ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUECurrent Topics/Persp...Current Topics/PerspectivesNEXT

Monomeric G-Protein-Coupled Receptor as a Functional Unit

View Author Information
Institut de Pharmacologie Moleculaire et Cellulaire, CNRS and Université de Nice-Sophia-Antipolis, 06560 Valbonne, France, and Département de Biologie Joliot-Curie, CNRS, Université Paris XI and CEA Saclay, 91191 Gif sur Yvette, France
Cite this: Biochemistry 2005, 44, 27, 9395–9403
Publication Date (Web):June 18, 2005
https://doi.org/10.1021/bi050720o
Copyright © 2005 American Chemical Society

    Article Views

    1679

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (241 KB)

    Abstract

    Abstract Image

    Rhodopsin, the first purified G-protein-coupled receptor (GPCR), was characterized as a functional monomer 30 year ago, but dimerization of GPCRs recently became the new paradigm of signal transduction. It has even been claimed, on the basis of recent biophysical and biochemical studies, that this new concept could be extended to higher-order oligomerization. Here this view is challenged. The new studies of rhodopsin and other simple (class 1a) GPCRs solubilized in detergent are re-assessed and are compared to the earlier classical studies of rhodopsin and other membrane proteins solubilized in detergent. The new studies are found to strengthen rather than invalidate the conclusions of the early ones and to support a monomeric model for rhodopsin and other class 1a GPCRs. A molecular model is proposed for the functional coupling of a rhodopsin monomeric unit with a G-protein heterotrimer. This model should be valid even for GPCRs that exist as structural dimers.

    *

     To whom correspondence should be addressed:  CNRS/IPMC, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France. Phone:  33 493957775. Fax:  33 493957710. E-mail:  [email protected].

     CNRS and Université de Nice-Sophia-Antipolis.

    §

     Université Paris XI and CEA Saclay.

    Cited By

    This article is cited by 178 publications.

    1. Urjita H. Shah, Javier González-Maeso. Serotonin and Glutamate Interactions in Preclinical Schizophrenia Models. ACS Chemical Neuroscience 2019, 10 (7) , 3068-3077. https://doi.org/10.1021/acschemneuro.9b00044
    2. Suchithranga M. D. C. Perera, Udeep Chawla, Utsab R. Shrestha, Debsindhu Bhowmik, Andrey V. Struts, Shuo Qian, Xiang-Qiang Chu, Michael F. Brown. Small-Angle Neutron Scattering Reveals Energy Landscape for Rhodopsin Photoactivation. The Journal of Physical Chemistry Letters 2018, 9 (24) , 7064-7071. https://doi.org/10.1021/acs.jpclett.8b03048
    3. Rabindra V. Shivnaraine, Xi-Ping Huang, Margaret Seidenberg, John Ellis, and James W. Wells . Heterotropic Cooperativity within and between Protomers of an Oligomeric M2 Muscarinic Receptor. Biochemistry 2012, 51 (22) , 4518-4540. https://doi.org/10.1021/bi3000287
    4. Eeva-Liisa Karjalainen and Andreas Barth . Vibrational Coupling between Helices Influences the Amide I Infrared Absorption of Proteins: Application to Bacteriorhodopsin and Rhodopsin. The Journal of Physical Chemistry B 2012, 116 (15) , 4448-4456. https://doi.org/10.1021/jp300329k
    5. Francesca Fanelli and Pier G. De Benedetti . Update 1 of: Computational Modeling Approaches to Structure–Function Analysis of G Protein-Coupled Receptors. Chemical Reviews 2011, 111 (12) , PR438-PR535. https://doi.org/10.1021/cr100437t
    6. Heejung Kim, Byung-Kwon Lee, Fred Naider and Jeffrey M. Becker . Identification of Specific Transmembrane Residues and Ligand-Induced Interface Changes Involved In Homo-Dimer Formation of a Yeast G Protein-Coupled Receptor. Biochemistry 2009, 48 (46) , 10976-10987. https://doi.org/10.1021/bi901291c
    7. Beata Jastrzebska, Anna Goc, Marcin Golczak and Krzysztof Palczewski . Phospholipids Are Needed for the Proper Formation, Stability, and Function of the Photoactivated Rhodopsin−Transducin Complex. Biochemistry 2009, 48 (23) , 5159-5170. https://doi.org/10.1021/bi900284x
    8. Shui-Lin Niu, Brian Doctrow and Drake C. Mitchell. Rhodopsin Activity Varies in Proteoliposomes Prepared by Different Techniques. Biochemistry 2009, 48 (1) , 156-163. https://doi.org/10.1021/bi801835s
    9. Hugues Nury, Florence Manon, Bertrand Arnou, Marc le Maire, Eva Pebay-Peyroula and Christine Ebel. Mitochondrial Bovine ADP/ATP Carrier in Detergent Is Predominantly Monomeric but Also Forms Multimeric Species. Biochemistry 2008, 47 (47) , 12319-12331. https://doi.org/10.1021/bi801053m
    10. Daniele Casciari, Daniele Dell’Orco and Francesca Fanelli. Homodimerization of Neurotensin 1 Receptor Involves Helices 1, 2, and 4: Insights from Quaternary Structure Predictions and Dimerization Free Energy Estimations. Journal of Chemical Information and Modeling 2008, 48 (8) , 1669-1678. https://doi.org/10.1021/ci800048d
    11. Francesca Fanelli and, Pier G. De Benedetti. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chemical Reviews 2005, 105 (9) , 3297-3351. https://doi.org/10.1021/cr000095n
    12. Daisuke Ibi. Role of interaction of mGlu2 and 5-HT2A receptors in antipsychotic effects. Pharmacology Biochemistry and Behavior 2022, 221 , 173474. https://doi.org/10.1016/j.pbb.2022.173474
    13. Willem J. de Grip, Srividya Ganapathy. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.879609
    14. William E. McIntire. A model for how Gβγ couples Gα to GPCR. Journal of General Physiology 2022, 154 (5) https://doi.org/10.1085/jgp.202112982
    15. Claire M. Grison, Paul Lambey, Sylvain Jeannot, Elise Del Nero, Simon Fontanel, Fanny Peysson, Joyce Heuninck, Rémy Sounier, Thierry Durroux, Cédric Leyrat, Sébastien Granier, Cherine Bechara. Molecular insights into mechanisms of GPCR hijacking by Staphylococcus aureus. Proceedings of the National Academy of Sciences 2021, 118 (42) https://doi.org/10.1073/pnas.2108856118
    16. Francesca Fanelli, Angelo Felline, Valeria Marigo. Structural aspects of rod opsin and their implication in genetic diseases. Pflügers Archiv - European Journal of Physiology 2021, 473 (9) , 1339-1359. https://doi.org/10.1007/s00424-021-02546-x
    17. Paul S.-H. Park. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Pflügers Archiv - European Journal of Physiology 2021, 473 (9) , 1361-1376. https://doi.org/10.1007/s00424-021-02522-5
    18. Deo R. Singh, Kalpana Pandey, Ashish K. Mishra, Pankaj Pandey, Victor Vivcharuk. Glutamate binding triggers monomerization of unliganded mGluR2 dimers. Archives of Biochemistry and Biophysics 2021, 697 , 108632. https://doi.org/10.1016/j.abb.2020.108632
    19. Angelo Felline, Davide Schiroli, Antonella Comitato, Valeria Marigo, Francesca Fanelli. Structure network-based landscape of rhodopsin misfolding by mutations and algorithmic prediction of small chaperone action. Computational and Structural Biotechnology Journal 2021, 19 , 6020-6038. https://doi.org/10.1016/j.csbj.2021.10.040
    20. Akira Saito, Daiki Tsuchiya, Seiji Sato, Atsushi Okamoto, Yoichi Murakami, Kenji Mizuguchi, Hiroyuki Toh, Wataru Nemoto. Update of the GRIP web service. Journal of Receptors and Signal Transduction 2020, 40 (4) , 348-356. https://doi.org/10.1080/10799893.2020.1734821
    21. Rafael Medina, Deisy Perdomo, Carolina Möller, José Bubis. Cross-linking of bovine rhodopsin with sulfosuccinimidyl 4-( N maleimidomethyl)cyclohexane-1-carboxylate affects its functionality. Biochemical Journal 2020, 477 (12) , 2295-2312. https://doi.org/10.1042/BCJ20200376
    22. J. Joe Hull, Adrien Fónagy. A Sexy Moth Model – The Molecular Basis of Sex Pheromone Biosynthesis in the Silkmoth Bombyx mori. 2020, 111-150. https://doi.org/10.1007/978-981-15-3082-1_6
    23. Beata Jastrzebska, Joseph T. Ortega, Paul S.-H. Park. Supramolecular structure of opsins. 2020, 81-95. https://doi.org/10.1016/B978-0-12-816228-6.00005-2
    24. Salvador Sierra, Rudy Toneatti, Javier González-Maeso. Class A GPCR oligomerization. 2020, 121-140. https://doi.org/10.1016/B978-0-12-816228-6.00008-8
    25. Urjita Shah, Hanna Pincas, Stuart C. Sealfon, Javier González-Maeso. Structure and function of serotonin GPCR heteromers. 2020, 217-238. https://doi.org/10.1016/B978-0-444-64125-0.00011-6
    26. Paul S.-H. Park. Rhodopsin Oligomerization and Aggregation. The Journal of Membrane Biology 2019, 252 (4-5) , 413-423. https://doi.org/10.1007/s00232-019-00078-1
    27. Tatiana B. Feldman, Oleksandr I. Ivankov, Alexander I. Kuklin, Tatiana N. Murugova, Marina A. Yakovleva, Olga A. Smitienko, Irina B. Kolchugina, Adam Round, Valentin I. Gordeliy, Alexander V. Belushkin, Mikhail A. Ostrovsky. Small-angle neutron and X-ray scattering analysis of the supramolecular organization of rhodopsin in photoreceptor membrane. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019, 1861 (10) , 183000. https://doi.org/10.1016/j.bbamem.2019.05.022
    28. Nizar A. Al-Shar'i, Qosay A. Al-Balas. Molecular Dynamics Simulations of Adenosine Receptors: Advances, Applications and Trends. Current Pharmaceutical Design 2019, 25 (7) , 783-816. https://doi.org/10.2174/1381612825666190304123414
    29. Estefanía Moreno, Milena Cavic, Ana Krivokuca, Vicent Casadó, Enric Canela. The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet?. Frontiers in Pharmacology 2019, 10 https://doi.org/10.3389/fphar.2019.00339
    30. Kim C. Jonas, Aylin C. Hanyaloglu. Analysis of Spatial Assembly of GPCRs Using Photoactivatable Dyes and Localization Microscopy. 2019, 337-348. https://doi.org/10.1007/978-1-4939-9121-1_19
    31. Verònica Casadó-Anguera, Estefanía Moreno, Josefa Mallol, Sergi Ferré, Enric I. Canela, Antoni Cortés, Vicent Casadó. Reinterpreting anomalous competitive binding experiments within G protein-coupled receptor homodimers using a dimer receptor model. Pharmacological Research 2019, 139 , 337-347. https://doi.org/10.1016/j.phrs.2018.11.032
    32. Antoni Cortés, Verònica Casadó-Anguera, Estefanía Moreno, Vicent Casadó. The heterotetrameric structure of the adenosine A1-dopamine D1 receptor complex: Pharmacological implication for restless legs syndrome. 2019, 37-78. https://doi.org/10.1016/bs.apha.2019.01.001
    33. Derya Meral, Davide Provasi, Diego Prada-Gracia, Jan Möller, Kristen Marino, Martin J. Lohse, Marta Filizola. Molecular details of dimerization kinetics reveal negligible populations of transient µ-opioid receptor homodimers at physiological concentrations. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-26070-8
    34. Diego Guidolin, Manuela Marcoli, Cinzia Tortorella, Guido Maura, Luigi F. Agnati. G protein-coupled receptor-receptor interactions give integrative dynamics to intercellular communication. Reviews in the Neurosciences 2018, 29 (7) , 703-726. https://doi.org/10.1515/revneuro-2017-0087
    35. Vsevolod V. Gurevich, Eugenia V. Gurevich. GPCRs and Signal Transducers: Interaction Stoichiometry. Trends in Pharmacological Sciences 2018, 39 (7) , 672-684. https://doi.org/10.1016/j.tips.2018.04.002
    36. Kim C. Jonas, Aylin C. Hanyaloglu. Super-Resolution Imaging as a Method to Study GPCR Dimers and Higher-Order Oligomers. 2018, 329-343. https://doi.org/10.1007/978-1-4939-8576-0_21
    37. James H. Felce, Sarah L. Latty, Rachel G. Knox, Susan R. Mattick, Yuan Lui, Steven F. Lee, David Klenerman, Simon J. Davis. Receptor Quaternary Organization Explains G Protein-Coupled Receptor Family Structure. Cell Reports 2017, 20 (11) , 2654-2665. https://doi.org/10.1016/j.celrep.2017.08.072
    38. Natalia C. Fern?ndez, Carina Shayo, Carlos Davio, Federico Monczor. Histamine H2 Receptor Biased Signaling Methods. 2017, 67-114. https://doi.org/10.1007/978-1-4939-6843-5_4
    39. Qing R. Fan, William Y. Guo, Yong Geng, Marisa G. Evelyn. Class C GPCR: Obligatory Heterodimerization of GABAB Receptor. 2017, 307-325. https://doi.org/10.1007/978-3-319-60174-8_12
    40. Bin Fan, Ying-Jian Sun, Shu-Yan Liu, Lin Che, Guang-Yu Li. Neuroprotective Strategy in Retinal Degeneration: Suppressing ER Stress-Induced Cell Death via Inhibition of the mTOR Signal. International Journal of Molecular Sciences 2017, 18 (1) , 201. https://doi.org/10.3390/ijms18010201
    41. Jesús Giraldo, Jordi Ortiz, James Dalton, Bin Zhou. Examining Allosterism in a Dimeric G-Protein-Coupled Receptor Context. 2016, 97-130. https://doi.org/10.1039/9781782629276-00097
    42. Ashish K. Mishra, Megan Gragg, Michael R. Stoneman, Gabriel Biener, Julie A. Oliver, Przemyslaw Miszta, Slawomir Filipek, Valerică Raicu, Paul S.-H. Park. Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochemical Journal 2016, 473 (21) , 3819-3836. https://doi.org/10.1042/BCJ20160422
    43. Tao Zhang, Li-Hui Cao, Sandeep Kumar, Nduka O. Enemchukwu, Ning Zhang, Alyssia Lambert, Xuchen Zhao, Alex Jones, Shixian Wang, Emily M. Dennis, Amrita Fnu, Sam Ham, Jon Rainier, King-Wai Yau, Yingbin Fu. Dimerization of visual pigments in vivo. Proceedings of the National Academy of Sciences 2016, 113 (32) , 9093-9098. https://doi.org/10.1073/pnas.1609018113
    44. Junior Tayou, Qiang Wang, Geeng-Fu Jang, Alexey N. Pronin, Cesare Orlandi, Kirill A. Martemyanov, John W. Crabb, Vladlen Z. Slepak. Regulator of G Protein Signaling 7 (RGS7) Can Exist in a Homo-oligomeric Form That Is Regulated by Gαo and R7-binding Protein. Journal of Biological Chemistry 2016, 291 (17) , 9133-9147. https://doi.org/10.1074/jbc.M115.694075
    45. Gabriela Antunes, Fabio Marques Simoes de Souza. Olfactory receptor signaling. 2016, 127-145. https://doi.org/10.1016/bs.mcb.2015.11.003
    46. Kim C. Jonas, Ilpo Huhtaniemi, Aylin C. Hanyaloglu. Single-molecule resolution of G protein-coupled receptor (GPCR) complexes. 2016, 55-72. https://doi.org/10.1016/bs.mcb.2015.11.005
    47. Karl-Wilhelm Koch, Daniele Dell’Orco. Protein and Signaling Networks in Vertebrate Photoreceptor Cells. Frontiers in Molecular Neuroscience 2015, 8 https://doi.org/10.3389/fnmol.2015.00067
    48. Sarah L. Latty, James H. Felce, Laura Weimann, Steven F. Lee, Simon J. Davis, David Klenerman. Referenced Single-Molecule Measurements Differentiate between GPCR Oligomerization States. Biophysical Journal 2015, 109 (9) , 1798-1806. https://doi.org/10.1016/j.bpj.2015.09.004
    49. T. B. Feldman, O. I. Ivankov, T. N. Murugova, A. I. Kuklin, P. V. Shelyakin, M. A. Yakovleva, V. I. Gordeliy, A. V. Belushkin, M. A. Ostrovsky. Study of visual pigment rhodopsin supramolecular organization in photoreceptor membrane by small-angle neutron scattering method with contrast variation. Doklady Biochemistry and Biophysics 2015, 465 (1) , 420-423. https://doi.org/10.1134/S1607672915060186
    50. Beata Jastrzebska, Yuanyuan Chen, Tivadar Orban, Hui Jin, Lukas Hofmann, Krzysztof Palczewski. Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface. Journal of Biological Chemistry 2015, 290 (42) , 25728-25744. https://doi.org/10.1074/jbc.M115.662684
    51. Sergi Ferré, Vicent Casadó, Lakshmi A. Devi, Marta Filizola, Ralf Jockers, Martin J. Lohse, Graeme Milligan, Jean-Philippe Pin, Xavier Guitart, . G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives. Pharmacological Reviews 2014, 66 (2) , 413-434. https://doi.org/10.1124/pr.113.008052
    52. Kjell Fuxe, Dasiel O Borroto-Escuela, Wilber Romero-Fernandez, Miklós Palkovits, Alexander O Tarakanov, Francisco Ciruela, Luigi F Agnati. Moonlighting Proteins and Protein–Protein Interactions as Neurotherapeutic Targets in the G Protein-Coupled Receptor Field. Neuropsychopharmacology 2014, 39 (1) , 131-155. https://doi.org/10.1038/npp.2013.242
    53. David Roche, Debora Gil, Jesús Giraldo. Mathematical Modeling of G Protein-Coupled Receptor Function: What Can We Learn from Empirical and Mechanistic Models?. 2014, 159-181. https://doi.org/10.1007/978-94-007-7423-0_8
    54. Jose M Duarte, Nikhil Biyani, Kumaran Baskaran, Guido Capitani. An analysis of oligomerization interfaces in transmembrane proteins. BMC Structural Biology 2013, 13 (1) https://doi.org/10.1186/1472-6807-13-21
    55. Daniele Dell‧Orco. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors. FEBS Letters 2013, 587 (13) , 2060-2066. https://doi.org/10.1016/j.febslet.2013.05.017
    56. Suparna Patowary, Elisa Alvarez-Curto, Tian-Rui Xu, Jessica D. Holz, Julie A. Oliver, Graeme Milligan, Valerică Raicu. The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane. Biochemical Journal 2013, 452 (2) , 303-312. https://doi.org/10.1042/BJ20121902
    57. Jiang-Fan Chen, Holger K. Eltzschig, Bertil B. Fredholm. Adenosine receptors as drug targets — what are the challenges?. Nature Reviews Drug Discovery 2013, 12 (4) , 265-286. https://doi.org/10.1038/nrd3955
    58. Lorenzo Cangiano, Daniele Dell'Orco. Detecting single photons: A supramolecular matter?. FEBS Letters 2013, 587 (1) , 1-4. https://doi.org/10.1016/j.febslet.2012.11.015
    59. Natsumi Mizuno, Tokiko Suzuki, Yu Kishimoto, Noriyasu Hirasawa. Biochemical Assay of G Protein-Coupled Receptor Oligomerization. 2013, 213-227. https://doi.org/10.1016/B978-0-12-408143-7.00012-8
    60. Kim C. Jonas, Adolfo Rivero-Müller, Ilpo T. Huhtaniemi, Aylin C. Hanyaloglu. G Protein-Coupled Receptor Transactivation. 2013, 433-450. https://doi.org/10.1016/B978-0-12-408143-7.00023-2
    61. Satoshi Yasuda, Hideyuki Hara, Fumio Tokunaga, Toshiaki Arata. Spatial arrangement of rhodopsin in retinal rod outer segment membranes studied by spin-labeling and pulsed electron double resonance. Biochemical and Biophysical Research Communications 2012, 425 (2) , 134-137. https://doi.org/10.1016/j.bbrc.2012.07.040
    62. Katharine Herrick-Davis, Ellinor Grinde, Tara Lindsley, Ann Cowan, Joseph E. Mazurkiewicz. Oligomer Size of the Serotonin 5-Hydroxytryptamine 2C (5-HT2C) Receptor Revealed by Fluorescence Correlation Spectroscopy with Photon Counting Histogram Analysis. Journal of Biological Chemistry 2012, 287 (28) , 23604-23614. https://doi.org/10.1074/jbc.M112.350249
    63. Tai-Yang Kim, Thomas Schlieter, Sebastian Haase, Ulrike Alexiev. Activation and molecular recognition of the GPCR rhodopsin – Insights from time-resolved fluorescence depolarisation and single molecule experiments. European Journal of Cell Biology 2012, 91 (4) , 300-310. https://doi.org/10.1016/j.ejcb.2011.03.009
    64. Martin J. Lohse, Susanne Nuber, Carsten Hoffmann, . Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling. Pharmacological Reviews 2012, 64 (2) , 299-336. https://doi.org/10.1124/pr.110.004309
    65. Gina M. Whitaker, Francis C. Lynn, Christopher H. S. McIntosh, Eric A. Accili, . Regulation of GIP and GLP1 Receptor Cell Surface Expression by N-Glycosylation and Receptor Heteromerization. PLoS ONE 2012, 7 (3) , e32675. https://doi.org/10.1371/journal.pone.0032675
    66. V. I. Govardovskii, M. L. Firsov. Unknown Mechanisms Regulating the GPCR Signal Cascade in Vertebrate Photoreceptors. Neuroscience and Behavioral Physiology 2012, 42 (2) , 180-192. https://doi.org/10.1007/s11055-011-9551-1
    67. Milt Teitler, Michael T. Klein. A new approach for studying GPCR dimers: Drug-induced inactivation and reactivation to reveal GPCR dimer function in vitro, in primary culture, and in vivo. Pharmacology & Therapeutics 2012, 133 (2) , 205-217. https://doi.org/10.1016/j.pharmthera.2011.10.007
    68. Marjorie Damian, Jacky Marie, Jean-Philippe Leyris, Jean-Alain Fehrentz, Pascal Verdié, Jean Martinez, Jean-Louis Banères, Sophie Mary. High Constitutive Activity Is an Intrinsic Feature of Ghrelin Receptor Protein. Journal of Biological Chemistry 2012, 287 (6) , 3630-3641. https://doi.org/10.1074/jbc.M111.288324
    69. D. Provasi, M. Filizola. 9.8 G Protein Coupled Receptors. 2012, 123-148. https://doi.org/10.1016/B978-0-12-374920-8.00911-5
    70. Geoffrey Burnstock, Alexei Verkhratsky. Receptors for Purines and Pyrimidines. 2012, 119-244. https://doi.org/10.1007/978-3-642-28863-0_5
    71. Vsevolod V. Gurevich, Susan M. Hanson, Xiufeng Song, Sergey A. Vishnivetskiy, Eugenia V. Gurevich. The functional cycle of visual arrestins in photoreceptor cells. Progress in Retinal and Eye Research 2011, 30 (6) , 405-430. https://doi.org/10.1016/j.preteyeres.2011.07.002
    72. Tian-Rui Xu, Richard J. Ward, John D. Pediani, Graeme Milligan. The orexin OX1 receptor exists predominantly as a homodimer in the basal state: potential regulation of receptor organization by both agonist and antagonist ligands. Biochemical Journal 2011, 439 (1) , 171-183. https://doi.org/10.1042/BJ20110230
    73. Catherine Marquer, Carole Fruchart-Gaillard, Guillaume Letellier, Elodie Marcon, Gilles Mourier, Sophie Zinn-Justin, André Ménez, Denis Servent, Bernard Gilquin. Structural Model of Ligand-G Protein-coupled Receptor (GPCR) Complex Based on Experimental Double Mutant Cycle Data. Journal of Biological Chemistry 2011, 286 (36) , 31661-31675. https://doi.org/10.1074/jbc.M111.261404
    74. Alan Grossfield. Recent progress in the study of G protein-coupled receptors with molecular dynamics computer simulations. Biochimica et Biophysica Acta (BBA) - Biomembranes 2011, 1808 (7) , 1868-1878. https://doi.org/10.1016/j.bbamem.2011.03.010
    75. Víctor Lórenz‐Fonfría, Alex Perálvarez‐Marín, Esteve Padrós, Tzvetana Lazarova. Solubilization, Purification, and Characterization of Integral Membrane Proteins. 2011, 317-360. https://doi.org/10.1002/9783527634521.ch12
    76. N. Ya. Orlov, T. G. Orlova, A. R. Nezvetsky, E. A. Burstein, H. D. Bartunik. Interaction between the main components of the vertebrate retinal rod phototransduction system in solutions of detergent n-nonyl-β-D-glucoside. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology 2011, 5 (2) , 121-127. https://doi.org/10.1134/S199074781102005X
    77. Satita Tapaneeyakorn, Alan D. Goddard, Joanne Oates, Christine L. Willis, Anthony Watts. Solution- and solid-state NMR studies of GPCRs and their ligands. Biochimica et Biophysica Acta (BBA) - Biomembranes 2011, 1808 (6) , 1462-1475. https://doi.org/10.1016/j.bbamem.2010.10.003
    78. Diego Guidolin, Francisco Ciruela, Susanna Genedani, Michele Guescini, Cinzia Tortorella, Giovanna Albertin, Kjell Fuxe, Luigi Francesco Agnati. Bioinformatics and mathematical modelling in the study of receptor–receptor interactions and receptor oligomerization. Biochimica et Biophysica Acta (BBA) - Biomembranes 2011, 1808 (5) , 1267-1283. https://doi.org/10.1016/j.bbamem.2010.09.022
    79. Bertil B. Fredholm, Adriaan P. IJzerman, Kenneth A. Jacobson, Joel Linden, Christa E. Müller. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors—An Update. Pharmacological Reviews 2011, 63 (1) , 1-34. https://doi.org/10.1124/pr.110.003285
    80. Martha E. Sommer, Klaus Peter Hofmann, Martin Heck. Arrestin-Rhodopsin Binding Stoichiometry in Isolated Rod Outer Segment Membranes Depends on the Percentage of Activated Receptors. Journal of Biological Chemistry 2011, 286 (9) , 7359-7369. https://doi.org/10.1074/jbc.M110.204941
    81. Yun Rose Li, Hiroaki Matsunami. Activation State of the M3 Muscarinic Acetylcholine Receptor Modulates Mammalian Odorant Receptor Signaling. Science Signaling 2011, 4 (155) https://doi.org/10.1126/scisignal.2001230
    82. Lamia Achour, Maud Kamal, Ralf Jockers, Stefano Marullo. Using Quantitative BRET to Assess G Protein-Coupled Receptor Homo- and Heterodimerization. 2011, 183-200. https://doi.org/10.1007/978-1-61779-160-4_9
    83. Timothy H. Bayburt, Sergey A. Vishnivetskiy, Mark A. McLean, Takefumi Morizumi, Chih-chin Huang, John J.G. Tesmer, Oliver P. Ernst, Stephen G. Sligar, Vsevolod V. Gurevich. Monomeric Rhodopsin Is Sufficient for Normal Rhodopsin Kinase (GRK1) Phosphorylation and Arrestin-1 Binding. Journal of Biological Chemistry 2011, 286 (2) , 1420-1428. https://doi.org/10.1074/jbc.M110.151043
    84. Jean-Pierre Vilardaga, Luigi F. Agnati, Kjell Fuxe, Francisco Ciruela. G-protein-coupled receptor heteromer dynamics. Journal of Cell Science 2010, 123 (24) , 4215-4220. https://doi.org/10.1242/jcs.063354
    85. Kévin Darbandi‐Tehrani, Patricia Hermand, Stéphanie Carvalho, Karim Dorgham, Alain Couvineau, Jean‐Jacques Lacapère, Christophe Combadière, Philippe Deterre. Subtle conformational changes between CX3CR1 genetic variants as revealed by resonance energy transfer assays. The FASEB Journal 2010, 24 (11) , 4585-4598. https://doi.org/10.1096/fj.10-156612
    86. Hiroyasu Nakata, Tokiko Suzuki, Kazunori Namba, Koshi Oyanagi. Dimerization of G protein-coupled purinergic receptors: increasing the diversity of purinergic receptor signal responses and receptor functions. Journal of Receptors and Signal Transduction 2010, 30 (5) , 337-346. https://doi.org/10.3109/10799893.2010.509729
    87. Adam J. Kuszak, Xiao Jie Yao, Sören G.F. Rasmussen, Brian K. Kobilka, Roger K. Sunahara. Functional studies of isolated GPCR-G protein complexes in the membrane bilayer of lipoprotein particles. 2010, 32-52. https://doi.org/10.1017/CBO9780511760334.003
    88. Jean Philippe Pin, Damien Maurel, Laetitia Comps-Agrar, Carine Monnier, Marie-Laure Rives, Etienne Doumazane, Philippe Rondard, Thierry Durroux, Laurent Prézeau, Erin Trinquet. Time-resolved FRET approaches to study GPCR complexes. 2010, 67-89. https://doi.org/10.1017/CBO9780511760334.005
    89. Lauren T. May, Nicholas D. Holliday, Stephen J. Hill. The Evolving Pharmacology of GPCRs. 2010, 27-60. https://doi.org/10.1002/9780470627327.ch2
    90. Ingrid Gsandtner, Christian W. Gruber, Michael Freissmuth. Receptor‐Mediated G Protein Activation: How, How Many, and Where?. 2010, 88-112. https://doi.org/10.1002/9780470627327.ch4
    91. Catherine Marquer, Carole Fruchart‐Gaillard, Gilles Mourier, Olivier Grandjean, Emmanuelle Girard, Marc le Maire, Spencer Brown, Denis Servent. Influence of MT7 toxin on the oligomerization state of the M 1 muscarinic receptor 1. Biology of the Cell 2010, 102 (7) , 409-420. https://doi.org/10.1042/BC20090171
    92. Christina Kuhn, Bernd Bufe, Claudia Batram, Wolfgang Meyerhof. Oligomerization of TAS2R Bitter Taste Receptors. Chemical Senses 2010, 35 (5) , 395-406. https://doi.org/10.1093/chemse/bjq027
    93. Augen A. Pioszak, Kaleeckal G. Harikumar, Naomi R. Parker, Laurence J. Miller, H.Eric Xu. Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation. Journal of Biological Chemistry 2010, 285 (16) , 12435-12444. https://doi.org/10.1074/jbc.M109.093138
    94. Jonathan A. Hern, Asma H. Baig, Gregory I. Mashanov, Berry Birdsall, John E. T. Corrie, Sebastian Lazareno, Justin E. Molloy, Nigel J. M. Birdsall. Formation and dissociation of M 1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proceedings of the National Academy of Sciences 2010, 107 (6) , 2693-2698. https://doi.org/10.1073/pnas.0907915107
    95. Laure Arcemisbéhère, Tuhinadri Sen, Laure Boudier, Marie-Noëlle Balestre, Gérald Gaibelet, Emilie Detouillon, Hélène Orcel, Christiane Mendre, Rita Rahmeh, Sébastien Granier, Corinne Vivès, Franck Fieschi, Marjorie Damian, Thierry Durroux, Jean-Louis Banères, Bernard Mouillac. Leukotriene BLT2 Receptor Monomers Activate the Gi2 GTP-binding Protein More Efficiently than Dimers. Journal of Biological Chemistry 2010, 285 (9) , 6337-6347. https://doi.org/10.1074/jbc.M109.083477
    96. Hui Zheng, Horace H. Loh, Ping‐Yee Law. Agonist‐selective signaling of G protein‐coupled receptor: Mechanisms and implications. IUBMB Life 2010, 62 (2) , 112-119. https://doi.org/10.1002/iub.293
    97. Irina S. Moreira, Lei Shi, Zachary Freyberg, Spencer S. Ericksen, Harel Weinstein, Jonathan A. Javitch. Structural Basis of Dopamine Receptor Activation. 2010, 47-73. https://doi.org/10.1007/978-1-60327-333-6_3
    98. Piers C. Emson, Henry J. Waldvogel, Richard L.M. Faull. Neurotransmitter Receptors in the Basal Ganglia. 2010, 75-96. https://doi.org/10.1016/B978-0-12-374767-9.00004-4
    99. Javier González-Maeso, Stuart C. Sealfon. Hormone Signaling Via G Protein–Coupled Receptors. 2010, 83-105. https://doi.org/10.1016/B978-1-4160-5583-9.00005-8
    100. Xavier Rovira, Jean-Philippe Pin, Jesús Giraldo. The asymmetric/symmetric activation of GPCR dimers as a possible mechanistic rationale for multiple signalling pathways. Trends in Pharmacological Sciences 2010, 31 (1) , 15-21. https://doi.org/10.1016/j.tips.2009.10.008
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect