ACS Publications. Most Trusted. Most Cited. Most Read
α-RgIA:  A Novel Conotoxin That Specifically and Potently Blocks the α9α10 nAChR,
My Activity
    Article

    α-RgIA:  A Novel Conotoxin That Specifically and Potently Blocks the α9α10 nAChR,
    Click to copy article linkArticle link copied!

    View Author Information
    Departments of Biology, Pathology, and Psychiatry, University of Utah, Salt Lake City, Utah 84112, and Instituto Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires 1428, Argentina
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2006, 45, 5, 1511–1517
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi0520129
    Published January 13, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits assemble to form the α9α10 nAChR subtype. This receptor is believed to mediate cholinergic synaptic transmission between efferent olivocochlear fibers and the hair cells of the cochlea. In addition α9 and/or α10 expression has been described in dorsal root ganglion neurons, lymphocytes, skin keratinocytes, and the pars tuberalis of the pituitary. Specific antagonists that selectively block the α9α10 channel could be valuable tools for elucidating its role in these diverse tissues. This study describes a novel α-conotoxin from the Western Atlantic species Conus regius, α-conotoxin RgIA (α-RgIA), that is a subtype specific blocker of the α9α10 nAChR. α-RgIA belongs to the α4/3 subfamily of the α-conotoxin family; sequence and subtype specificity comparisons between α-RgIA and previously characterized α4/3 toxins indicate that the amino acids in the C-terminal half of α-RgIA are responsible for its preferential inhibition of the α9α10 nAChR subtype.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     This work was supported by an International Research Scholar grant from the Howard Hughes Medical Institute, the Agencia Nacional de Promoción Científica y Tecnológica, the University of Buenos Aires (A.B.E.), and National Institutes of Health Grants GM48677 and MH53631.

     The sequence of the fragment of the α-RgIA precursor gene has been deposited at GenBank (accession code DQ239610).

    *

     To whom correspondence should be addressed. Mailing address:  Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840. Tel:  (801) 581-8370. Fax:  (801) 585-5010. E-mail:  [email protected].

    §

     Department of Biology, University of Utah.

     Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires.

     Department of Pathology, University of Utah.

    #

     Department of Psychiatry, University of Utah.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 146 publications.

