2012, 51 (40) , 7953-7963. https://doi.org/10.1021/bi300867t
    14. Bo-Xue Tian and Leif A. Eriksson . Catalytic Mechanism and Roles of Arg197 and Thr183 in the Staphylococcus aureus Sortase A Enzyme. The Journal of Physical Chemistry B 2011, 115 (44) , 13003-13011. https://doi.org/10.1021/jp2058113
    15. Jeffrey A. Melvin, Christine F. Murphy, Laura G. Dubois, J. Will Thompson, M. Arthur Moseley, and Dewey G. McCafferty . Staphylococcus aureus Sortase A Contributes to the Trojan Horse Mechanism of Immune Defense Evasion with Its Intrinsic Resistance to Cys184 Oxidation. Biochemistry 2011, 50 (35) , 7591-7599. https://doi.org/10.1021/bi200844h
    16. Justin E. Jones, Christina J. Dreyton, Heather Flick, Corey P. Causey, and Paul R. Thompson . Mechanistic Studies of Agmatine Deiminase from Multiple Bacterial Species. Biochemistry 2010, 49 (43) , 9413-9423. https://doi.org/10.1021/bi101405y
    17. Bryan Knuckley, Corey P. Causey, Justin E. Jones, Monica Bhatia, Christina J. Dreyton, Tanesha C. Osborne, Hidenari Takahara and Paul R. Thompson . Substrate Specificity and Kinetic Studies of PADs 1, 3, and 4 Identify Potent and Selective Inhibitors of Protein Arginine Deiminase 3. Biochemistry 2010, 49 (23) , 4852-4863. https://doi.org/10.1021/bi100363t
    18. Clothilde Manzano, Thierry Izoré, Viviana Job, Anne Marie Di Guilmi and Andréa Dessen. Sortase Activity Is Controlled by a Flexible Lid in the Pilus Biogenesis Mechanism of Gram-Positive Pathogens,. Biochemistry 2009, 48 (44) , 10549-10557. https://doi.org/10.1021/bi901261y
    19. Gang Liu, Fengli Gao, Xiupei Yang, Jingyi Zhang, Suling Yang, Yuanyuan Li, Lin Liu. Aggregation-induced emission for the detection of peptide ligases with improving ligation efficiency. Analytica Chimica Acta 2023, 1284 , 341994. https://doi.org/10.1016/j.aca.2023.341994
    20. Yanqu Cai, Die Chen, Yongqi Chen, Ting Li, Lu Wang, Jinzhu Jiang, Zhenzhong Guo, Nicole Jaffrezic-Renault, Zhipeng Zhang, Siyu Huang. An electrochemical biosensor based on graphene intercalated functionalized black phosphorus/gold nanoparticles nanocomposites for the detection of bacterial enzyme. Microchemical Journal 2023, 193 , 109255. https://doi.org/10.1016/j.microc.2023.109255
    21. Lili Tian, Li Wang, Fengying Yang, Tiezhong Zhou, Hong Jiang. Exploring the Modulatory Impact of Isosakuranetin on Staphylococcus aureus : Inhibition of Sortase A Activity and α-hemolysin Expression. Virulence 2023, 6 https://doi.org/10.1080/21505594.2023.2260675
    22. Feng Jiang, Chengteng Cai, Xiumin Wang, Shoufa Han. A dual biomarker-targeting probe enables signal-on surface labeling of Staphylococcus aureus. Bioorganic & Medicinal Chemistry Letters 2023, 93 , 129428. https://doi.org/10.1016/j.bmcl.2023.129428
    23. Eugene M. Obeng, Alex J. Fulcher, Kylie M. Wagstaff. Harnessing sortase A transpeptidation for advanced targeted therapeutics and vaccine engineering. Biotechnology Advances 2023, 64 , 108108. https://doi.org/10.1016/j.biotechadv.2023.108108
    24. Zhao Zipeng, Li Fangya, Zhang Jianyu. Deuterium Solvent Kinetic Isotope Effect on Enzymatic Methyl Transfer Catalyzed by Catechol O-methyltransferase. Protein & Peptide Letters 2023, 30 (4) , 351-359. https://doi.org/10.2174/0929866530666230228100703
    25. Aaron D. Smith, Scott A. Walper, Igor L. Medintz. Enzymatic bioconjugation to nanoparticles. 2023, 337-368. https://doi.org/10.1016/B978-0-12-822425-0.00002-6
    26. Holly E. Morgan, W. Bruce Turnbull, Michael E. Webb. Challenges in the use of sortase and other peptide ligases for site-specific protein modification. Chemical Society Reviews 2022, 51 (10) , 4121-4145. https://doi.org/10.1039/D0CS01148G
    27. Fabian Barthels, Jessica Meyr, Stefan J. Hammerschmidt, Tessa Marciniak, Hans-Joachim Räder, Wilma Ziebuhr, Bernd Engels, Tanja Schirmeister. 2-Sulfonylpyrimidines as Privileged Warheads for the Development of S. aureus Sortase A Inhibitors. Frontiers in Molecular Biosciences 2022, 8 https://doi.org/10.3389/fmolb.2021.804970
    28. Dmitry A. Shulga, Konstantin V. Kudryavtsev. Selection of Promising Novel Fragment Sized S. aureus SrtA Noncovalent Inhibitors Based on QSAR and Docking Modeling Studies. Molecules 2021, 26 (24) , 7677. https://doi.org/10.3390/molecules26247677
    29. Aliyath Susmitha, Harsha Bajaj, Kesavan Madhavan Nampoothiri. The divergent roles of sortase in the biology of Gram-positive bacteria. The Cell Surface 2021, 7 , 100055. https://doi.org/10.1016/j.tcsw.2021.100055
    30. Ming-Hao Yang, Chung-Chi Hu, Chi-Hzeng Wong, Jian-Jong Liang, Hui-Ying Ko, Meng-Hsun He, Yi-Ling Lin, Na-Sheng Lin, Yau-Heiu Hsu. Convenient Auto-Processing Vector Based on Bamboo Mosaic Virus for Presentation of Antigens Through Enzymatic Coupling. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.739837
    31. Christine M. Artim, Manisha Kunala, Meghan K. O'Leary, Christopher A. Alabi. PEGylated Oligothioetheramide Prodrugs Activated by Host Serum Proteases. ChemBioChem 2021, 22 (17) , 2697-2702. https://doi.org/10.1002/cbic.202100146
    32. Chandrabose Selvaraj, Gurudeeban Selvaraj, Randa Mohamed Ismail, Rajendran Vijayakumar, Alaa Baazeem, Dong-Qing Wei, Sanjeev Kumar Singh. Interrogation of Bacillus anthracis SrtA active site loop forming open/close lid conformations through extensive MD simulations for understanding binding selectivity of SrtA inhibitors. Saudi Journal of Biological Sciences 2021, 28 (7) , 3650-3659. https://doi.org/10.1016/j.sjbs.2021.05.009
    33. Tongtong Tian, Jinzhi Zhao, Yuning Wang, Binxiao Li, Liang Qiao, Kun Zhang, Baohong Liu. Transpeptidation-mediated single-particle imaging assay for sensitive and specific detection of sortase with dark-field optical microscopy. Biosensors and Bioelectronics 2021, 178 , 113003. https://doi.org/10.1016/j.bios.2021.113003
    34. Adrian C. D. Fuchs, Moritz Ammelburg, Jörg Martin, Ruth A. Schmitz, Marcus D. Hartmann, Andrei N. Lupas. Archaeal Connectase is a specific and efficient protein ligase related to proteasome β subunits. Proceedings of the National Academy of Sciences 2021, 118 (11) https://doi.org/10.1073/pnas.2017871118
    35. Harry Morrison. Peptidyl arginine deiminase 4. 2021, 153-157. https://doi.org/10.1016/B978-0-12-821067-3.00026-X
    36. Jason E. Gosschalk, Chungyu Chang, Christopher K. Sue, Sara D. Siegel, Chenggang Wu, Michele D. Kattke, Sung Wook Yi, Robert Damoiseaux, Michael E. Jung, Hung Ton-That, Robert T. Clubb. A Cell-based Screen in Actinomyces oris to Identify Sortase Inhibitors. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-65256-x
    37. Magdalena Wójcik, Kamil Szala, Ronald van Merkerk, Wim J. Quax, Ykelien L. Boersma. Engineering the specificity of Streptococcus pyogenes sortase A by loop grafting. Proteins: Structure, Function, and Bioinformatics 2020, 88 (11) , 1394-1400. https://doi.org/10.1002/prot.25958
    38. Zhi Zou, Diana M. Mate, Maximilian Nöth, Felix Jakob, Ulrich Schwaneberg. Enhancing Robustness of Sortase A by Loop Engineering and Backbone Cyclization. Chemistry – A European Journal 2020, 26 (60) , 13568-13572. https://doi.org/10.1002/chem.202002740
    39. Min Woo Ha, Sung Wook Yi, Seung-Mann Paek. Design and Synthesis of Small Molecules as Potent Staphylococcus aureus Sortase A Inhibitors. Antibiotics 2020, 9 (10) , 706. https://doi.org/10.3390/antibiotics9100706
    40. Fabian Barthels, Gabriella Marincola, Tessa Marciniak, Matthias Konhäuser, Stefan Hammerschmidt, Jan Bierlmeier, Ute Distler, Peter R. Wich, Stefan Tenzer, Dirk Schwarzer, Wilma Ziebuhr, Tanja Schirmeister. Asymmetric Disulfanylbenzamides as Irreversible and Selective Inhibitors of Staphylococcus aureus Sortase A. ChemMedChem 2020, 15 (10) , 839-850. https://doi.org/10.1002/cmdc.201900687
    41. Chia-Yu Kang, I-Hsiu Huang, Chi-Chi Chou, Tsai-Yu Wu, Jyun-Cyuan Chang, Yu-Yuan Hsiao, Cheng-Hsuan Cheng, Wei-Jiun Tsai, Kai-Cheng Hsu, Shuying Wang. Functional analysis of Clostridium difficile sortase B reveals key residues for catalytic activity and substrate specificity. Journal of Biological Chemistry 2020, 295 (11) , 3734-3745. https://doi.org/10.1074/jbc.RA119.011322
    42. Aliyath Susmitha, Kesavan Madhavan Nampoothiri, Harsha Bajaj. Insights into the biochemical and functional characterization of sortase E transpeptidase of Corynebacterium glutamicum. Biochemical Journal 2019, 476 (24) , 3835-3847. https://doi.org/10.1042/BCJ20190812
    43. Saima Younis, Sameera Taj, Sajid Rashid. Structural studies of Staphylococcus aureus Sortase inhibiton via Conus venom peptides. Archives of Biochemistry and Biophysics 2019, 671 , 87-102. https://doi.org/10.1016/j.abb.2019.06.003
    44. Salvatore Di Girolamo, Chasper Puorger, Mara Castiglione, Maren Vogel, Rémy Gébleux, Manfred Briendl, Tamara Hell, Roger R. Beerli, Ulf Grawunder, Georg Lipps. Characterization of the housekeeping sortase from the human pathogen Propionibacterium acnes : first investigation of a class F sortase. Biochemical Journal 2019, 476 (4) , 665-682. https://doi.org/10.1042/BCJ20180885
    45. Lina Bartels, Hidde L. Ploegh, Hergen Spits, Koen Wagner. Preparation of bispecific antibody-protein adducts by site-specific chemo-enzymatic conjugation. Methods 2019, 154 , 93-101. https://doi.org/10.1016/j.ymeth.2018.07.013
    46. Magdalena Lukaszczyk, Brajabandhu Pradhan, Han Remaut. The Biosynthesis and Structures of Bacterial Pili. 2019, 369-413. https://doi.org/10.1007/978-3-030-18768-2_12
    47. Hejia Henry Wang, Andrew Tsourkas. Overcoming the Limitations of Sortase with Proximity-Based Sortase-Mediated Ligation (PBSL). 2019, 165-177. https://doi.org/10.1007/978-1-4939-9537-0_13
    48. Hejia Henry Wang, Andrew Tsourkas. Site-Specific C-Terminal Labeling of Recombinant Proteins with Proximity-Based Sortase-Mediated Ligation (PBSL). 2019, 15-28. https://doi.org/10.1007/978-1-4939-9546-2_2
    49. Xiao Wang, Jia-Liang Chen, Gottfried Otting, Xun-Cheng Su. Conversion of an amide to a high-energy thioester by Staphylococcus aureus sortase A is powered by variable binding affinity for calcium. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-34752-6
