ACS Publications. Most Trusted. Most Cited. Most Read
Papain-Like Protease 2 (PLP2) from Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV):  Expression, Purification, Characterization, and Inhibition
My Activity

Figure 1Loading Img
    Article

    Papain-Like Protease 2 (PLP2) from Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV):  Expression, Purification, Characterization, and Inhibition
    Click to copy article linkArticle link copied!

    View Author Information
    Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan 350, Republic of China, Faculty of Life Science, National Yang-Ming University, Taipei, Taiwan 112, Republic of China, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 115, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan 350, Republic of China
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2005, 44, 30, 10349–10359
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi0504761
    Published July 9, 2005
    Copyright © 2005 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Viral proteases are essential for pathogenesis and virulence of severe acute respiratory syndrome coronavirus (SARS-CoV). Little information is available on SARS-CoV papain-like protease 2 (PLP2), and development of inhibitors against PLP2 is attractive for antiviral therapy. Here, we report the characterization of SARS-CoV PLP2 (from residues 1414 to 1858) purified from baculovirus-infected insect cells. We demonstrate that SARS-CoV PLP2 by itself differentially cleaves between the amino acids Gly180 and Ala181, Gly818 and Ala819, and Gly2740 and Lys2741 of the viral polypeptide pp1a, as determined by reversed-phase high-performance liquid chromatography analysis coupled with mass spectrometry. This protease is especially selective for the P1, P4, and P6 sites of the substrate. The study demonstrates, for the first time among coronaviral PLPs, that the reaction mechanism of SARS-CoV PLP2 is characteristic of papain and compatible with the involvement of the catalytic dyad (Cys)-S-/(His)-Im+H ion pair. With a fluorogenic inhibitor-screening platform, we show that zinc ion and its conjugates potently inhibit the enzymatic activity of SARS-CoV PLP2. In addition, we provided evidence for evolutionary reclassification of SARS-CoV. The results provide important insights into the biochemical properties of the coronaviral PLP family and a promising therapeutic way to fight SARS-CoV.

    Copyright © 2005 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     This study was supported by Grants 92-2751-B-400-006-Y and 93-2751-B-400-002-Y from National Science Council, Taiwan, and by National Health Research Institutes, Miaoli, Taiwan, Republic of China, to X.C.

     Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes.

    §

     National Yang-Ming University.

     Academia Sinica.

     Division of Molecular and Genomic Medicine, National Health Research Institutes.

    *

     To whom correspondence should be addressed:  Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan 350, Republic of China. Telephone:  88637 246166 ext. 35718. Fax:  88637 586456. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 134 publications.

    1. Aurelia Magdalena Pisoschi, Florin Iordache, Loredana Stanca, Iuliana Gajaila, Oana Margarita Ghimpeteanu, Ovidiu Ionut Geicu, Liviu Bilteanu, Andreea Iren Serban. Antioxidant, Anti-inflammatory, and Immunomodulatory Roles of Nonvitamin Antioxidants in Anti-SARS-CoV-2 Therapy. Journal of Medicinal Chemistry 2022, 65 (19) , 12562-12593. https://doi.org/10.1021/acs.jmedchem.2c01134
    2. Mostafa Jamalan, Ebrahim Barzegari, Fathollah Gholami-Borujeni. Structure-Based Screening to Discover New Inhibitors for Papain-like Proteinase of SARS-CoV-2: An In Silico Study. Journal of Proteome Research 2021, 20 (1) , 1015-1026. https://doi.org/10.1021/acs.jproteome.0c00836
    3. Antonio Francés-Monerris, Cécilia Hognon, Tom Miclot, Cristina García-Iriepa, Isabel Iriepa, Alessio Terenzi, Stéphanie Grandemange, Giampaolo Barone, Marco Marazzi, Antonio Monari. Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches. Journal of Proteome Research 2020, 19 (11) , 4291-4315. https://doi.org/10.1021/acs.jproteome.0c00779
    4. Thanigaimalai Pillaiyar, Manoj Manickam, Vigneshwaran Namasivayam, Yoshio Hayashi, Sang-Hun Jung. An Overview of Severe Acute Respiratory Syndrome–Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. Journal of Medicinal Chemistry 2016, 59 (14) , 6595-6628. https://doi.org/10.1021/acs.jmedchem.5b01461
    5. Leonid Andronov, Mengting Han, Yanyu Zhu, Ashwin Balaji, Anish R. Roy, Andrew E. S. Barentine, Puja Patel, Jaishree Garhyan, Lei S. Qi, W. E. Moerner. Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-48991-x
    6. Juliana C. Ferreira, Adrian J. Villanueva, Kenana Al Adem, Samar Fadl, Lara Alzyoud, Mohammad A. Ghattas, Wael M. Rabeh. Identification of novel allosteric sites of SARS-CoV-2 papain-like protease (PLpro) for the development of COVID-19 antivirals. Journal of Biological Chemistry 2024, 300 (11) , 107821. https://doi.org/10.1016/j.jbc.2024.107821
    7. Deepesh Kumar Patel, Harish Kumar, M. Elizabeth Sobhia. Exploring the binding dynamics of covalent inhibitors within active site of PLpro in SARS-CoV-2. Computational Biology and Chemistry 2024, 112 , 108132. https://doi.org/10.1016/j.compbiolchem.2024.108132
    8. , O. R. LENO, K. A. REPETA, , M. V. STOROZHYNSKA, , YU. M. FEDEVYCH, , P. B. POKOTYLO, . Evaluation of the effect of iron, zinc and selenium on metabolic processes in viral diseases. Experimental and Clinical Physiology and Biochemistry 2024, 2024 (2) , 46-57. https://doi.org/10.25040/ecpb2024.02.046
    9. Thomas D. Lockwood. Coordination chemistry suggests that independently observed benefits of metformin and Zn2+ against COVID-19 are not independent. BioMetals 2024, 37 (4) , 983-1022. https://doi.org/10.1007/s10534-024-00590-5
    10. Jiahao Fan, Pengyuan Xi, Huimao Liu, Xu Song, Xinghong Zhao, Xun Zhou, Yuanfeng Zou, Yuping Fu, Lixia Li, Renyong Jia, Zhongqiong Yin. Myricetin inhibits transmissible gastroenteritis virus replication by targeting papain-like protease deubiquitinating enzyme activity. Frontiers in Microbiology 2024, 15 https://doi.org/10.3389/fmicb.2024.1433664
    11. H. T. Henry Chan, Lennart Brewitz, Petra Lukacik, Claire Strain-Damerell, Martin A. Walsh, Christopher J. Schofield, Fernanda Duarte. Studies on the selectivity of the SARS-CoV-2 papain-like protease reveal the importance of the P2′ proline of the viral polyprotein. RSC Chemical Biology 2024, 5 (2) , 117-130. https://doi.org/10.1039/D3CB00128H
    12. Ahmed Magdy Khalil, Aitor Nogales, Luis Martínez-Sobrido, Ahmed Mostafa. Antiviral responses versus virus-induced cellular shutoff: a game of thrones between influenza A virus NS1 and SARS-CoV-2 Nsp1. Frontiers in Cellular and Infection Microbiology 2024, 14 https://doi.org/10.3389/fcimb.2024.1357866
    13. Michelle Passarge, Burkhard Schütz. Orthomolekulare Therapieoptionen mit Mikronährstoffen bei viralen Atemwegserkrankungen. 2024, 349-381. https://doi.org/10.1007/978-3-662-67508-3_15
    14. Shoichi Sanuki, Mona Tagawa, Rieko Saito, Hikoichiro Maegawa. The potential of natural products for the suppression of SARS-CoV-2 replication. 2024, 1-68. https://doi.org/10.1016/B978-0-443-22214-6.00015-6
    15. Larysa V. Yevsieieva, Kateryna O. Lohachova, Alexander Kyrychenko, Sergiy M. Kovalenko, Volodymyr V. Ivanov, Oleg N. Kalugin. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Advances 2023, 13 (50) , 35500-35524. https://doi.org/10.1039/D3RA06479D
    16. Yuxian Xiong, Bin Huang, Ying Yang, Xinming Fu, Ziyang Fu, Huidong Xu, Ming Liu, Dan Cao, Manman Zhang, Haibin Yang, Xiaogang Niu, Cong Yu, Hao Huang. The substrate selectivity of papain-like proteases from human-infecting coronaviruses correlates with innate immune suppression. Science Signaling 2023, 16 (783) https://doi.org/10.1126/scisignal.ade1985
    17. Himisha Dixit, Vipin Upadhyay, Mahesh Kulharia, Shailender Kumar Verma. The putative metal-binding proteome of the Coronaviridae family. Metallomics 2023, 15 (1) https://doi.org/10.1093/mtomcs/mfad001
    18. Jerneja Kladnik, Ana Dolinar, Jakob Kljun, David Perea, Judith Grau-Expósito, Meritxell Genescà, Marko Novinec, Maria J. Buzon, Iztok Turel. Zinc pyrithione is a potent inhibitor of PL Pro and cathepsin L enzymes with ex vivo inhibition of SARS-CoV-2 entry and replication. Journal of Enzyme Inhibition and Medicinal Chemistry 2022, 37 (1) , 2158-2168. https://doi.org/10.1080/14756366.2022.2108417
    19. Weizhu Yan, Yanhui Zheng, Xiaotao Zeng, Bin He, Wei Cheng. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduction and Targeted Therapy 2022, 7 (1) https://doi.org/10.1038/s41392-022-00884-5
    20. Vasundara Srinivasan, Hévila Brognaro, Prince R. Prabhu, Edmarcia Elisa de Souza, Sebastian Günther, Patrick Y. A. Reinke, Thomas J. Lane, Helen Ginn, Huijong Han, Wiebke Ewert, Janina Sprenger, Faisal H. M. Koua, Sven Falke, Nadine Werner, Hina Andaleeb, Najeeb Ullah, Bruno Alves Franca, Mengying Wang, Angélica Luana C. Barra, Markus Perbandt, Martin Schwinzer, Christina Schmidt, Lea Brings, Kristina Lorenzen, Robin Schubert, Rafael Rahal Guaragna Machado, Erika Donizette Candido, Danielle Bruna Leal Oliveira, Edison Luiz Durigon, Stephan Niebling, Angelica Struve Garcia, Oleksandr Yefanov, Julia Lieske, Luca Gelisio, Martin Domaracky, Philipp Middendorf, Michael Groessler, Fabian Trost, Marina Galchenkova, Aida Rahmani Mashhour, Sofiane Saouane, Johanna Hakanpää, Markus Wolf, Maria Garcia Alai, Dusan Turk, Arwen R. Pearson, Henry N. Chapman, Winfried Hinrichs, Carsten Wrenger, Alke Meents, Christian Betzel. Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease. Communications Biology 2022, 5 (1) https://doi.org/10.1038/s42003-022-03737-7
    21. Rishita Dey, Asmita Samadder, Sisir Nandi. Exploring the Targets of Novel Corona Virus and Docking-based Screening of Potential Natural Inhibitors to Combat COVID-19. Current Topics in Medicinal Chemistry 2022, 22 (29) , 2410-2434. https://doi.org/10.2174/1568026623666221020163831
    22. Cameron Lee Shetler, Juliana C. Ferreira, Thyago H. S. Cardoso, Edson M.A. Silva, Nitin K. Saksena, Wael M. Rabeh. Therapeutic potential of metal ions for COVID-19: insights from the papain-like protease of SARS-CoV-2. Biochemical Journal 2022, 479 (20) , 2175-2193. https://doi.org/10.1042/BCJ20220380
    23. Guangjian Zhao, Xiaochun Liu, Suyun Wang, Zhongyue Bai, Siyu Zhang, Yifan Wang, Haibo Yu, Ximing Xu. Hydrogen bonding penalty used for virtual screening to discover potent inhibitors for Papain‐Like cysteine proteases of SARS‐CoV‐2. Chemical Biology & Drug Design 2022, 100 (4) , 502-514. https://doi.org/10.1111/cbdd.14115
    24. Christopher Schwake, Lindsay McKay, Anthony Griffiths, Christina Scartelli, Robert Flaumenhaft, Athar H. Chishti. BDA ‐410 inhibits SARS‐CoV ‐2 main protease activity and viral replication in mammalian cells. Journal of Cellular and Molecular Medicine 2022, 26 (19) , 5095-5098. https://doi.org/10.1111/jcmm.17442
    25. Kwiwan Jeong, Jinhee Kim, JuOae Chang, Subin Hong, Inseo Kim, Sunghyun Oh, Sangeun Jeon, Joo Chan Lee, Hyun-Ju Park, Seungtaek Kim, Wonsik Lee. Chemical screen uncovers novel structural classes of inhibitors of the papain-like protease of coronaviruses. iScience 2022, 25 (10) , 105254. https://doi.org/10.1016/j.isci.2022.105254
    26. Esmat Ghanei, Moein Baghani, Hamideh Moravvej, Atefeh Talebi, Ayda bahmanjahromi, Fahimeh Abdollahimajd. Low serum levels of zinc and 25-hydroxyvitmain D as potential risk factors for COVID-19 susceptibility: a pilot case-control study. European Journal of Clinical Nutrition 2022, 76 (9) , 1297-1302. https://doi.org/10.1038/s41430-022-01095-5
    27. Ekampreet Singh, Rajat Kumar Jha, Rameez Jabeer Khan, Ankit Kumar, Monika Jain, Jayaraman Muthukumaran, Amit Kumar Singh. A computational essential dynamics approach to investigate structural influences of ligand binding on Papain like protease from SARS-CoV-2. Computational Biology and Chemistry 2022, 99 , 107721. https://doi.org/10.1016/j.compbiolchem.2022.107721
    28. Claudia Andreini, Fabio Arnesano, Antonio Rosato. The zinc proteome of SARS-CoV-2. Metallomics 2022, 14 (7) https://doi.org/10.1093/mtomcs/mfac047
    29. Hongyan Li, Shuofeng Yuan, Xueying Wei, Hongzhe Sun. Metal-based strategies for the fight against COVID-19. Chemical Communications 2022, 58 (54) , 7466-7482. https://doi.org/10.1039/D2CC01772E
    30. Rebecca L. Pedler, Peter G. Speck. Marine mollusc extracts—Potential source of SARS‐CoV‐2 antivirals. Reviews in Medical Virology 2022, 32 (4) https://doi.org/10.1002/rmv.2310
    31. Arezoo Rezazadeh, Sara Sadeghzadeh, Kosar Namakin, Atena Tamimi, Zahra Khanjani. The role of zinc in the pathogenesis and treatment of COVID-19: A review. Mediterranean Journal of Nutrition and Metabolism 2022, 15 (2) , 143-159. https://doi.org/10.3233/MNM-211524
    32. Gaber El-Saber Batiha, Ali I. Al-Gareeb, Safaa Qusti, Eida M. Alshammari, Deepak Kaushik, Ravinder Verma, Hayder M. Al-kuraishy. Deciphering the immunoboosting potential of macro and micronutrients in COVID support therapy. Environmental Science and Pollution Research 2022, 29 (29) , 43516-43531. https://doi.org/10.1007/s11356-022-20075-7
    33. Fatemeh Sadeghsoltani, Iraj Mohammadzadeh, Mir-Meghdad Safari, Parisa Hassanpour, Melika Izadpanah, Durdi Qujeq, Soheila Moein, Mostafa Vaghari-Tabari. Zinc and Respiratory Viral Infections: Important Trace Element in Anti-viral Response and Immune Regulation. Biological Trace Element Research 2022, 200 (6) , 2556-2571. https://doi.org/10.1007/s12011-021-02859-z
    34. Xuan Tao, Lu Zhang, Liubing Du, Kai Lu, Zhennan Zhao, Yanxuan Xie, Xiaobo Li, Shuxiang Huang, Pei-Hui Wang, Ji-An Pan, Wei Xia, Jun Dai, Zong-Wan Mao. Inhibition of SARS-CoV-2 replication by zinc gluconate in combination with hinokitiol. Journal of Inorganic Biochemistry 2022, 231 , 111777. https://doi.org/10.1016/j.jinorgbio.2022.111777
    35. H. Tarannum, K.M. Rashmi, S. Nandi. Exploring the SARS-Cov-2 Main Protease (Mpro) and RdRp Targets by Updating Current Structure-based Drug Design Utilizing Co-crystals to Combat COVID-19. Current Drug Targets 2022, 23 (8) , 802-817. https://doi.org/10.2174/1389450122666210906154849
    36. Lennart Brewitz, Jos J. A. G. Kamps, Petra Lukacik, Claire Strain‐Damerell, Yilin Zhao, Anthony Tumber, Tika R. Malla, Allen M. Orville, Martin A. Walsh, Christopher J. Schofield. Mass Spectrometric Assays Reveal Discrepancies in Inhibition Profiles for the SARS‐CoV‐2 Papain‐Like Protease. ChemMedChem 2022, 17 (9) https://doi.org/10.1002/cmdc.202200016
    37. Chih‐Jung Kuo, Po‐Huang Liang. SARS‐CoV‐2 3CL pro displays faster self‐maturation in vitro than SARS‐CoV 3CL pro due to faster C‐terminal cleavage. FEBS Letters 2022, 596 (9) , 1214-1224. https://doi.org/10.1002/1873-3468.14337
    38. Simone Scavo, Valentina Oliveri. Zinc ionophores: chemistry and biological applications. Journal of Inorganic Biochemistry 2022, 228 , 111691. https://doi.org/10.1016/j.jinorgbio.2021.111691
    39. Leandro Borges, Matheus Gennari-Felipe, Beatriz Belmiro Dias, Elaine Hatanaka. Melatonin, Zinc, and Vitamin C: Potential Adjuvant Treatment for COVID-19 Patients. Frontiers in Nutrition 2022, 8 https://doi.org/10.3389/fnut.2021.821824
    40. Darcia D'mello, Kirankumar Shivasharanappa, Jayashree V. Hanchinalmath, Sharangouda J. Patil. In silico approaches in drug discovery for SARS-CoV-2. 2022, 235-251. https://doi.org/10.1016/B978-0-323-95578-2.00010-8
    41. Raghvendra Dubey, Kushagra Dubey. SARS-CoV-2: Potential Drug Targets and Its Virtual Screening. 2022, 203-244. https://doi.org/10.1007/978-3-030-72834-2_8
    42. Guido Cereda, Valentina Ciappolino, Andrea Boscutti, Filippo Cantù, Paolo Enrico, Lucio Oldani, Giuseppe Delvecchio, Paolo Brambilla. Zinc as a Neuroprotective Nutrient for COVID-19–Related Neuropsychiatric Manifestations: A Literature Review. Advances in Nutrition 2022, 13 (1) , 66-79. https://doi.org/10.1093/advances/nmab110
    43. Shuvasish Choudhury, Debojyoti Moulick, Anupom Borah, Purbajyoti Saikia, Muhammed Khairujjaman Mazumder. In search of drugs to alleviate suppression of the host's innate immune responses against SARS-CoV-2 using a molecular modeling approach. In Silico Pharmacology 2021, 9 (1) https://doi.org/10.1007/s40203-021-00085-y
    44. Ewelina Weglarz-Tomczak, Jakub M. Tomczak, Michał Talma, Małgorzata Burda-Grabowska, Mirosław Giurg, Stanley Brul. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-83229-6
    45. Samia A. Elseginy, Manal M. Anwar. In silico analysis of SARS-CoV-2 papain-like protease potential inhibitors. RSC Advances 2021, 11 (61) , 38616-38631. https://doi.org/10.1039/D1RA07845C
    46. Xuan Tao, Lu Zhang, Liubing Du, Ruyan Liao, Huiling Cai, Kai Lu, Zhennan Zhao, Yanxuan Xie, Pei-Hui Wang, Ji-An Pan, Yuebin Zhang, Guohui Li, Jun Dai, Zong-Wan Mao, Wei Xia. Allosteric inhibition of SARS-CoV-2 3CL protease by colloidal bismuth subcitrate. Chemical Science 2021, 12 (42) , 14098-14102. https://doi.org/10.1039/D1SC03526F
    47. Karthick Dharmalingam, Amandeep Birdi, Sojit Tomo, Karli Sreenivasulu, Jaykaran Charan, Dharmveer Yadav, Purvi Purohit, Praveen Sharma. Trace Elements as Immunoregulators in SARS-CoV-2 and Other Viral Infections. Indian Journal of Clinical Biochemistry 2021, 36 (4) , 416-426. https://doi.org/10.1007/s12291-021-00961-6
    48. Nisa ÇETİN KARGIN. Evaluation of The Knowledge and Attitudes of Patients Admitted to Covid-19 Outpatient Clinic about Traditional and Complementary Medicine. Journal of Contemporary Medicine 2021, 11 (5) , 631-635. https://doi.org/10.16899/jcm.919359
    49. Seyit Ahmet Erol, Naci Polat, Sevginur Akdas, Pelin Aribal Ayral, Ali Taner Anuk, Eda Ozden Tokalioglu, Şule Goncu Ayhan, Burcu Kesikli, Merve Nur Ceylan, Atakan Tanacan, Özlem Moraloglu Tekin, Nuray Yazihan, Dilek Sahin. Maternal selenium status plays a crucial role on clinical outcomes of pregnant women with COVID‐19 infection. Journal of Medical Virology 2021, 93 (9) , 5438-5445. https://doi.org/10.1002/jmv.27064
    50. Stephanie Patchett, Zongyang Lv, Wioletta Rut, Miklos Békés, Marcin Drag, Shaun K. Olsen, Tony T. Huang. A molecular sensor determines the ubiquitin substrate specificity of SARS-CoV-2 papain-like protease. Cell Reports 2021, 36 (13) , 109754. https://doi.org/10.1016/j.celrep.2021.109754
    51. Dorota Skrajnowska, Maja Brumer, Sylwia Kankowska, Magdalena Matysek, Natalia Miazio, Barbara Bobrowska-Korczak. Covid 19: Diet Composition and Health. Nutrients 2021, 13 (9) , 2980. https://doi.org/10.3390/nu13092980
    52. Isha Rani, Anmol Goyal, Mini Bhatnagar, Sunita Manhas, Parul Goel, Amit Pal, Rajendra Prasad. Potential molecular mechanisms of zinc- and copper-mediated antiviral activity on COVID-19. Nutrition Research 2021, 92 , 109-128. https://doi.org/10.1016/j.nutres.2021.05.008
    53. Marjorie C. L. C. Freire, Gabriela D. Noske, Natália V. Bitencourt, Paulo R. S. Sanches, Norival A. Santos-Filho, Victor O. Gawriljuk, Eduardo P. de Souza, Victor H. R. Nogueira, Mariana O. de Godoy, Aline M. Nakamura, Rafaela S. Fernandes, Andre S. Godoy, Maria A. Juliano, Bianca M. Peres, Cecília G. Barbosa, Carolina B. Moraes, Lucio H. G. Freitas-Junior, Eduardo M. Cilli, Rafael V. C. Guido, Glaucius Oliva. Non-Toxic Dimeric Peptides Derived from the Bothropstoxin-I Are Potent SARS-CoV-2 and Papain-like Protease Inhibitors. Molecules 2021, 26 (16) , 4896. https://doi.org/10.3390/molecules26164896
    54. Chew Theng Lim, Kang Wei Tan, Mary Wu, Rachel Ulferts, Lee A. Armstrong, Eiko Ozono, Lucy S. Drury, Jennifer C. Milligan, Theresa U. Zeisner, Jingkun Zeng, Florian Weissmann, Berta Canal, Ganka Bineva-Todd, Michael Howell, Nicola O'Reilly, Rupert Beale, Yogesh Kulathu, Karim Labib, John F.X. Diffley. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp3 papain-like protease. Biochemical Journal 2021, 478 (13) , 2517-2531. https://doi.org/10.1042/BCJ20210244
    55. Saee Gharpure, Balaprasad Ankamwar. Use of nanotechnology in combating coronavirus. 3 Biotech 2021, 11 (7) https://doi.org/10.1007/s13205-021-02905-6
    56. Vartika Srivastava, Aijaz Ahmad. New perspective towards therapeutic regimen against SARS-CoV-2 infection. Journal of Infection and Public Health 2021, 14 (7) , 852-862. https://doi.org/10.1016/j.jiph.2021.05.009
    57. Şeyma TAŞTEMUR, Hilmi ATASEVEN. Quercetin in the treatment and prevention of COVID-19. Cumhuriyet Medical Journal 2021, 43 (2) , 100-116. https://doi.org/10.7197/cmj.939856
    58. Sepideh Mahluji, Mahsa Jalili, Alireza Ostadrahimi, Jamal Hallajzadeh, Vahideh Ebrahimzadeh-Attari, Maryam Saghafi-Asl. Nutritional management of diabetes mellitus during the pandemic of COVID-19: a comprehensive narrative review. Journal of Diabetes & Metabolic Disorders 2021, 20 (1) , 963-972. https://doi.org/10.1007/s40200-021-00784-5
    59. Lin-Sheng Zhuo, Ming-Shu Wang, Jing-Fang Yang, Hong-Chuang Xu, Wei Huang, Lu-Qing Shang, Guang-Fu Yang. Insights into SARS-CoV-2: Medicinal Chemistry Approaches to Combat Its Structural and Functional Biology. Topics in Current Chemistry 2021, 379 (3) https://doi.org/10.1007/s41061-021-00335-9
    60. Daniel Sojka, Pavla Šnebergerová, Luïse Robbertse. Protease Inhibition—An Established Strategy to Combat Infectious Diseases. International Journal of Molecular Sciences 2021, 22 (11) , 5762. https://doi.org/10.3390/ijms22115762
    61. Varada Anirudhan, Hyun Lee, Han Cheng, Laura Cooper, Lijun Rong. Targeting SARS‐CoV‐2 viral proteases as a therapeutic strategy to treat COVID‐19. Journal of Medical Virology 2021, 93 (5) , 2722-2734. https://doi.org/10.1002/jmv.26814
    62. Hailei Su, Feng Zhou, Ziru Huang, Xiaohua Ma, Kathiresan Natarajan, Minchuan Zhang, Yong Huang, Haibin Su. Molecular Insights into Small‐Molecule Drug Discovery for SARS‐CoV‐2. Angewandte Chemie 2021, 133 (18) , 9873-9886. https://doi.org/10.1002/ange.202008835
    63. Hailei Su, Feng Zhou, Ziru Huang, Xiaohua Ma, Kathiresan Natarajan, Minchuan Zhang, Yong Huang, Haibin Su. Molecular Insights into Small‐Molecule Drug Discovery for SARS‐CoV‐2. Angewandte Chemie International Edition 2021, 60 (18) , 9789-9802. https://doi.org/10.1002/anie.202008835
    64. Salvatore Corrao, Raffaella Mallaci Bocchio, Marika Lo Monaco, Giuseppe Natoli, Attilio Cavezzi, Emidio Troiani, Christiano Argano. Does Evidence Exist to Blunt Inflammatory Response by Nutraceutical Supplementation during COVID-19 Pandemic? An Overview of Systematic Reviews of Vitamin D, Vitamin C, Melatonin, and Zinc. Nutrients 2021, 13 (4) , 1261. https://doi.org/10.3390/nu13041261
    65. Robert W. Malone, Philip Tisdall, Philip Fremont-Smith, Yongfeng Liu, Xi-Ping Huang, Kris M. White, Lisa Miorin, Elena Moreno, Assaf Alon, Elise Delaforge, Christopher D. Hennecker, Guanyu Wang, Joshua Pottel, Robert V. Blair, Chad J. Roy, Nora Smith, Julie M. Hall, Kevin M Tomera, Gideon Shapiro, Anthony Mittermaier, Andrew C. Kruse, Adolfo García-Sastre, Bryan L. Roth, Jill Glasspool-Malone, Darrell O. Ricke. COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.633680
    66. Joseph Brewer, Juan Luis Gomez Marti, Adam Brufsky. Potential interventions for SARS‐CoV‐2 infections: Zinc showing promise. Journal of Medical Virology 2021, 93 (3) , 1201-1203. https://doi.org/10.1002/jmv.26523
    67. Peter Ifeoluwa Adegbola, Banjo Semire, Olumide Samuel Fadahunsi, Aanuoluwa Eunice Adegoke. Molecular docking and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates as potential anti-viral drugs for Covid-19. VirusDisease 2021, 32 (1) , 85-97. https://doi.org/10.1007/s13337-021-00682-7
    68. Mukesh Chourasia, Purushotham Koppula, Aruna Battu, Madhu Ouseph, Anil Singh. EGCG, a Green Tea Catechin, as a Potential Therapeutic Agent for Symptomatic and Asymptomatic SARS-CoV-2 Infection. Molecules 2021, 26 (5) , 1200. https://doi.org/10.3390/molecules26051200
    69. Camilla Servidio, Francesco Stellacci. Therapeutic approaches against coronaviruses acute respiratory syndrome. Pharmacology Research & Perspectives 2021, 9 (1) https://doi.org/10.1002/prp2.691
    70. Hardeep Singh Tuli, Shivani Sood, Jagjit Kaur, Pawan Kumar, Prachi Seth, Sandeep Punia, Priya Yadav, Anil Kumar Sharma, Diwakar Aggarwal, Katrin Sak. Mechanistic insight into anti-COVID-19 drugs: recent trends and advancements. 3 Biotech 2021, 11 (2) https://doi.org/10.1007/s13205-021-02644-8
    71. Juwairiah Remali, Wan Mohd Aizat. A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection. Frontiers in Pharmacology 2021, 11 https://doi.org/10.3389/fphar.2020.589044
    72. Pawan Kumar, Indira Ghosh. Molecular Multi-target Approach on COVID-19 for Designing Novel Chemicals. 2021, 179-202. https://doi.org/10.1007/7653_2020_52
    73. Devasena T.. Potential Therapeutic Approaches for SARS CoV2 Infection. 2021, 71-114. https://doi.org/10.1007/978-981-33-6300-7_6
    74. Shaomin Yan, Guang Wu. Spatial and temporal roles of SARS‐CoV PL pro —A snapshot. The FASEB Journal 2021, 35 (1) https://doi.org/10.1096/fj.202002271
    75. Matheus Bertanha, Lenize da Silva Rodrigues, Pedro Luciano Mellucci Filho, Andrei Moroz, Maria Inês de Moura Campos Pardini, Marcone Lima Sobreira, Edison Luiz Durigon, Rafael Rahal Guaragna Machado, Rejane Maria Tommasini Grotto, Marcelo Andrade de Lima, Helena Bonciani Nader, Marli Leite de Moraes, Alexandre Naime Barbosa, Natália Bronzatto Medolago, Fábio Florença Cardoso, Angelo José Magro, Cristiane Rodrigues Guzzo Carvalho, Leonardo Nazário de Moraes, Rita de Cássia Alvarado, Helga Caputo Nunes, Gustavo Constantino de Campos, Vinicius Tadeu Ramos da Silva Grillo, Nathalia Dias Sertorio, Carlos Magno Castelo Branco Fortaleza. Nebulized enriched heparin to treat no critical patients with Sars-Cov-2. Medicine 2021, 100 (51) , e28288. https://doi.org/10.1097/MD.0000000000028288
    76. Susan Arentz, Jennifer Hunter, Guoyan Yang, Joshua Goldenberg, Jennifer Beardsley, Stephen P. Myers, Dominik Mertz, Stephen Leeder. Zinc for the prevention and treatment of SARS-CoV-2 and other acute viral respiratory infections: a rapid review. Advances in Integrative Medicine 2020, 7 (4) , 252-260. https://doi.org/10.1016/j.aimed.2020.07.009
    77. Pawan K. Agrawal, Chandan Agrawal, Gerald Blunden. Quercetin: Antiviral Significance and Possible COVID-19 Integrative Considerations. Natural Product Communications 2020, 15 (12) https://doi.org/10.1177/1934578X20976293
    78. Lise Alschuler, Andrew Weil, Randy Horwitz, Paul Stamets, Ann Marie Chiasson, Robert Crocker, Victoria Maizes. Integrative considerations during the COVID-19 pandemic. EXPLORE 2020, 16 (6) , 354-356. https://doi.org/10.1016/j.explore.2020.03.007
    79. Wioletta Rut, Zongyang Lv, Mikolaj Zmudzinski, Stephanie Patchett, Digant Nayak, Scott J. Snipas, Farid El Oualid, Tony T. Huang, Miklos Bekes, Marcin Drag, Shaun K. Olsen. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Science Advances 2020, 6 (42) https://doi.org/10.1126/sciadv.abd4596
    80. Rohan R. Narkhede, Ashwini V. Pise, Rameshwar S. Cheke, Sachin D. Shinde. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences. Natural Products and Bioprospecting 2020, 10 (5) , 297-306. https://doi.org/10.1007/s13659-020-00253-1
    81. Jayalakshmi Vallamkondu, Albin John, Willayat Yousuf Wani, Suguru Pathinti Ramadevi, Kishore Kumar Jella, P. Hemachandra Reddy, Ramesh Kandimalla. SARS-CoV-2 pathophysiology and assessment of coronaviruses in CNS diseases with a focus on therapeutic targets. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020, 1866 (10) , 165889. https://doi.org/10.1016/j.bbadis.2020.165889
    82. Gayathri Krishna, Vinod Soman Pillai, Mohanan Valiya Veettil. Approaches and advances in the development of potential therapeutic targets and antiviral agents for the management of SARS-CoV-2 infection. European Journal of Pharmacology 2020, 885 , 173450. https://doi.org/10.1016/j.ejphar.2020.173450
    83. Anastasiia I. Petushkova, Andrey A. Zamyatnin. Papain-Like Proteases as Coronaviral Drug Targets: Current Inhibitors, Opportunities, and Limitations. Pharmaceuticals 2020, 13 (10) , 277. https://doi.org/10.3390/ph13100277
    84. Jack A. Henderson, Neha Verma, Robert C. Harris, Ruibin Liu, Jana Shen. Assessment of proton-coupled conformational dynamics of SARS and MERS coronavirus papain-like proteases: Implication for designing broad-spectrum antiviral inhibitors. The Journal of Chemical Physics 2020, 153 (11) https://doi.org/10.1063/5.0020458
    85. Jennifer Hunter, Susan Arentz, Joshua Goldenberg, Guoyan Yang, Jennifer Beardsley, Dominik Mertz, Stephen Leeder. Rapid review protocol: Zinc for the prevention or treatment of COVID-19 and other coronavirus-related respiratory tract infections. Integrative Medicine Research 2020, 9 (3) , 100457. https://doi.org/10.1016/j.imr.2020.100457
    86. F.B. Belen-Apak, F. Sarialioglu. The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases?. Medical Hypotheses 2020, 142 , 109743. https://doi.org/10.1016/j.mehy.2020.109743
    87. Syamal Raha, Rahul Mallick, Sanjay Basak, Asim K. Duttaroy. Is copper beneficial for COVID-19 patients?. Medical Hypotheses 2020, 142 , 109814. https://doi.org/10.1016/j.mehy.2020.109814
    88. Aleksandra Hecel, Małgorzata Ostrowska, Kamila Stokowa-Sołtys, Joanna Wątły, Dorota Dudek, Adriana Miller, Sławomir Potocki, Agnieszka Matera-Witkiewicz, Alicia Dominguez-Martin, Henryk Kozłowski, Magdalena Rowińska-Żyrek. Zinc(II)—The Overlooked Éminence Grise of Chloroquine’s Fight against COVID-19?. Pharmaceuticals 2020, 13 (9) , 228. https://doi.org/10.3390/ph13090228
    89. J P Mossink. Zinc as nutritional intervention and prevention measure for COVID–19 disease. BMJ Nutrition, Prevention & Health 2020, 3 (1) , 111-117. https://doi.org/10.1136/bmjnph-2020-000095
    90. Mohammed S. Razzaque. COVID-19 Pandemic: Can Maintaining Optimal Zinc Balance Enhance Host Resistance?. The Tohoku Journal of Experimental Medicine 2020, 251 (3) , 175-181. https://doi.org/10.1620/tjem.251.175
    91. Manisha Prajapat, Phulen Sarma, Nishant Shekhar, Pramod Avti, Shweta Sinha, Hardeep Kaur, Subodh Kumar, Anusuya Bhattacharyya, Harish Kumar, Seema Bansal, Bikash Medhi. Drug for corona virus: A systematic review. Indian Journal of Pharmacology 2020, 52 (1) , 56. https://doi.org/10.4103/ijp.IJP_115_20
    92. Ruiying Liang, Lili Wang, Naru Zhang, Xiaoqian Deng, Meng Su, Yudan Su, Lanfang Hu, Chen He, Tianlei Ying, Shibo Jiang, Fei Yu. Development of Small-Molecule MERS-CoV Inhibitors. Viruses 2018, 10 (12) , 721. https://doi.org/10.3390/v10120721
    93. Hsu-Feng Chu, Chiao-Che Chen, David C. Moses, Yau-Hung Chen, Chao-Hsiung Lin, Ying-Chieh Tsai, Chi-Yuan Chou. Porcine epidemic diarrhea virus papain-like protease 2 can be noncompetitively inhibited by 6-thioguanine. Antiviral Research 2018, 158 , 199-205. https://doi.org/10.1016/j.antiviral.2018.08.011
    94. Min-Han Lin, David C. Moses, Chih-Hua Hsieh, Shu-Chun Cheng, Yau-Hung Chen, Chiao-Yin Sun, Chi-Yuan Chou. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Research 2018, 150 , 155-163. https://doi.org/10.1016/j.antiviral.2017.12.015
    95. Ben A. Bailey-Elkin, Robert C.M. Knaap, Marjolein Kikkert, Brian L. Mark. Structure and Function of Viral Deubiquitinating Enzymes. Journal of Molecular Biology 2017, 429 (22) , 3441-3470. https://doi.org/10.1016/j.jmb.2017.06.010
    96. André Matagne, Laetitia Bolle, Rachida El Mahyaoui, Danielle Baeyens-Volant, Mohamed Azarkan. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms. Phytochemistry 2017, 138 , 29-51. https://doi.org/10.1016/j.phytochem.2017.02.019
    97. Benjamin W. Neuman. Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles. Antiviral Research 2016, 135 , 97-107. https://doi.org/10.1016/j.antiviral.2016.10.005
    98. Haofeng Wang, Song Xue, Haitao Yang, Cheng Chen. Recent progress in the discovery of inhibitors targeting coronavirus proteases. Virologica Sinica 2016, 31 (1) , 24-30. https://doi.org/10.1007/s12250-015-3711-3
    99. Chonticha Saisawang, Sawanan Saitornuang, Pornpan Sillapee, Sukathida Ubol, Duncan R. Smith, Albert J. Ketterman. Chikungunya nsP2 protease is not a papain-like cysteine protease and the catalytic dyad cysteine is interchangeable with a proximal serine. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep17125
    100. Yuri Kusov, Jinzhi Tan, Enrique Alvarez, Luis Enjuanes, Rolf Hilgenfeld. A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication–transcription complex. Virology 2015, 484 , 313-322. https://doi.org/10.1016/j.virol.2015.06.016
    Load all citations

    Biochemistry

    Cite this: Biochemistry 2005, 44, 30, 10349–10359
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi0504761
    Published July 9, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    1957

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.