    1. Layla Azam, Sean B. Christensen, Zoha Riaz, Anne Kendell, Jennison Cull, Arik J. Hone, J. Michael McIntosh. α9-Containing Nicotinic Acetylcholine Receptors Are Required for RgIA-5474 Attenuation of Chemotherapy-Induced Neuropathic Pain. ACS Pharmacology & Translational Science 2024, 7 (12) , 3935-3944. https://doi.org/10.1021/acsptsci.4c00454
    2. Hina Andleeb, Roger L. Papke, Clare Stokes, Katrin Richter, Sara M. Herz, Ka Chiang, Siva R. Raju Kanumuri, Abhisheak Sharma, M. Imad Damaj, Veronika Grau, Nicole A. Horenstein, Ganesh A. Thakur. Explorations of Agonist Selectivity for the α9* nAChR with Novel Substituted Carbamoyl/Amido/Heteroaryl Dialkylpiperazinium Salts and Their Therapeutic Implications in Pain and Inflammation. Journal of Medicinal Chemistry 2024, 67 (11) , 8642-8666. https://doi.org/10.1021/acs.jmedchem.3c02429
    3. Clelia Dallanoce, Katrin Richter, Clare Stokes, Claudio Papotto, Hina Andleeb, Ganesh A. Thakur, Andrew Kerr, Veronika Grau, Roger L. Papke. New Alpha9 nAChR Ligands Based on a 5-(Quinuclidin-3-ylmethyl)-1,2,4-oxadiazole Scaffold. ACS Chemical Neuroscience 2024, 15 (4) , 827-843. https://doi.org/10.1021/acschemneuro.3c00720
    4. Xiao Li, Han-Shen Tae, Shen Chen, Arsalan Yousuf, Linhong Huang, Jinghui Zhang, Tao Jiang, David J. Adams, Rilei Yu. Dual Antagonism of α9α10 nAChR and GABAB Receptor-Coupled CaV2.2 Channels by an Analgesic αO-Conotoxin Analogue. Journal of Medicinal Chemistry 2024, 67 (2) , 971-987. https://doi.org/10.1021/acs.jmedchem.3c00979
    5. Pan Xu, Panpan Zhang, Xiaopeng Zhu, Yong Wu, Peta J. Harvey, Quentin Kaas, Dongting Zhangsun, David J. Craik, Sulan Luo. Structure–Activity Relationships of Alanine Scan Mutants αO-Conotoxins GeXIVA[1,2] and GeXIVA[1,4]. Journal of Medicinal Chemistry 2023, 66 (14) , 10092-10107. https://doi.org/10.1021/acs.jmedchem.3c01023
    6. Jiazhen Liang, Han-Shen Tae, Zitong Zhao, Xiao Li, Jinghui Zhang, Shen Chen, Tao Jiang, David J. Adams, Rilei Yu. Mechanism of Action and Structure–Activity Relationship of α-Conotoxin Mr1.1 at the Human α9α10 Nicotinic Acetylcholine Receptor. Journal of Medicinal Chemistry 2022, 65 (24) , 16204-16217. https://doi.org/10.1021/acs.jmedchem.2c00494
    7. Nan Zheng, Sean B. Christensen, Cheryl Dowell, Landa Purushottam, Jack J. Skalicky, J. Michael McIntosh, Danny Hung-Chieh Chou. Discovery of Methylene Thioacetal-Incorporated α-RgIA Analogues as Potent and Stable Antagonists of the Human α9α10 Nicotinic Acetylcholine Receptor for the Treatment of Neuropathic Pain. Journal of Medicinal Chemistry 2021, 64 (13) , 9513-9524. https://doi.org/10.1021/acs.jmedchem.1c00802
    8. Nan Zheng, Sean B. Christensen, Alan Blakely, Cheryl Dowell, Landa Purushottam, J. Michael McIntosh, Danny Hung-Chieh Chou. Development of Conformationally Constrained α-RgIA Analogues as Stable Peptide Antagonists of Human α9α10 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry 2020, 63 (15) , 8380-8387. https://doi.org/10.1021/acs.jmedchem.0c00613
    9. Jiazhen Liang, Han-Shen Tae, Xiaoxiao Xu, Tao Jiang, David J. Adams, Rilei Yu. Dimerization of α-Conotoxins as a Strategy to Enhance the Inhibition of the Human α7 and α9α10 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry 2020, 63 (6) , 2974-2985. https://doi.org/10.1021/acs.jmedchem.9b01536
    10. Mahsa Sadeghi, Bodil B. Carstens, Brid P. Callaghan, James T. Daniel, Han-Shen Tae, Tracey O’Donnell, Joel Castro, Stuart M. Brierley, David J. Adams, David J. Craik, Richard J. Clark. Structure–Activity Studies Reveal the Molecular Basis for GABAB-Receptor Mediated Inhibition of High Voltage-Activated Calcium Channels by α-Conotoxin Vc1.1. ACS Chemical Biology 2018, 13 (6) , 1577-1587. https://doi.org/10.1021/acschembio.8b00190
    11. Sandeep Chhabra, Alessia Belgi, Peter Bartels, Bianca J. van Lierop, Samuel D. Robinson, Shiva N. Kompella, Andrew Hung, Brid P. Callaghan, David J. Adams, Andrea J. Robinson, and Raymond S. Norton . Dicarba Analogues of α-Conotoxin RgIA. Structure, Stability, and Activity at Potential Pain Targets. Journal of Medicinal Chemistry 2014, 57 (23) , 9933-9944. https://doi.org/10.1021/jm501126u
    12. Kalyana B. Akondi, Markus Muttenthaler, Sébastien Dutertre, Quentin Kaas, David J. Craik, Richard J. Lewis, and Paul F. Alewood . Discovery, Synthesis, and Structure–Activity Relationships of Conotoxins. Chemical Reviews 2014, 114 (11) , 5815-5847. https://doi.org/10.1021/cr400401e
    13. Sulan Luo, Dongting Zhangsun, Xiaopeng Zhu, Yong Wu, Yuanyan Hu, Sean Christensen, Peta J. Harvey, Muharrem Akcan, David J. Craik, and J. Michael McIntosh . Characterization of a Novel α-Conotoxin TxID from Conus textile That Potently Blocks Rat α3β4 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry 2013, 56 (23) , 9655-9663. https://doi.org/10.1021/jm401254c
    14. Reena Halai, Brid Callaghan, Norelle L. Daly, Richard J. Clark, David J. Adams, and David J. Craik . Effects of Cyclization on Stability, Structure, and Activity of α-Conotoxin RgIA at the α9α10 Nicotinic Acetylcholine Receptor and GABAB Receptor. Journal of Medicinal Chemistry 2011, 54 (19) , 6984-6992. https://doi.org/10.1021/jm201060r
    15. Steven Harris and Susan J. Schroeder. Nuclear Magnetic Resonance Structure of the Prohead RNA E-Loop Hairpin,. Biochemistry 2010, 49 (29) , 5989-5997. https://doi.org/10.1021/bi100393r
    16. Marion L. Loughnan, Annette Nicke, Nicole Lawrence and Richard J. Lewis . Novel αD-Conopeptides and Their Precursors Identified by cDNA Cloning Define the D-Conotoxin Superfamily. Biochemistry 2009, 48 (17) , 3717-3729. https://doi.org/10.1021/bi9000326
    17. K. Radhakrishna, Patil Kanchan Rajshekhar, R. Arshitha, Kashibai Patil, Shweta Dhannura, Konkallu Hanumae Gowd. Dissecting oxidative folding of conotoxins using 3D structures of cysteine mutants predicted by AlphaFold 3: A case study of α-conotoxin RgIA, χ-conotoxin CMrVIA and ω-conotoxin MVIIA-Gly. Toxicon 2025, 630 , 108402. https://doi.org/10.1016/j.toxicon.2025.108402
    18. Hung N. Do, Jessica Z. Kubicek-Sutherland, S. Gnanakaran. Diverse toxins exhibit a common binding mode to the nicotinic acetylcholine receptors. Biophysical Journal 2025, 124 (8) , 1195-1207. https://doi.org/10.1016/j.bpj.2025.02.022
    19. An Luo, Jie He, Jinpeng Yu, Yong Wu, Peta J. Harvey, Igor E. Kasheverov, Denis S. Kudryavtsev, J. Michael McIntosh, Victor I. Tsetlin, David J. Craik, Dongting Zhangsun, Sulan Luo. Aspartic acid mutagenesis of αO-Conotoxin GeXIVA isomers reveals arginine residues crucial for inhibition of the α9α10 nicotinic acetylcholine receptor. International Journal of Biological Macromolecules 2024, 271 , 132472. https://doi.org/10.1016/j.ijbiomac.2024.132472
    20. Eleftheria Slika, Paul Albert Fuchs. Genetic tools for studying cochlear inhibition. Frontiers in Cellular Neuroscience 2024, 18 https://doi.org/10.3389/fncel.2024.1372948
    21. Tianmiao Li, Han-Shen Tae, Jiazhen Liang, Zixuan Zhang, Xiao Li, Tao Jiang, David J. Adams, Rilei Yu. Rational Design of Potent α-Conotoxin PeIA Analogues with Non-Natural Amino Acids for the Inhibition of Human α9α10 Nicotinic Acetylcholine Receptors. Marine Drugs 2024, 22 (3) , 110. https://doi.org/10.3390/md22030110
    22. Minghe Wang, Zhouyuji Liao, Dongting Zhangsun, Yong Wu, Sulan Luo. Engineering Enhanced Antimicrobial Properties in α-Conotoxin RgIA through D-Type Amino Acid Substitution and Incorporation of Lysine and Leucine Residues. Molecules 2024, 29 (5) , 1181. https://doi.org/10.3390/molecules29051181
    23. Ana Novo de Oliveira, Andreimar Martins Soares, Saulo Luís Da Silva. Why to Study Peptides from Venomous and Poisonous Animals?. International Journal of Peptide Research and Therapeutics 2023, 29 (5) https://doi.org/10.1007/s10989-023-10543-0
    24. Alessandro Giraudo, Marco Pallavicini, Cristiano Bolchi. Small molecule ligands for α9 * and α7 nicotinic receptors: A survey and an update, respectively. Pharmacological Research 2023, 193 , 106801. https://doi.org/10.1016/j.phrs.2023.106801
    25. Yuanyuan Zhang, Hakim Hiel, Philippe F.Y. Vincent, Megan B. Wood, Ana B. Elgoyhen, Wade Chien, Amanda Lauer, Paul A. Fuchs. Engineering olivocochlear inhibition to reduce acoustic trauma. Molecular Therapy - Methods & Clinical Development 2023, 29 , 17-31. https://doi.org/10.1016/j.omtm.2023.02.011
    26. Yong Wu, Junjie Zhang, Jie Ren, Xiaopeng Zhu, Rui Li, Dongting Zhangsun, Sulan Luo. Substitution of D-Arginine at Position 11 of α-RgIA Potently Inhibits α7 Nicotinic Acetylcholine Receptor. Marine Drugs 2023, 21 (6) , 326. https://doi.org/10.3390/md21060326
    27. Han-Shen Tae, David J. Adams. Nicotinic acetylcholine receptor subtype expression, function, and pharmacology: Therapeutic potential of α-conotoxins. Pharmacological Research 2023, 191 , 106747. https://doi.org/10.1016/j.phrs.2023.106747
    28. Lydia J. Bye, Rocio K. Finol-Urdaneta, Han-Shen Tae, David J. Adams. Nicotinic acetylcholine receptors: Key targets for attenuating neurodegenerative diseases. The International Journal of Biochemistry & Cell Biology 2023, 157 , 106387. https://doi.org/10.1016/j.biocel.2023.106387
    29. Ana Belén Elgoyhen. The α9α10 acetylcholine receptor: A non-neuronal nicotinic receptor. Pharmacological Research 2023, 190 , 106735. https://doi.org/10.1016/j.phrs.2023.106735
    30. Irina Shelukhina, Andrei Siniavin, Igor Kasheverov, Lucy Ojomoko, Victor Tsetlin, Yuri Utkin. α7- and α9-Containing Nicotinic Acetylcholine Receptors in the Functioning of Immune System and in Pain. International Journal of Molecular Sciences 2023, 24 (7) , 6524. https://doi.org/10.3390/ijms24076524
    31. Bankala Krishnarjuna, Punnepalli Sunanda, Jeffrey Seow, Han-Shen Tae, Samuel D. Robinson, Alessia Belgi, Andrea J. Robinson, Helena Safavi-Hemami, David J. Adams, Raymond S. Norton. Characterisation of Elevenin-Vc1 from the Venom of Conus victoriae: A Structural Analogue of α-Conotoxins. Marine Drugs 2023, 21 (2) , 81. https://doi.org/10.3390/md21020081
    32. Helena B. Fiorotti, Suely G. Figueiredo, Fabiana V. Campos, Daniel C. Pimenta. Cone snail species off the Brazilian coast and their venoms: a review and update. Journal of Venomous Animals and Toxins including Tropical Diseases 2023, 29 https://doi.org/10.1590/1678-9199-jvatitd-2022-0052
    33. Igor Kasheverov, Yulia Logashina, Fedor Kornilov, Vladislav Lushpa, Ekaterina Maleeva, Yuliya Korolkova, Jinpeng Yu, Xiaopeng Zhu, Dongting Zhangsun, Sulan Luo, Klara Stensvåg, Denis Kudryavtsev, Konstantin Mineev, Yaroslav Andreev. Peptides from the Sea Anemone Metridium senile with Modified Inhibitor Cystine Knot (ICK) Fold Inhibit Nicotinic Acetylcholine Receptors. Toxins 2023, 15 (1) , 28. https://doi.org/10.3390/toxins15010028
    34. Francesco Margiotta, Laura Micheli, Clara Ciampi, Carla Ghelardini, J. Michael McIntosh, Lorenzo Di Cesare Mannelli. Conus regius-Derived Conotoxins: Novel Therapeutic Opportunities from a Marine Organism. Marine Drugs 2022, 20 (12) , 773. https://doi.org/10.3390/md20120773
    35. Peter N. Huynh, Sean B. Christensen, J. Michael McIntosh. RgIA4 Prevention of Acute Oxaliplatin-Induced Cold Allodynia Requires α9-Containing Nicotinic Acetylcholine Receptors and CD3+ T-Cells. Cells 2022, 11 (22) , 3561. https://doi.org/10.3390/cells11223561
    36. Arik J. Hone, J. Michael McIntosh. Alkaloid ligands enable function of homomeric human α10 nicotinic acetylcholine receptors. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.981760
    37. Toshiaki Okada, Hikaru Taira, Tadashi Kimura. Current Ion Channel-targeted Drugs and Potential of Venom-derived Peptides as a Therapeutic New Modality. Venoms and Toxins 2022, 2 (2) https://doi.org/10.2174/2666121702666220429095250
    38. Yuan Ma, Qiushi Cao, Mengke Yang, Yue Gao, Shuiping Fu, Wenhao Du, David Adams, Tao Jiang, Han-Shen Tae, Rilei Yu. Single-Disulfide Conopeptide Czon1107, an Allosteric Antagonist of the Human α3β4 Nicotinic Acetylcholine Receptor. Marine Drugs 2022, 20 (8) , 497. https://doi.org/10.3390/md20080497
    39. Arisaí C. Hernández-Sámano, Andrés Falcón, Fernando Zamudio, Jesús Emilio Michel-Morfín, Víctor Landa-Jaime, Estuardo López-Vera, Michael C. Jeziorski, Manuel B. Aguilar. A short framework-III (mini-M-2) conotoxin from the venom of a vermivorous species, Conus archon, inhibits human neuronal nicotinic acetylcholine receptors. Peptides 2022, 153 , 170785. https://doi.org/10.1016/j.peptides.2022.170785
    40. Thomas Fischer, Rainer Riedl. Paracelsus’ legacy in the faunal realm: Drugs deriving from animal toxins. Drug Discovery Today 2022, 27 (2) , 567-575. https://doi.org/10.1016/j.drudis.2021.10.003
    41. Susanna Pucci, Michele Zoli, Francesco Clementi, Cecilia Gotti. α9-Containing Nicotinic Receptors in Cancer. Frontiers in Cellular Neuroscience 2022, 15 https://doi.org/10.3389/fncel.2021.805123
    42. Victor Tsetlin, Yves Haufe, Valentina Safronova, Dmitriy Serov, PranavKumar Shadamarshan, Lina Son, Irina Shelukhina, Denis Kudryavtsev, Elena Kryukova, Igor Kasheverov, Annette Nicke, Yuri Utkin. Interaction of α9α10 Nicotinic Receptors With Peptides and Proteins From Animal Venoms. Frontiers in Cellular Neuroscience 2021, 15 https://doi.org/10.3389/fncel.2021.765541
    43. Si Pan, Yingxu Fan, Xiaopeng Zhu, Yi Xue, Sulan Luo, Xinquan Wang. From Crystal Structures of RgIA4 in Complex with Ac-AChBP to Molecular Determinants of Its High Potency of α9α10 nAChR. Marine Drugs 2021, 19 (12) , 709. https://doi.org/10.3390/md19120709
    44. Fernando Fisher, Yuanyuan Zhang, Philippe F. Y. Vincent, Joanna Gajewiak, Thomas J. Gordon, Elisabeth Glowatzki, Paul Albert Fuchs, J. Michael McIntosh. Cy3-RgIA-5727 Labels and Inhibits α9-Containing nAChRs of Cochlear Hair Cells. Frontiers in Cellular Neuroscience 2021, 15 https://doi.org/10.3389/fncel.2021.697560
    45. Xiao Li, Han-Shen Tae, Yanyan Chu, Tao Jiang, David J. Adams, Rilei Yu. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacology & Therapeutics 2021, 222 , 107792. https://doi.org/10.1016/j.pharmthera.2020.107792
    46. Ayaulym Bekbossynova, Albina Zharylgap, Olena Filchakova. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors. Molecules 2021, 26 (11) , 3373. https://doi.org/10.3390/molecules26113373
    47. Zhiguo Li, Xiaolu Han, Xiaoxuan Hong, Xianfu Li, Jing Gao, Hui Zhang, Aiping Zheng. Lyophilization Serves as an Effective Strategy for Drug Development of the α9α10 Nicotinic Acetylcholine Receptor Antagonist α-Conotoxin GeXIVA[1,2]. Marine Drugs 2021, 19 (3) , 121. https://doi.org/10.3390/md19030121
    48. Tatiana I. Terpinskaya, Alexey V. Osipov, Elena V. Kryukova, Denis S. Kudryavtsev, Nina V. Kopylova, Tatsiana L. Yanchanka, Alena F. Palukoshka, Elena A. Gondarenko, Maxim N. Zhmak, Victor I. Tsetlin, Yuri N. Utkin. α-Conotoxins and α-Cobratoxin Promote, while Lipoxygenase and Cyclooxygenase Inhibitors Suppress the Proliferation of Glioma C6 Cells. Marine Drugs 2021, 19 (2) , 118. https://doi.org/10.3390/md19020118
    49. Shane Dennis Hellyer. Marine-derived nicotinic receptor antagonist toxins: Pinnatoxins and alpha conotoxins. 2021, 105-191. https://doi.org/10.1016/bs.ant.2021.03.004
    50. Valentina G. Safronova, Catherine A. Vulfius, Maxim E. Astashev, Irina V. Tikhonova, Dmitriy A. Serov, Elina A. Jirova, Ekaterina V. Pershina, Dmitry A. Senko, Maxim N. Zhmak, Igor E. Kasheverov, Victor I. Tsetlin. α9α10 nicotinic acetylcholine receptors regulate murine bone marrow granulocyte functions. Immunobiology 2021, 226 (1) , 152047. https://doi.org/10.1016/j.imbio.2020.152047
    51. Thao N. T. Ho, Nikita Abraham, Richard J. Lewis. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Frontiers in Neuroscience 2020, 14 https://doi.org/10.3389/fnins.2020.609005
    52. Ashlin Turner, Quentin Kaas, David J. Craik. Hormone-like conopeptides – new tools for pharmaceutical design. RSC Medicinal Chemistry 2020, 11 (11) , 1235-1251. https://doi.org/10.1039/D0MD00173B
    53. Peter N. Huynh, Peta J. Harvey, Joanna Gajewiak, David J. Craik, J. Michael McIntosh. Critical residue properties for potency and selectivity of α-Conotoxin RgIA towards α9α10 nicotinic acetylcholine receptors. Biochemical Pharmacology 2020, 181 , 114124. https://doi.org/10.1016/j.bcp.2020.114124
    54. Shakir D. AlSharari, Wisam Toma, Hafiz M. Mahmood, J. Michael McIntosh, M. Imad Damaj. The α9α10 nicotinic acetylcholine receptors antagonist α-conotoxin RgIA reverses colitis signs in murine dextran sodium sulfate model. European Journal of Pharmacology 2020, 883 , 173320. https://doi.org/10.1016/j.ejphar.2020.173320
    55. Zhou Yu, J. Michael McIntosh, Soroush G. Sadeghi, Elisabeth Glowatzki. Efferent synaptic transmission at the vestibular type II hair cell synapse. Journal of Neurophysiology 2020, 124 (2) , 360-374. https://doi.org/10.1152/jn.00143.2020
    56. Walden E. Bjørn-Yoshimoto, Iris Bea L. Ramiro, Mark Yandell, J. Michael McIntosh, Baldomero M. Olivera, Lars Ellgaard, Helena Safavi-Hemami. Curses or Cures: A Review of the Numerous Benefits Versus the Biosecurity Concerns of Conotoxin Research. Biomedicines 2020, 8 (8) , 235. https://doi.org/10.3390/biomedicines8080235
    57. Yanli Liu, Yifeng Yin, Yunyang Song, Kang Wang, Fanghui Wu, Hui Jiang. α-Conotoxin as Potential to α7-nAChR Recombinant Expressed in Escherichia coli. Marine Drugs 2020, 18 (8) , 422. https://doi.org/10.3390/md18080422
    58. Adam C. Kennedy, Alessia Belgi, Benjamin W. Husselbee, David Spanswick, Raymond S. Norton, Andrea J. Robinson. α-Conotoxin Peptidomimetics: Probing the Minimal Binding Motif for Effective Analgesia. Toxins 2020, 12 (8) , 505. https://doi.org/10.3390/toxins12080505
    59. Peter N. Huynh, Denise Giuvelis, Sean Christensen, Kerry L. Tucker, J. Michael McIntosh. RgIA4 Accelerates Recovery from Paclitaxel-Induced Neuropathic Pain in Rats. Marine Drugs 2020, 18 (1) , 12. https://doi.org/10.3390/md18010012
    60. Qiang Liu, Minshu Li, Paul Whiteaker, Fu-Dong Shi, Barbara J. Morley, Ronald J. Lukas. Attenuation in Nicotinic Acetylcholine Receptor α9 and α10 Subunit Double Knock-Out Mice of Experimental Autoimmune Encephalomyelitis. Biomolecules 2019, 9 (12) , 827. https://doi.org/10.3390/biom9120827
    61. Heike Wulff, Palle Christophersen, Paul Colussi, K. George Chandy, Vladimir Yarov-Yarovoy. Antibodies and venom peptides: new modalities for ion channels. Nature Reviews Drug Discovery 2019, 18 (5) , 339-357. https://doi.org/10.1038/s41573-019-0013-8
    62. Marios Zouridakis, Athanasios Papakyriakou, Igor A. Ivanov, Igor E. Kasheverov, Victor Tsetlin, Socrates Tzartos, Petros Giastas. Crystal Structure of the Monomeric Extracellular Domain of α9 Nicotinic Receptor Subunit in Complex With α-Conotoxin RgIA: Molecular Dynamics Insights Into RgIA Binding to α9α10 Nicotinic Receptors. Frontiers in Pharmacology 2019, 10 https://doi.org/10.3389/fphar.2019.00474
    63. Jie Ren, Xiaopeng Zhu, Pan Xu, Rui Li, Ying Fu, Shuai Dong, Dongting Zhangsun, Yong Wu, Sulan Luo. d-Amino Acid Substitution of α-Conotoxin RgIA Identifies its Critical Residues and Improves the Enzymatic Stability. Marine Drugs 2019, 17 (3) , 142. https://doi.org/10.3390/md17030142
    64. Veronika Grau, Katrin Richter, Arik J. Hone, J. Michael McIntosh. Conopeptides [V11L;V16D]ArIB and RgIA4: Powerful Tools for the Identification of Novel Nicotinic Acetylcholine Receptors in Monocytes. Frontiers in Pharmacology 2019, 9 https://doi.org/10.3389/fphar.2018.01499
    65. Helena Safavi-Hemami, Shane E. Brogan, Baldomero M. Olivera. Pain therapeutics from cone snail venoms: From Ziconotide to novel non-opioid pathways. Journal of Proteomics 2019, 190 , 12-20. https://doi.org/10.1016/j.jprot.2018.05.009
    66. M. Jesús Pérez de Vega, Antonio Ferrer-Montiel, Rosario González-Muñiz. Recent progress in non-opioid analgesic peptides. Archives of Biochemistry and Biophysics 2018, 660 , 36-52. https://doi.org/10.1016/j.abb.2018.10.011
    67. Julien Giribaldi, Sébastien Dutertre. α-Conotoxins to explore the molecular, physiological and pathophysiological functions of neuronal nicotinic acetylcholine receptors. Neuroscience Letters 2018, 679 , 24-34. https://doi.org/10.1016/j.neulet.2017.11.063
    68. Mathilde R. Israel, Michael Morgan, Bryan Tay, Jennifer R. Deuis. Toxins as tools: Fingerprinting neuronal pharmacology. Neuroscience Letters 2018, 679 , 4-14. https://doi.org/10.1016/j.neulet.2018.02.001
    69. Michael W. Pennington, Andrzej Czerwinski, Raymond S. Norton. Peptide therapeutics from venom: Current status and potential. Bioorganic & Medicinal Chemistry 2018, 26 (10) , 2738-2758. https://doi.org/10.1016/j.bmc.2017.09.029
    70. Arik J Hone, Denis Servent, J Michael McIntosh. α9‐containing nicotinic acetylcholine receptors and the modulation of pain. British Journal of Pharmacology 2018, 175 (11) , 1915-1927. https://doi.org/10.1111/bph.13931
    71. Vanessa Mucchietto, Francesca Fasoli, Susanna Pucci, Milena Moretti, Roberta Benfante, Annalisa Maroli, Simona Di Lascio, Cristiano Bolchi, Marco Pallavicini, Cheryl Dowell, Michael McIntosh, Francesco Clementi, Cecilia Gotti. α9‐ and α7‐containing receptors mediate the pro‐proliferative effects of nicotine in the A549 adenocarcinoma cell line. British Journal of Pharmacology 2018, 175 (11) , 1957-1972. https://doi.org/10.1111/bph.13954
    72. Nikita Abraham, Richard J. Lewis. Neuronal Nicotinic Acetylcholine Receptor Modulators from Cone Snails. Marine Drugs 2018, 16 (6) , 208. https://doi.org/10.3390/md16060208
    73. Mousa K. Hamad, Kevin He, Hael F. Abdulrazeq, Ali M. Mustafa, Robert Luceri, Naveed Kamal, Mohsin Ali, Jonathan Nakhla, Mohammad M. Herzallah, Antonios Mammis. Potential Uses of Isolated Toxin Peptides in Neuropathic Pain Relief: A Literature Review. World Neurosurgery 2018, 113 , 333-347.e5. https://doi.org/10.1016/j.wneu.2018.01.116
    74. Arik J. Hone, J. Michael McIntosh. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Letters 2018, 592 (7) , 1045-1062. https://doi.org/10.1002/1873-3468.12884
    75. Sébastien Dutertre, Annette Nicke, Victor I. Tsetlin. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017, 127 , 196-223. https://doi.org/10.1016/j.neuropharm.2017.06.011
    76. Xiaosa Wu, Yen-Hua Huang, Quentin Kaas, Peta J. Harvey, Conan K. Wang, Han-Shen Tae, David J. Adams, David J. Craik. Backbone cyclization of analgesic conotoxin GeXIVA facilitates direct folding of the ribbon isomer. Journal of Biological Chemistry 2017, 292 (41) , 17101-17112. https://doi.org/10.1074/jbc.M117.808386
    77. Haylie K. Romero, Sean B. Christensen, Lorenzo Di Cesare Mannelli, Joanna Gajewiak, Renuka Ramachandra, Keith S. Elmslie, Douglas E. Vetter, Carla Ghelardini, Shawn P. Iadonato, Jose L. Mercado, Baldomera M. Olivera, J. Michael McIntosh. Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain. Proceedings of the National Academy of Sciences 2017, 114 (10) https://doi.org/10.1073/pnas.1621433114
    78. Juan Carlos Boffi, Irina Marcovich, JasKiran K. Gill-Thind, Jeremías Corradi, Toby Collins, María Marcela Lipovsek, Marcelo Moglie, Paola V. Plazas, Patricio O. Craig, Neil S. Millar, Cecilia Bouzat, Ana Belén Elgoyhen. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function. Molecular Pharmacology 2017, 91 (3) , 250-262. https://doi.org/10.1124/mol.116.107482
    79. Elsie C. Jimenez, Lourdes J. Cruz. Conotoxins as Tools in Research on Nicotinic Receptors. 2017, 189-204. https://doi.org/10.1007/978-94-007-6452-1_17
    80. Bo Lin, Shihua Xiang, Mengsen Li. Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs. Marine Drugs 2016, 14 (10) , 173. https://doi.org/10.3390/md14100173
    81. Alessandra Pacini, Laura Micheli, Mario Maresca, Jacopo Juno Valerio Branca, J. Michael McIntosh, Carla Ghelardini, Lorenzo Di Cesare Mannelli. The α9α10 nicotinic receptor antagonist α-conotoxin RgIA prevents neuropathic pain induced by oxaliplatin treatment. Experimental Neurology 2016, 282 , 37-48. https://doi.org/10.1016/j.expneurol.2016.04.022
    82. Isabelle Roux, Jingjing Sherry Wu (武靜靜), J. Michael McIntosh, Elisabeth Glowatzki. Assessment of the expression and role of the α 1 -nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea. Journal of Neurophysiology 2016, 116 (2) , 479-492. https://doi.org/10.1152/jn.01038.2015
    83. Xiaosa Wu, Yen‐Hua Huang, Quentin Kaas, David J. Craik. Cyclisation of Disulfide‐Rich Conotoxins in Drug Design Applications. European Journal of Organic Chemistry 2016, 2016 (21) , 3462-3472. https://doi.org/10.1002/ejoc.201600402
    84. Bodil B. Carstens, Géza Berecki, James T. Daniel, Han Siean Lee, Kathryn A. V. Jackson, Han‐Shen Tae, Mahsa Sadeghi, Joel Castro, Tracy O'Donnell, Annemie Deiteren, Stuart M. Brierley, David J. Craik, David J. Adams, Richard J. Clark. Structure–Activity Studies of Cysteine‐Rich α‐Conotoxins that Inhibit High‐Voltage‐Activated Calcium Channels via GABA B Receptor Activation Reveal a Minimal Functional Motif. Angewandte Chemie 2016, 128 (15) , 4770-4774. https://doi.org/10.1002/ange.201600297
    85. Bodil B. Carstens, Géza Berecki, James T. Daniel, Han Siean Lee, Kathryn A. V. Jackson, Han‐Shen Tae, Mahsa Sadeghi, Joel Castro, Tracy O'Donnell, Annemie Deiteren, Stuart M. Brierley, David J. Craik, David J. Adams, Richard J. Clark. Structure–Activity Studies of Cysteine‐Rich α‐Conotoxins that Inhibit High‐Voltage‐Activated Calcium Channels via GABA B Receptor Activation Reveal a Minimal Functional Motif. Angewandte Chemie International Edition 2016, 55 (15) , 4692-4696. https://doi.org/10.1002/anie.201600297
    86. Elsie C. Jimenez, Lourdes J. Cruz. Conotoxins as Tools in Research on Nicotinic Receptors. 2016, 1-17. https://doi.org/10.1007/978-94-007-6726-3_17-1
    87. Elsie C. Jimenez, Lourdes J. Cruz. Conotoxins as Tools in Research on Nicotinic Receptors. 2016, 1-17. https://doi.org/10.1007/978-94-007-6726-3_17-2
    88. Eric Schmidt. Biosynthetic Approaches to Marine Drug Discovery and Development. 2015, 43-64. https://doi.org/10.1201/b19081-5
    89. Sarasa Mohammadi, MacDonald Christie. Conotoxin Interactions with α9α10-nAChRs: Is the α9α10-Nicotinic Acetylcholine Receptor an Important Therapeutic Target for Pain Management?. Toxins 2015, 7 (10) , 3916-3932. https://doi.org/10.3390/toxins7103916
    90. Sean B. Christensen, Pradip K. Bandyopadhyay, Baldomero M. Olivera, J. Michael McIntosh. αS-conotoxin GVIIIB potently and selectively blocks α9α10 nicotinic acetylcholine receptors. Biochemical Pharmacology 2015, 96 (4) , 349-356. https://doi.org/10.1016/j.bcp.2015.06.007
    91. Layla Azam, Athanasios Papakyriakou, Marios Zouridakis, Petros Giastas, Socrates J. Tzartos, J. Michael McIntosh. Molecular Interaction of α-Conotoxin RgIA with the Rat α9α10 Nicotinic Acetylcholine Receptor. Molecular Pharmacology 2015, 87 (5) , 855-864. https://doi.org/10.1124/mol.114.096511
    92. J. Chris Holt, Kevin Kewin, Paivi M. Jordan, Peter Cameron, Marcin Klapczynski, J. Michael McIntosh, Peter A. Crooks, Linda P. Dwoskin, Anna Lysakowski. Pharmacologically Distinct Nicotinic Acetylcholine Receptors Drive Efferent-Mediated Excitation in Calyx-Bearing Vestibular Afferents. The Journal of Neuroscience 2015, 35 (8) , 3625-3643. https://doi.org/10.1523/JNEUROSCI.3388-14.2015
    93. Andrew B. Wright, Yohei Norimatsu, J. Michael McIntosh, Keith S. Elmslie. Limited Efficacy of α-Conopeptides, Vc1.1 and RgIA, To Inhibit Sensory Neuron Ca V Current. eneuro 2015, 2 (1) , ENEURO.0057-14.2015. https://doi.org/10.1523/ENEURO.0057-14.2015
    94. Lorenzo Di Cesare Mannelli, Lorenzo Cinci, Laura Micheli, Matteo Zanardelli, Alessandra Pacini, Michael J. McIntosh, Carla Ghelardini. α-Conotoxin RgIA protects against the development of nerve injury-induced chronic pain and prevents both neuronal and glial derangement. Pain 2014, 155 (10) , 1986-1995. https://doi.org/10.1016/j.pain.2014.06.023
    95. Parashar Thapa, Michael J. Espiritu, Chino C. Cabalteja, Jon-Paul Bingham. Conotoxins and their regulatory considerations. Regulatory Toxicology and Pharmacology 2014, 70 (1) , 197-202. https://doi.org/10.1016/j.yrtph.2014.06.027
    96. Eline Lebbe, Steve Peigneur, Isuru Wijesekara, Jan Tytgat. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview. Marine Drugs 2014, 12 (5) , 2970-3004. https://doi.org/10.3390/md12052970
    97. Sravanthi Gundavarapu, Neerad C. Mishra, Shashi P. Singh, Raymond J. Langley, Ali Imran Saeed, Carol A. Feghali-Bostwick, J. Michael McIntosh, Julie Hutt, Ramakrishna Hegde, Shilpa Buch, Mohan L. Sopori, . HIV gp120 Induces Mucus Formation in Human Bronchial Epithelial Cells through CXCR4/α7-Nicotinic Acetylcholine Receptors. PLoS ONE 2013, 8 (10) , e77160. https://doi.org/10.1371/journal.pone.0077160
    98. Xiaosa Wu, Yong Wu, Furong Zhu, Qiuyuan Yang, Qianqian Wu, Dongting Zhangsun, Sulan Luo. Optimal Cleavage and Oxidative Folding of α-Conotoxin TxIB as a Therapeutic Candidate Peptide. Marine Drugs 2013, 11 (9) , 3537-3553. https://doi.org/10.3390/md11093537
    99. Maria Cristina Vianna Braga, Arthur Andrade Nery, Henning Ulrich, Katsuhiro Konno, Juliana Mozer Sciani, Daniel Carvalho Pimenta. α -RgIB: A Novel Antagonist Peptide of Neuronal Acetylcholine Receptor Isolated from Conus regius Venom. International Journal of Peptides 2013, 2013 , 1-9. https://doi.org/10.1155/2013/543028
    100. JC Boffi, C Wedemeyer, M Lipovsek, E Katz, DJ Calvo, AB Elgoyhen. Positive modulation of the α9α10 nicotinic cholinergic receptor by ascorbic acid. British Journal of Pharmacology 2013, 168 (4) , 954-965. https://doi.org/10.1111/j.1476-5381.2012.02221.x
    Load all citations

    Biochemistry

    Cite this: Biochemistry 2006, 45, 5, 1511–1517
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi0520129
    Published January 13, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    1456

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.