    50. Ilke Ugur, Martin Schatte, Antoine Marion, Manuel Glaser, Mara Boenitz-Dulat, Iris Antes, . Ca2+ binding induced sequential allosteric activation of sortase A: An example for ion-triggered conformational selection. PLOS ONE 2018, 13 (10) , e0205057. https://doi.org/10.1371/journal.pone.0205057
    51. Mohd Farid Abdul Halim, Ronald Rodriguez, Jonathan D. Stoltzfus, Iain G. Duggin, Mechthild Pohlschroder. Conserved residues are critical for Haloferax volcanii archaeosortase catalytic activity: Implications for convergent evolution of the catalytic mechanisms of non‐homologous sortases from archaea and bacteria. Molecular Microbiology 2018, 108 (3) , 276-287. https://doi.org/10.1111/mmi.13935
    52. Georg Falck, Kristian Müller. Enzyme-Based Labeling Strategies for Antibody–Drug Conjugates and Antibody Mimetics. Antibodies 2018, 7 (1) , 4. https://doi.org/10.3390/antib7010004
    53. Joel Haywood, Jason W Schmidberger, Amy M James, Samuel G Nonis, Kirill V Sukhoverkov, Mikael Elias, Charles S Bond, Joshua S Mylne. Structural basis of ribosomal peptide macrocyclization in plants. eLife 2018, 7 https://doi.org/10.7554/eLife.32955
    54. Amy M Weeks, James A Wells. Engineering peptide ligase specificity by proteomic identification of ligation sites. Nature Chemical Biology 2018, 14 (1) , 50-57. https://doi.org/10.1038/nchembio.2521
    55. Eiji Tamai, Hiroshi Sekiya, Jun Maki, Hirofumi Nariya, Hiromi Yoshida, Shigehiro Kamitori. X-ray structure of Clostridium perfringens sortase B cysteine transpeptidase. Biochemical and Biophysical Research Communications 2017, 493 (3) , 1267-1272. https://doi.org/10.1016/j.bbrc.2017.09.144
    56. Muna Suliman, Vishaka Santosh, Tom C. M. Seegar, Annamarie C. Dalton, Kathryn M. Schultz, Candice S. Klug, William A. Barton, . Directed evolution provides insight into conformational substrate sampling by SrtA. PLOS ONE 2017, 12 (8) , e0184271. https://doi.org/10.1371/journal.pone.0184271
    57. Hejia Henry Wang, Burcin Altun, Kido Nwe, Andrew Tsourkas. Proximity‐Based Sortase‐Mediated Ligation. Angewandte Chemie 2017, 129 (19) , 5433-5436. https://doi.org/10.1002/ange.201701419
    58. Hejia Henry Wang, Burcin Altun, Kido Nwe, Andrew Tsourkas. Proximity‐Based Sortase‐Mediated Ligation. Angewandte Chemie International Edition 2017, 56 (19) , 5349-5352. https://doi.org/10.1002/anie.201701419
    59. Sreetama Das, Vijaykumar S. Pawale, Venkatareddy Dadireddy, Avinash Kumar Singh, Suryanarayanarao Ramakumar, Rajendra P. Roy. Structure and specificity of a new class of Ca2+-independent housekeeping sortase from Streptomyces avermitilis provide insights into its non-canonical substrate preference. Journal of Biological Chemistry 2017, 292 (17) , 7244-7257. https://doi.org/10.1074/jbc.M117.782037
    60. Jian Gao, Zhongwu Guo. Synthetic Studies of GPI-Anchored Peptides, Glycopeptides, and Proteins. 2017, 253-281. https://doi.org/10.1039/9781782623823-00253
    61. Fuguang Chen, Fang Xie, Baoling Yang, Chengcheng Wang, Siguo Liu, Yueling Zhang, . Streptococcus suis sortase A is Ca2+ independent and is inhibited by acteoside, isoquercitrin and baicalin. PLOS ONE 2017, 12 (3) , e0173767. https://doi.org/10.1371/journal.pone.0173767
    62. Alex W. Jacobitz, Michele D. Kattke, Jeff Wereszczynski, Robert T. Clubb. Sortase Transpeptidases: Structural Biology and Catalytic Mechanism. 2017, 223-264. https://doi.org/10.1016/bs.apcsb.2017.04.008
    63. Benjamin J. Willson, Katalin Kovács, Tom Wilding-Steele, Robert Markus, Klaus Winzer, Nigel P. Minton. Production of a functional cell wall-anchored minicellulosome by recombinant Clostridium acetobutylicum ATCC 824. Biotechnology for Biofuels 2016, 9 (1) https://doi.org/10.1186/s13068-016-0526-x
    64. Jui-Chieh Yin, Chun-Hsien Fei, Yen-Chen Lo, Yu-Yuan Hsiao, Jyun-Cyuan Chang, Jay C. Nix, Yuan-Yu Chang, Lee-Wei Yang, I-Hsiu Huang, Shuying Wang. Structural Insights into Substrate Recognition by Clostridium difficile Sortase. Frontiers in Cellular and Infection Microbiology 2016, 6 https://doi.org/10.3389/fcimb.2016.00160
    65. Jia‐Liang Chen, Xiao Wang, Feng Yang, Chan Cao, Gottfried Otting, Xun‐Cheng Su. 3D Structure Determination of an Unstable Transient Enzyme Intermediate by Paramagnetic NMR Spectroscopy. Angewandte Chemie International Edition 2016, 55 (44) , 13744-13748. https://doi.org/10.1002/anie.201606223
    66. Jia‐Liang Chen, Xiao Wang, Feng Yang, Chan Cao, Gottfried Otting, Xun‐Cheng Su. 3D Structure Determination of an Unstable Transient Enzyme Intermediate by Paramagnetic NMR Spectroscopy. Angewandte Chemie 2016, 128 (44) , 13948-13952. https://doi.org/10.1002/ange.201606223
    67. Pooja Shrestha, Jeff Wereszczynski. Discerning the catalytic mechanism of Staphylococcus aureus sortase A with QM/MM free energy calculations. Journal of Molecular Graphics and Modelling 2016, 67 , 33-43. https://doi.org/10.1016/j.jmgm.2016.04.006
    68. Elfriede Dall, Hans Brandstetter. Structure and function of legumain in health and disease. Biochimie 2016, 122 , 126-150. https://doi.org/10.1016/j.biochi.2015.09.022
    69. Albert H. Chan, Sung Wook Yi, Austen L. Terwilliger, Anthony W. Maresso, Michael E. Jung, Robert T. Clubb. Structure of the Bacillus anthracis Sortase A Enzyme Bound to Its Sorting Signal. Journal of Biological Chemistry 2015, 290 (42) , 25461-25474. https://doi.org/10.1074/jbc.M115.670984
    70. Md Munan Shaik, Charlotte Lombardi, Daniel Maragno Trindade, Daphna Fenel, Guy Schoehn, Anne Marie Di Guilmi, Andréa Dessen. A Structural Snapshot of Type II Pilus Formation in Streptococcus pneumoniae. Journal of Biological Chemistry 2015, 290 (37) , 22581-22592. https://doi.org/10.1074/jbc.M115.647834
    71. Heejae Kim, Ka‐Hei Siu, Maryam Raeeszadeh‐Sarmazdeh, Qing Sun, Qi Chen, Wilfred Chen. Bioengineering strategies to generate artificial protein complexes. Biotechnology and Bioengineering 2015, 112 (8) , 1495-1505. https://doi.org/10.1002/bit.25637
    72. Lena Schmohl, Felix Roman Wagner, Michael Schümann, Eberhard Krause, Dirk Schwarzer. Semisynthesis and initial characterization of sortase A mutants containing selenocysteine and homocysteine. Bioorganic & Medicinal Chemistry 2015, 23 (12) , 2883-2889. https://doi.org/10.1016/j.bmc.2015.03.057
    73. William J. Bradshaw, Abigail H. Davies, Christopher J. Chambers, April K. Roberts, Clifford C. Shone, K. Ravi Acharya. Molecular features of the sortase enzyme family. FEBS Journal 2015, 282 (11) , 2097-2114. https://doi.org/10.1111/febs.13288
    74. Werner Pansegrau, Fabio Bagnoli. Pilus Assembly in Gram-Positive Bacteria. 2015, 203-233. https://doi.org/10.1007/82_2015_5016
    75. Elizabeth H Donahue, Lisa F Dawson, Esmeralda Valiente, Stuart Firth-Clark, Meriel R Major, Eddy Littler, Trevor R Perrior, Brendan W Wren. Clostridium difficilehas a single sortase, SrtB, that can be inhibited by small-molecule inhibitors. BMC Microbiology 2014, 14 (1) https://doi.org/10.1186/s12866-014-0219-1
    76. Hans C. van Leeuwen, Oleg I. Klychnikov, Mica A.C. Menks, Ed J. Kuijper, Jan W. Drijfhout, Paul J. Hensbergen. Clostridium difficile sortase recognizes a (S/P)PXTG sequence motif and can accommodate diaminopimelic acid as a substrate for transpeptidation. FEBS Letters 2014, 588 (23) , 4325-4333. https://doi.org/10.1016/j.febslet.2014.09.041
    77. Lena Schmohl, Dirk Schwarzer. Sortase-mediated ligations for the site-specific modification of proteins. Current Opinion in Chemical Biology 2014, 22 , 122-128. https://doi.org/10.1016/j.cbpa.2014.09.020
    78. Markus Ritzefeld. Sortagging: A Robust and Efficient Chemoenzymatic Ligation Strategy. Chemistry – A European Journal 2014, 20 (28) , 8516-8529. https://doi.org/10.1002/chem.201402072
    79. Chandrabose Selvaraj, Jeyachandran Sivakamavalli, Vaseeharan Baskaralingam, Sanjeev Kumar Singh. Virtual screening of LPXTG competitive SrtA inhibitors targeting signal transduction mechanism in Bacillus anthracis : a combined experimental and theoretical study. Journal of Receptors and Signal Transduction 2014, 34 (3) , 221-232. https://doi.org/10.3109/10799893.2013.876044
    80. David M. Shlaes, Lefa Alksne, Steven J. Projan. The Pharmaceutical Industry and Inhibitors of Bacterial Enzymes: Implications for Drug Development. 2014, 215-225. https://doi.org/10.1128/9781555815615.ch13
    81. Alex W. Jacobitz, Jeff Wereszczynski, Sung Wook Yi, Brendan R. Amer, Grace L. Huang, Angelyn V. Nguyen, Michael R. Sawaya, Michael E. Jung, J.Andrew McCammon, Robert T. Clubb. Structural and Computational Studies of the Staphylococcus aureus Sortase B-Substrate Complex Reveal a Substrate-stabilized Oxyanion Hole. Journal of Biological Chemistry 2014, 289 (13) , 8891-8902. https://doi.org/10.1074/jbc.M113.509273
    82. Christian Linke-Winnebeck, Neil G. Paterson, Paul G. Young, Martin J. Middleditch, David R. Greenwood, Gregor Witte, Edward N. Baker. Structural Model for Covalent Adhesion of the Streptococcus pyogenes Pilus through a Thioester Bond. Journal of Biological Chemistry 2014, 289 (1) , 177-189. https://doi.org/10.1074/jbc.M113.523761
    83. Aimin Yang, Lei Zhao, Yao-Wen Wu. Chemical Synthesis and Biological Function of Lipidated Proteins. 2014, 137-182. https://doi.org/10.1007/128_2014_582
    84. Zheng Qu, Venkat Krishnamurthy, Carolyn A. Haller, Brent M. Dorr, Ulla M. Marzec, Sawan Hurst, Monica T. Hinds, Stephen R. Hanson, David R. Liu, Elliot L. Chaikof. Immobilization of Actively Thromboresistant Assemblies on Sterile Blood‐Contacting Surfaces. Advanced Healthcare Materials 2014, 3 (1) , 30-35. https://doi.org/10.1002/adhm.201300110
    85. Dietmar Schomburg, Ida Schomburg. sortase A 3.4.22.70. 2013, 98-121. https://doi.org/10.1007/978-3-642-36260-6_4
    86. László Polgár. Catalytic Mechanisms of Cysteine Peptidases. 2013, 1773-1784. https://doi.org/10.1016/B978-0-12-382219-2.00405-1
    87. Dewey G. McCafferty, Jeffrey A. Melvin. Sortases. 2013, 2459-2465. https://doi.org/10.1016/B978-0-12-382219-2.00549-4
    88. Xinyu Zhao, Guoshun Li, Shufang Liang. Several Affinity Tags Commonly Used in Chromatographic Purification. Journal of Analytical Methods in Chemistry 2013, 2013 , 1-8. https://doi.org/10.1155/2013/581093
    89. Kalli Kappel, Jeff Wereszczynski, Robert T. Clubb, J. Andrew McCammon. The binding mechanism, multiple binding modes, and allosteric regulation of Staphylococcus aureus Sortase A probed by molecular dynamics simulations. Protein Science 2012, 21 (12) , 1858-1871. https://doi.org/10.1002/pro.2168
    90. Thomas Spirig, Ethan M. Weiner, Robert T. Clubb. Sortase enzymes in Gram‐positive bacteria. Molecular Microbiology 2011, 82 (5) , 1044-1059. https://doi.org/10.1111/j.1365-2958.2011.07887.x
    91. Maximilian Wei‐Lin Popp, Hidde L. Ploegh. Making and Breaking Peptide Bonds: Protein Engineering Using Sortase. Angewandte Chemie International Edition 2011, 50 (22) , 5024-5032. https://doi.org/10.1002/anie.201008267
    92. Maximilian Wei‐Lin Popp, Hidde L. Ploegh. Bilden und Brechen von Peptidbindungen: Protein‐Engineering mithilfe von Sortase. Angewandte Chemie 2011, 123 (22) , 5128-5137. https://doi.org/10.1002/ange.201008267
    93. Boxue Tian, Leif A. Eriksson. Structural changes of Listeria monocytogenes sortase A: A key to understanding the catalytic mechanism. Proteins: Structure, Function, and Bioinformatics 2011, 79 (5) , 1564-1572. https://doi.org/10.1002/prot.22983
    94. Yuichi Yamamura, Hidehiko Hirakawa, Satoshi Yamaguchi, Teruyuki Nagamune. Enhancement of sortase A-mediated protein ligation by inducing a β-hairpin structure around the ligation site. Chemical Communications 2011, 47 (16) , 4742. https://doi.org/10.1039/c0cc05334a
    95. Ethan M. Weiner, Scott Robson, Melanie Marohn, Robert T. Clubb. The Sortase A Enzyme That Attaches Proteins to the Cell Wall of Bacillus anthracis Contains an Unusual Active Site Architecture. Journal of Biological Chemistry 2010, 285 (30) , 23433-23443. https://doi.org/10.1074/jbc.M110.135434
    96. . References. 2010, 807-843. https://doi.org/10.1016/B978-0-12-380924-7.10017-1
    97. Kathleen W. Clancy, Jeffrey A. Melvin, Dewey G. McCafferty. Sortase transpeptidases: Insights into mechanism, substrate specificity, and inhibition. Peptide Science 2010, 94 (4) , 385-396. https://doi.org/10.1002/bip.21472
    98. Nuttee Suree, Chu Kong Liew, Valerie A. Villareal, William Thieu, Evgeny A. Fadeev, Jeremy J. Clemens, Michael E. Jung, Robert T. Clubb. The Structure of the Staphylococcus aureus Sortase-Substrate Complex Reveals How the Universally Conserved LPXTG Sorting Signal Is Recognized. Journal of Biological Chemistry 2009, 284 (36) , 24465-24477. https://doi.org/10.1074/jbc.M109.022624
    99. Konstantin V. Kudryavtsev, Matthew L. Bentley, Dewey G. McCafferty. Probing of the cis-5-phenyl proline scaffold as a platform for the synthesis of mechanism-based inhibitors of the Staphylococcus aureus sortase SrtA isoform. Bioorganic & Medicinal Chemistry 2009, 17 (7) , 2886-2893. https://doi.org/10.1016/j.bmc.2009.02.008
    100. . Synthesis Concepts for Peptides and Proteins. 2009, 317-364. https://doi.org/10.1002/9783527626038.ch5
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect