Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Novel Chromophores and Buried Charges Control Color in mFruits,
My Activity
    Article

    Novel Chromophores and Buried Charges Control Color in mFruits,
    Click to copy article linkArticle link copied!

    • Xiaokun Shu
      Xiaokun Shu
      Institute of Molecular Biology and Department of Physics, University of Oregon, Eugene, Oregon 97403, and Departments of Pharmacology and Chemistry, Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093
      More by Xiaokun Shu
    • Nathan C. Shaner
      Nathan C. Shaner
      Institute of Molecular Biology and Department of Physics, University of Oregon, Eugene, Oregon 97403, and Departments of Pharmacology and Chemistry, Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093
    • Corinne A. Yarbrough
      Corinne A. Yarbrough
      Institute of Molecular Biology and Department of Physics, University of Oregon, Eugene, Oregon 97403, and Departments of Pharmacology and Chemistry, Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093
    • Roger Y. Tsien
      Roger Y. Tsien
      Institute of Molecular Biology and Department of Physics, University of Oregon, Eugene, Oregon 97403, and Departments of Pharmacology and Chemistry, Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093
    • S. James Remington*
      S. James Remington
      Institute of Molecular Biology and Department of Physics, University of Oregon, Eugene, Oregon 97403, and Departments of Pharmacology and Chemistry, Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093
       To whom correspondence should be addressed. Telephone: (541) 346-5190. Fax:  (541) 346-5870. E-mail:  jremington@ uoxray.uoregon.edu.
    Other Access OptionsSupporting Information (2)

    Biochemistry

    Cite this: Biochemistry 2006, 45, 32, 9639–9647
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi060773l
    Published July 25, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    mFruits are second-generation monomeric red fluorescent proteins (mRFPs) that have improved brightness and photostability compared to the first-generation mRFP1. The emission and excitation maxima are distributed over the remarkably large ranges of about 550−650 and 540−590 nm, respectively; however, the variations in the spectra can be traced to a few key amino acids. Spectroscopic and atomic resolution crystallographic analyses of three representatives, mOrange, mStrawberry, and mCherry, reveal that different mechanisms operate to establish the excitation and emission maxima. Evidently, they all undergo the second oxidation step to produce an acylimine linkage in the polypeptide backbone. In comparison to the progenitor DsRed, direct covalent modification to this linkage (mOrange) and indirect modification of the chromophore environment (mStrawberry and mCherry) produce strong blue- and red-shifted variants. The blue shift of mOrange is induced by an unprecedented covalent modification of the protein backbone. The electron-density map indicates the formation of a third heterocycle, 2-hydroxy-dihydrooxazole, upon the reaction of Thr 66 Oγ with the polypeptide backbone, which in turn reduces the conjugation of the carbonyl at position 65 with the rest of the chromophore. In mStrawberry and mCherry, the movement of charged Lys 70 and protonation of Glu 215 are proposed to modify the chromophore electron-density distribution, inducing the red shift. pH-dependent spectral shifts of mCherry and mStrawberry appear to result from the titration of Glu 215, although, for mStrawberry, partial cyclization of Thr 66 may contribute at high pH.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Figure S1, amino acid sequence alignment of DsRed, mCherry, mStrawberry, and mOrange. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 395 publications.

    1. Katie McGuire, Suhang He, Jennifer Gracie, Charlotte Bryson, Dazhong Zheng, Alasdair W. Clark, Jesko Koehnke, David J. France, Werner M. Nau, Tung-Chun Lee, William J. Peveler. Supramolecular Click Chemistry for Surface Modification of Quantum Dots Mediated by Cucurbit[7]uril. ACS Nano 2023, 17 (21) , 21585-21594. https://doi.org/10.1021/acsnano.3c06601
    2. Kimberly L. Breyfogle, Dalton L. Blood, Andreana M. Rosnik, Brent P. Krueger. Molecular Dynamics Force Field Parameters for the EGFP Chromophore and Some of Its Analogues. The Journal of Physical Chemistry B 2023, 127 (26) , 5772-5788. https://doi.org/10.1021/acs.jpcb.3c01486
    3. Annina M. Sartor, Peter D. Dahlberg, Davis Perez, W. E. Moerner. Characterization of mApple as a Red Fluorescent Protein for Cryogenic Single-Molecule Imaging with Turn-Off and Turn-On Active Control Mechanisms. The Journal of Physical Chemistry B 2023, 127 (12) , 2690-2700. https://doi.org/10.1021/acs.jpcb.2c08995
    4. Srijit Mukherjee, Premashis Manna, Nancy Douglas, Prem P. Chapagain, Ralph Jimenez. Conformational Dynamics of mCherry Variants: A Link between Side-Chain Motions and Fluorescence Brightness. The Journal of Physical Chemistry B 2023, 127 (1) , 52-61. https://doi.org/10.1021/acs.jpcb.2c05584
    5. Dylan R. Dautel, Julie A. Champion. Self-Assembly of Functional Protein Nanosheets from Thermoresponsive Bolaamphiphiles. Biomacromolecules 2022, 23 (9) , 3612-3620. https://doi.org/10.1021/acs.biomac.2c00525
    6. Srijit Mukherjee, Premashis Manna, Sheng-Ting Hung, Felix Vietmeyer, Pia Friis, Amy E. Palmer, Ralph Jimenez. Directed Evolution of a Bright Variant of mCherry: Suppression of Nonradiative Decay by Fluorescence Lifetime Selections. The Journal of Physical Chemistry B 2022, 126 (25) , 4659-4668. https://doi.org/10.1021/acs.jpcb.2c01956
    7. Srijit Mukherjee, Ralph Jimenez. Photophysical Engineering of Fluorescent Proteins: Accomplishments and Challenges of Physical Chemistry Strategies. The Journal of Physical Chemistry B 2022, 126 (4) , 735-750. https://doi.org/10.1021/acs.jpcb.1c05629
    8. Maria G. Khrenova, Fedor D. Mulashkin, Alexander V. Nemukhin. Modeling Spectral Tuning in Red Fluorescent Proteins Using the Dipole Moment Variation upon Excitation. Journal of Chemical Information and Modeling 2021, 61 (10) , 5125-5132. https://doi.org/10.1021/acs.jcim.1c00981
    9. Jesus G. Ovejero, Ilaria Armenia, David Serantes, Sabino Veintemillas-Verdaguer, Nicoll Zeballos, Fernando López-Gallego, Cordula Grüttner, Jesús M. de la Fuente, María del Puerto Morales, Valeria Grazu. Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation. Nano Letters 2021, 21 (17) , 7213-7220. https://doi.org/10.1021/acs.nanolett.1c02178
    10. Aaron Huang, Justin M. Paloni, Amy Wang, Allie C. Obermeyer, Hursh V. Sureka, Helen Yao, Bradley D. Olsen. Predicting Protein–Polymer Block Copolymer Self-Assembly from Protein Properties. Biomacromolecules 2019, 20 (10) , 3713-3723. https://doi.org/10.1021/acs.biomac.9b00768
    11. Emily P. Haynes, Megha Rajendran, Chace K. Henning, Abhipri Mishra, Angeline M. Lyon, Mathew Tantama. Quantifying Acute Fuel and Respiration Dependent pH Homeostasis in Live Cells Using the mCherryTYG Mutant as a Fluorescence Lifetime Sensor. Analytical Chemistry 2019, 91 (13) , 8466-8475. https://doi.org/10.1021/acs.analchem.9b01562
    12. Dawid Grabarek, Tadeusz Andruniów. Assessment of Functionals for TDDFT Calculations of One- and Two-Photon Absorption Properties of Neutral and Anionic Fluorescent Proteins Chromophores. Journal of Chemical Theory and Computation 2019, 15 (1) , 490-508. https://doi.org/10.1021/acs.jctc.8b00769
    13. Sheng Wang, Yao Shuai, Chaoying Sun, Boxin Xue, Yingping Hou, Xiaodong Su, Yujie Sun. Lighting Up Live Cells with Smart Genetically Encoded Fluorescence Probes from GMars Family. ACS Sensors 2018, 3 (11) , 2269-2277. https://doi.org/10.1021/acssensors.8b00449
    14. Ana M. Mariscal, Shigeyuki Kakizawa, Jonathan Y. Hsu, Kazuki Tanaka, Luis González-González, Alicia Broto, Enrique Querol, Maria Lluch-Senar, Carlos Piñero-Lambea, Lijie Sun, Philip D. Weyman, Kim S. Wise, Chuck Merryman, Gavin Tse, Adam J. Moore, Clyde A. Hutchison, III, Hamilton O. Smith, Masaru Tomita, J. Craig Venter, John I. Glass, Jaume Piñol, Yo Suzuki. Tuning Gene Activity by Inducible and Targeted Regulation of Gene Expression in Minimal Bacterial Cells. ACS Synthetic Biology 2018, 7 (6) , 1538-1552. https://doi.org/10.1021/acssynbio.8b00028
    15. Marc de Wergifosse, Edith Botek, Evelien De Meulenaere, Koen Clays, Benoît Champagne. ONIOM Investigation of the Second-Order Nonlinear Optical Responses of Fluorescent Proteins. The Journal of Physical Chemistry B 2018, 122 (19) , 4993-5005. https://doi.org/10.1021/acs.jpcb.8b01430
    16. Kelsey L. Borrell, Christine Cancglin, Brittany L. Stinger, Kelsey G. DeFrates, Gregory A. Caputo, Chun Wu, and Timothy D. Vaden . An Experimental and Molecular Dynamics Study of Red Fluorescent Protein mCherry in Novel Aqueous Amino Acid Ionic Liquids. The Journal of Physical Chemistry B 2017, 121 (18) , 4823-4832. https://doi.org/10.1021/acs.jpcb.7b03582
    17. Atanu Acharya, Alexey M. Bogdanov, Bella L. Grigorenko, Ksenia B. Bravaya, Alexander V. Nemukhin, Konstantin A. Lukyanov, and Anna I. Krylov . Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing?. Chemical Reviews 2017, 117 (2) , 758-795. https://doi.org/10.1021/acs.chemrev.6b00238
    18. Gerald Manuel, Andrej Lupták, and Robert M. Corn . A Microwell–Printing Fabrication Strategy for the On-Chip Templated Biosynthesis of Protein Microarrays for Surface Plasmon Resonance Imaging. The Journal of Physical Chemistry C 2016, 120 (37) , 20984-20990. https://doi.org/10.1021/acs.jpcc.6b03307
    19. Eunjin Yoon, Patrick E. Konold, Junghwa Lee, Taiha Joo, and Ralph Jimenez . Far-Red Emission of mPlum Fluorescent Protein Results from Excited-State Interconversion between Chromophore Hydrogen-Bonding States. The Journal of Physical Chemistry Letters 2016, 7 (12) , 2170-2174. https://doi.org/10.1021/acs.jpclett.6b00823
    20. Antonia T. Pandelieva, Miranda J. Baran, Guido F. Calderini, Jenna L. McCann, Véronique Tremblay, Sabina Sarvan, James A. Davey, Jean-François Couture, and Roberto A. Chica . Brighter Red Fluorescent Proteins by Rational Design of Triple-Decker Motif. ACS Chemical Biology 2016, 11 (2) , 508-517. https://doi.org/10.1021/acschembio.5b00774
    21. Shirin Faraji and Anna I. Krylov . On the Nature of an Extended Stokes Shift in the mPlum Fluorescent Protein. The Journal of Physical Chemistry B 2015, 119 (41) , 13052-13062. https://doi.org/10.1021/acs.jpcb.5b07724
    22. Patrick E. Konold and Ralph Jimenez . Excited State Electronic Landscape of mPlum Revealed by Two-Dimensional Double Quantum Coherence Spectroscopy. The Journal of Physical Chemistry B 2015, 119 (8) , 3414-3422. https://doi.org/10.1021/jp5119772
    23. M. Alaraby Salem and Alex Brown . Two-Photon Absorption in Fluorescent Protein Chromophores: TDDFT and CC2 Results. Journal of Chemical Theory and Computation 2014, 10 (8) , 3260-3269. https://doi.org/10.1021/ct500028w
    24. Mikhail Drobizhev, Caleb Stoltzfus, Igor Topol, Jack Collins, Geoffrey Wicks, Alexander Mikhaylov, Lauren Barnett, Thomas E. Hughes, and Aleksander Rebane . Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells. The Journal of Physical Chemistry B 2014, 118 (31) , 9167-9179. https://doi.org/10.1021/jp502477c
    25. Kathrin Lang and Jason W. Chin . Cellular Incorporation of Unnatural Amino Acids and Bioorthogonal Labeling of Proteins. Chemical Reviews 2014, 114 (9) , 4764-4806. https://doi.org/10.1021/cr400355w
    26. Steen Brøndsted Nielsen, Mogens Brøndsted Nielsen, and Angel Rubio . Spectroscopy of Nitrophenolates in Vacuo: Effect of Spacer, Configuration, and Microsolvation on the Charge-Transfer Excitation Energy. Accounts of Chemical Research 2014, 47 (4) , 1417-1425. https://doi.org/10.1021/ar500025h
    27. Patrick Konold, Chola K. Regmi, Prem P. Chapagain, Bernard S. Gerstman, and Ralph Jimenez . Hydrogen Bond Flexibility Correlates with Stokes Shift in mPlum Variants. The Journal of Physical Chemistry B 2014, 118 (11) , 2940-2948. https://doi.org/10.1021/jp412371y
    28. Jiahui Wu, Lin Liu, Tomoki Matsuda, Yongxin Zhao, Aleksander Rebane, Mikhail Drobizhev, Yu-Fen Chang, Satoko Araki, Yoshiyuki Arai, Kelsey March, Thomas E. Hughes, Ken Sagou, Takaki Miyata, Takeharu Nagai, Wen-hong Li, and Robert E. Campbell . Improved Orange and Red Ca2+ Indicators and Photophysical Considerations for Optogenetic Applications. ACS Chemical Neuroscience 2013, 4 (6) , 963-972. https://doi.org/10.1021/cn400012b
    29. Thomas A. Masters, Richard J. Marsh, Daven A. Armoogum, Nick Nicolaou, Banafshé Larijani, and Angus J. Bain . Restricted State Selection in Fluorescent Protein Förster Resonance Energy Transfer. Journal of the American Chemical Society 2013, 135 (21) , 7883-7890. https://doi.org/10.1021/ja312230b
    30. Bella L. Grigorenko, Alexander V. Nemukhin, Igor V. Polyakov, and Anna I. Krylov . Triple-Decker Motif for Red-Shifted Fluorescent Protein Mutants. The Journal of Physical Chemistry Letters 2013, 4 (10) , 1743-1747. https://doi.org/10.1021/jz4006288
    31. Jørgen Houmøller, Marius Wanko, Kristian Støchkel, Angel Rubio, and Steen Brøndsted Nielsen . On the Effect of a Single Solvent Molecule on the Charge-Transfer Band of a Donor–Acceptor Anion. Journal of the American Chemical Society 2013, 135 (18) , 6818-6821. https://doi.org/10.1021/ja4025275
    32. Chola K. Regmi, Yuba R. Bhandari, Bernard S. Gerstman, and Prem P. Chapagain . Exploring the Diffusion of Molecular Oxygen in the Red Fluorescent Protein mCherry Using Explicit Oxygen Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2013, 117 (8) , 2247-2253. https://doi.org/10.1021/jp308366y
    33. Nanna H. List, Jógvan Magnus H. Olsen, Hans Jørgen Aa. Jensen, Arnfinn H. Steindal, and Jacob Kongsted . Molecular-Level Insight into the Spectral Tuning Mechanism of the DsRed Chromophore. The Journal of Physical Chemistry Letters 2012, 3 (23) , 3513-3521. https://doi.org/10.1021/jz3014858
    34. Adele D. Laurent, Vladimir A. Mironov, Prem P. Chapagain, Alexander V. Nemukhin, and Anna I. Krylov . Exploring Structural and Optical Properties of Fluorescent Proteins by Squeezing: Modeling High-Pressure Effects on the mStrawberry and mCherry Red Fluorescent Proteins. The Journal of Physical Chemistry B 2012, 116 (41) , 12426-12440. https://doi.org/10.1021/jp3060944
    35. Yao Lu, Jianpeng Wang, Jianhao Wang, Lin Wang, Shannon Wing-Ngor Au, and Jiang Xia . Genetically Encodable Design of Ligand “Bundling” on the Surface of Nanoparticles. Langmuir 2012, 28 (39) , 13788-13792. https://doi.org/10.1021/la302902m
    36. Oksana M. Subach, David Entenberg, John S. Condeelis, and Vladislav V. Verkhusha . A FRET-Facilitated Photoswitching Using an Orange Fluorescent Protein with the Fast Photoconversion Kinetics. Journal of the American Chemical Society 2012, 134 (36) , 14789-14799. https://doi.org/10.1021/ja3034137
    37. Carla S. Thomas, Liza Xu, and Bradley D. Olsen . Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers. Biomacromolecules 2012, 13 (9) , 2781-2792. https://doi.org/10.1021/bm300763x
    38. Eric A. Pozzi, Linda R. Schwall, Ralph Jimenez, and J. Mathias Weber . Pressure-Induced Changes in the Fluorescence Behavior of Red Fluorescent Proteins. The Journal of Physical Chemistry B 2012, 116 (34) , 10311-10316. https://doi.org/10.1021/jp306093h
    39. Fedor V. Subach and Vladislav V. Verkhusha . Chromophore Transformations in Red Fluorescent Proteins. Chemical Reviews 2012, 112 (7) , 4308-4327. https://doi.org/10.1021/cr2001965
    40. Bokyung Kim, Christopher N. Lam, and Bradley D. Olsen . Nanopatterned Protein Films Directed by Ionic Complexation with Water-Soluble Diblock Copolymers. Macromolecules 2012, 45 (11) , 4572-4580. https://doi.org/10.1021/ma2024914
    41. Laren M. Tolbert, Anthony Baldridge, Janusz Kowalik, and Kyril M. Solntsev . Collapse and Recovery of Green Fluorescent Protein Chromophore Emission through Topological Effects. Accounts of Chemical Research 2012, 45 (2) , 171-181. https://doi.org/10.1021/ar2000925
    42. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane . Describing Two-Photon Absorptivity of Fluorescent Proteins with a New Vibronic Coupling Mechanism. The Journal of Physical Chemistry B 2012, 116 (5) , 1736-1744. https://doi.org/10.1021/jp211020k
    43. Carla S. Thomas, Matthew J. Glassman, and Bradley D. Olsen . Solid-State Nanostructured Materials from Self-Assembly of a Globular Protein–Polymer Diblock Copolymer. ACS Nano 2011, 5 (7) , 5697-5707. https://doi.org/10.1021/nn2013673
    44. Robert H. Newman, Matthew D. Fosbrink, and Jin Zhang . Genetically Encodable Fluorescent Biosensors for Tracking Signaling Dynamics in Living Cells. Chemical Reviews 2011, 111 (5) , 3614-3666. https://doi.org/10.1021/cr100002u
    45. Rebekka M. Wachter, Jennifer L. Watkins and Hanseong Kim. Mechanistic Diversity of Red Fluorescence Acquisition by GFP-like Proteins. Biochemistry 2010, 49 (35) , 7417-7427. https://doi.org/10.1021/bi100901h
    46. Fedor V. Subach, George H. Patterson, Malte Renz, Jennifer Lippincott-Schwartz and Vladislav V. Verkhusha. Bright Monomeric Photoactivatable Red Fluorescent Protein for Two-Color Super-Resolution sptPALM of Live Cells. Journal of the American Chemical Society 2010, 132 (18) , 6481-6491. https://doi.org/10.1021/ja100906g
    47. Seth Olsen. A Modified Resonance-Theoretic Framework for Structure−Property Relationships in a Halochromic Oxonol Dye. Journal of Chemical Theory and Computation 2010, 6 (4) , 1089-1103. https://doi.org/10.1021/ct100001b
    48. Sergei Pletnev, Fedor V. Subach, Zbigniew Dauter, Alexander Wlodawer and Vladislav V. Verkhusha. Understanding Blue-to-Red Conversion in Monomeric Fluorescent Timers and Hydrolytic Degradation of Their Chromophores. Journal of the American Chemical Society 2010, 132 (7) , 2243-2253. https://doi.org/10.1021/ja908418r
    49. Julien Savatier, Stéphan Jalaguier, Matthew L. Ferguson, Vincent Cavaillès and Catherine A. Royer . Estrogen Receptor Interactions and Dynamics Monitored in Live Cells by Fluorescence Cross-Correlation Spectroscopy. Biochemistry 2010, 49 (4) , 772-781. https://doi.org/10.1021/bi9013006
    50. Elsa Sanchez-Garcia, Markus Doerr, Ya-Wen Hsiao and Walter Thiel. QM/MM Study of the Monomeric Red Fluorescent Protein DsRed.M1. The Journal of Physical Chemistry B 2009, 113 (52) , 16622-16631. https://doi.org/10.1021/jp9069042
    51. Mickaël Lelimousin, Marjolaine Noirclerc-Savoye, Christelle Lazareno-Saez, Bernhard Paetzold, Sophie Le Vot, Richard Chazal, Pauline Macheboeuf, Martin J. Field, Dominique Bourgeois and Antoine Royant . Intrinsic Dynamics in ECFP and Cerulean Control Fluorescence Quantum Yield. Biochemistry 2009, 48 (42) , 10038-10046. https://doi.org/10.1021/bi901093w
    52. Mikhail Drobizhev, Shane Tillo, Nikolay S. Makarov, Thomas E. Hughes and Aleksander Rebane . Color Hues in Red Fluorescent Proteins Are Due to Internal Quadratic Stark Effect. The Journal of Physical Chemistry B 2009, 113 (39) , 12860-12864. https://doi.org/10.1021/jp907085p
    53. Ilia V. Yampolsky, Tamara A. Balashova and Konstantin A. Lukyanov. Synthesis and Spectral and Chemical Properties of the Yellow Fluorescent Protein zFP538 Chromophore. Biochemistry 2009, 48 (33) , 8077-8082. https://doi.org/10.1021/bi900719x
    54. Akihiro Kikuchi, Eiko Fukumura, Satoshi Karasawa, Yoshitsugu Shiro and Atsushi Miyawaki . Crystal Structure of a New Cyan Fluorescent Protein and Its Hue-Shifted Variants,. Biochemistry 2009, 48 (23) , 5276-5283. https://doi.org/10.1021/bi801658p
    55. Virgile Adam, Karin Nienhaus, Dominique Bourgeois and G. Ulrich Nienhaus . Structural Basis of Enhanced Photoconversion Yield in Green Fluorescent Protein-like Protein Dendra2. Biochemistry 2009, 48 (22) , 4905-4915. https://doi.org/10.1021/bi900383a
    56. Luis A. Alvarez, Fabienne Merola, Marie Erard and Filippo Rusconi . Mass Spectrometry-Based Structural Dissection of Fluorescent Proteins. Biochemistry 2009, 48 (18) , 3810-3812. https://doi.org/10.1021/bi900327f
    57. Naoki Taguchi, Yuji Mochizuki, Tatsuya Nakano, Shinji Amari, Kaori Fukuzawa, Takeshi Ishikawa, Minoru Sakurai and Shigenori Tanaka . Fragment Molecular Orbital Calculations on Red Fluorescent Proteins (DsRed and mFruits). The Journal of Physical Chemistry B 2009, 113 (4) , 1153-1161. https://doi.org/10.1021/jp808151c
    58. M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes and A. Rebane . Absolute Two-Photon Absorption Spectra and Two-Photon Brightness of Orange and Red Fluorescent Proteins. The Journal of Physical Chemistry B 2009, 113 (4) , 855-859. https://doi.org/10.1021/jp8087379
    59. Akihiro Kikuchi, Eiko Fukumura, Satoshi Karasawa, Hideaki Mizuno, Atsushi Miyawaki and Yoshitsugu Shiro. Structural Characterization of a Thiazoline-Containing Chromophore in an Orange Fluorescent Protein, Monomeric Kusabira Orange. Biochemistry 2008, 47 (44) , 11573-11580. https://doi.org/10.1021/bi800727v
    60. Jeremy R. Lohman and S. James Remington. Development of a Family of Redox-Sensitive Green Fluorescent Protein Indicators for Use in Relatively Oxidizing Subcellular Environments. Biochemistry 2008, 47 (33) , 8678-8688. https://doi.org/10.1021/bi800498g
    61. Frank Schleifenbaum, Christian Blum, Kirstin Elgass, Vinod Subramaniam and Alfred J. Meixner. New Insights into the Photophysics of DsRed by Multiparameter Spectroscopy on Single Proteins. The Journal of Physical Chemistry B 2008, 112 (25) , 7669-7674. https://doi.org/10.1021/jp7114753
    62. Alexander S. Mishin, Fedor V. Subach, Ilia V. Yampolsky, William King, Konstantin A. Lukyanov and Vladislav V. Verkhusha. The First Mutant of the Aequorea victoria Green Fluorescent Protein That Forms a Red Chromophore. Biochemistry 2008, 47 (16) , 4666-4673. https://doi.org/10.1021/bi702130s
    63. Li-Hsin Li, Winston Chiu, Yun-An Huang, Madina Rasulova, Thomas Vercruysse, Hendrik Jan Thibaut, Sebastiaan ter Horst, Joana Rocha-Pereira, Greet Vanhoof, Doortje Borrenberghs, Olivia Goethals, Suzanne J. F. Kaptein, Pieter Leyssen, Johan Neyts, Kai Dallmeier. Multiplexed multicolor antiviral assay amenable for high-throughput research. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-023-44339-z
    64. Ciara Keating, Kerstin Fiege, Martijn Diender, Diana Z. Sousa, Laura Villanueva, . Microbial single-cell applications under anoxic conditions. Applied and Environmental Microbiology 2024, 60 https://doi.org/10.1128/aem.01321-24
    65. Matthew R. Anderson, Caitlin M. Padgett, Victoria O. Ogbeifun, Natasha M. DeVore. The Crystal Structure of Thermal Green Protein Q66E (TGP-E) and Yellow Thermostable Protein (YTP-E) E148D. SynBio 2024, 2 (3) , 298-310. https://doi.org/10.3390/synbio2030018
    66. David Gutiérrez‐Armayor, Youssef Atoini, Daniel Van Opdenbosch, Cordt Zollfrank, Mattia Nieddu, Rubén D. Costa. Simple Sol‐Gel Protein Stabilization toward Rainbow and White Lighting Devices. Advanced Materials 2024, 36 (27) https://doi.org/10.1002/adma.202311031
    67. Stephanie Grümbel, Marco Hasler, Sara Ferrara, Marta Patrian, Jesús Agustín Banda‐Vázquez, Pedro B. Coto, Juan Pablo Fuenzalida Werner, Rubén D. Costa. Simple Encoded Circularly Polarized Protein Lighting. Advanced Optical Materials 2024, 12 (18) https://doi.org/10.1002/adom.202400106
    68. Liam Haas-Neill, Khalil Joron, Eitan Lerner, Sarah Rauscher. PEG-mCherry interactions beyond classical macromolecular crowding. 2024https://doi.org/10.1101/2024.05.07.592799
    69. Juan Wang, Won-Gyu Choi, Nam Khoa Nguyen, Dongping Liu, Su-Hwa Kim, Dongyeol Lim, Byung Kook Hwang, Nam-Soo Jwa. Cytoplasmic Ca2+ influx mediates iron- and reactive oxygen species-dependent ferroptotic cell death in rice immunity. Frontiers in Plant Science 2024, 15 https://doi.org/10.3389/fpls.2024.1339559
    70. Colline Sanchez, Andrea Ramirez, Louis Hodgson. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. Journal of Microscopy 2024, 59 https://doi.org/10.1111/jmi.13270
    71. Chan-I. Chung, Junjiao Yang, Xiaoyu Yang, Hongjiang Liu, Zhimin Ma, Frank Szulzewsky, Eric C. Holland, Yin Shen, Xiaokun Shu. Phase separation of YAP-MAML2 differentially regulates the transcriptome. Proceedings of the National Academy of Sciences 2024, 121 (7) https://doi.org/10.1073/pnas.2310430121
    72. Riccardo Nifosì, Barbara Storti, Ranieri Bizzarri. Reversibly switchable fluorescent proteins: “the fair switch project”. La Rivista del Nuovo Cimento 2024, 47 (2) , 91-178. https://doi.org/10.1007/s40766-024-00052-1
    73. Devika Rajan, Ananthu Muraleedharan, Anjali Variyar, Preetika Verma, Faina Pinhero, Yapamanu Adithya Lakshmanna, T. Sabari Sankar, K. George Thomas. Single- and two-photon-induced Förster resonance energy transfer in InP-mCherry bioconjugates. The Journal of Chemical Physics 2024, 160 (4) https://doi.org/10.1063/5.0186483
    74. Marco Sette, Laura Anne Johnson, Ralph Jimenez, Frans A.A. Mulder. Backbone 1H, 15N and 13C resonance assignments of the 27kDa fluorescent protein mCherry. Biomolecular NMR Assignments 2023, 17 (2) , 243-247. https://doi.org/10.1007/s12104-023-10149-z
    75. Khalil Joron, Juliane Oliveira Viegas, Liam Haas-Neill, Sariel Bier, Paz Drori, Shani Dvir, Patrick Siang Lin Lim, Sarah Rauscher, Eran Meshorer, Eitan Lerner. Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40647-6
    76. Jakub Sławski, Katarzyna Walczewska-Szewc, Joanna Grzyb. Protein/Protein and Quantum Dot/Protein Organization in Sequential Monolayer Materials Studied Using Resonance Energy Transfer. Applied Sciences 2023, 13 (21) , 11917. https://doi.org/10.3390/app132111917
    77. Taylor D. Krueger, Cheng Chen, Chong Fang. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chemistry – An Asian Journal 2023, 18 (20) https://doi.org/10.1002/asia.202300668
    78. Jian Song, Wen Long Liang, Shouning Yang, Huayan Yang. Design strategy of infrared 4-hydroxybenzylidene-imidazolinone-type chromophores based on intramolecular charge transfer: A theoretical perspective. Chinese Journal of Chemical Physics 2023, 36 (5) , 582-592. https://doi.org/10.1063/1674-0068/cjcp2210157
    79. Jiyang Ma, Shuoying Zhao, Xubiao Peng, Gaoshang Li, Yuanjin Wang, Bo Zhang, Qing Zhao. An mCherry biolaser based on microbubble cavity with ultra-low threshold. Applied Physics Letters 2023, 123 (5) https://doi.org/10.1063/5.0157873
    80. Carolin Kümpel, Fabian Grein, Christiane Dahl. Fluorescence Microscopy Study of the Intracellular Sulfur Globule Protein SgpD in the Purple Sulfur Bacterium Allochromatium vinosum. Microorganisms 2023, 11 (7) , 1792. https://doi.org/10.3390/microorganisms11071792
    81. Sara Ferrara, Juan P. Fernandéz‐Blázquez, Juan Pablo Fuenzalida Werner, Rubén D. Costa. Homopolymeric Protein Phosphors: Overpassing the Stability Frontier of Deep‐Red Bio‐Hybrid Light‐Emitting Diodes. Advanced Functional Materials 2023, 33 (24) https://doi.org/10.1002/adfm.202300350
    82. Thi Yen Hang Bui, Elke De Zitter, Benjamien Moeyaert, Ludovic Pecqueur, Bindu Y. Srinivasu, Anastassios Economou, Marc Fontecave, Luc Van Meervelt, Peter Dedecker, Brandán Pedre. Oxygen-induced chromophore degradation in the photoswitchable red fluorescent protein rsCherry. International Journal of Biological Macromolecules 2023, 239 , 124179. https://doi.org/10.1016/j.ijbiomac.2023.124179
    83. Lei G. Wang, Antonio R. Montaño, Jason R. Combs, Nathan P. McMahon, Allison Solanki, Michelle M. Gomes, Kai Tao, William H. Bisson, Dani A. Szafran, Kimberley S. Samkoe, Kenneth M. Tichauer, Summer L. Gibbs. OregonFluor enables quantitative intracellular paired agent imaging to assess drug target availability in live cells and tissues. Nature Chemistry 2023, 15 (5) , 729-739. https://doi.org/10.1038/s41557-023-01173-6
    84. Minji Wang, Yifan Da, Yang Tian. Fluorescent proteins and genetically encoded biosensors. Chemical Society Reviews 2023, 52 (4) , 1189-1214. https://doi.org/10.1039/D2CS00419D
    85. Thi Yen Hang Bui, Peter Dedecker, Luc Van Meervelt. An unusual disulfide-linked dimerization in the fluorescent protein rsCherryRev1.4. Acta Crystallographica Section F Structural Biology Communications 2023, 79 (2) , 38-44. https://doi.org/10.1107/S2053230X23000572
    86. Xuelin Jin, Y. Tehee Kim, Kyubong Jo. DNA Visualization Using Fluorescent Proteins. 2023, 223-246. https://doi.org/10.1007/978-1-0716-2667-2_11
    87. Aishwarya Chhatre, Bhupendra V. Shravage. Assays for Monitoring Autophagy in Stem Cells. 2023, 1-34. https://doi.org/10.1007/978-3-031-17362-2_1
    88. Junjiao Yang, Yinghong Xiao, Peter V. Lidsky, Chien-Ting Wu, Luke R. Bonser, Shiming Peng, Miguel A. Garcia-Knight, Michel Tassetto, Chan-I Chung, Xiaoquan Li, Tsuguhisa Nakayama, Ivan T. Lee, Jayakar V. Nayak, Khadija Ghias, Kirsten L. Hargett, Brian K. Shoichet, David J. Erle, Peter K. Jackson, Raul Andino, Xiaokun Shu. Fluorogenic reporter enables identification of compounds that inhibit SARS-CoV-2. Nature Microbiology 2023, 8 (1) , 121-134. https://doi.org/10.1038/s41564-022-01288-5
    89. Xuelin Jin, Kyubong Jo. Single-Molecule DNA Visualization. 2023, 1497-1526. https://doi.org/10.1007/978-981-19-9776-1_53
    90. Peter Rozik, Robert Szabla, Jeremy T. Lant, Rashmi Kiri, David E. Wright, Murray Junop, Patrick O’Donoghue. A novel fluorescent reporter sensitive to serine mis-incorporation. RNA Biology 2022, 19 (1) , 220-232. https://doi.org/10.1080/15476286.2021.2015173
    91. Antrea Pavlou, Eugenio Cinquemani, Johannes Geiselmann, Hidde de Jong. Maturation models of fluorescent proteins are necessary for unbiased estimates of promoter activity. Biophysical Journal 2022, 121 (21) , 4179-4188. https://doi.org/10.1016/j.bpj.2022.09.021
    92. Chiara Montali, Stefania Abbruzzetti, Arne Franzen, Giorgia Casini, Stefano Bruno, Pietro Delcanale, Sandra Burgstaller, Jeta Ramadani-Muja, Roland Malli, Thomas Gensch, Cristiano Viappiani. Nitric Oxide Sensing by a Blue Fluorescent Protein. Antioxidants 2022, 11 (11) , 2229. https://doi.org/10.3390/antiox11112229
    93. Anh T. Q. Cong, Taylor L. Witter, Matthew J. Schellenberg. High‐efficiency recombinant protein purification using mCherry and YFP nanobody affinity matrices. Protein Science 2022, 31 (9) https://doi.org/10.1002/pro.4383
    94. Maxime Fages-Lartaud, Lisa Tietze, Florence Elie, Rahmi Lale, Martin Frank Hohmann-Marriott. mCherry contains a fluorescent protein isoform that interferes with its reporter function. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.892138
    95. Yuan Luo, Ming Lun Tseng, Sunil Vyas, Ting-Yu Hsieh, Jui-Ching Wu, Shang-Yang Chen, Hsiao-Fang Peng, Vin-Cent Su, Tzu-Ting Huang, Hsin Yu Kuo, Cheng Hung Chu, Mu Ku Chen, Jia-Wern Chen, Yu-Chun Chen, Kuang-Yuh Huang, Chieh-Hsiung Kuan, Xu Shi, Hiroaki Misawa, Din Ping Tsai. Meta-lens light-sheet fluorescence microscopy for in vivo imaging. Nanophotonics 2022, 11 (9) , 1949-1959. https://doi.org/10.1515/nanoph-2021-0748
    96. Dawid Grabarek, Tadeusz Andruniów. The Role of Hydrogen Bonds and Electrostatic Interactions in Enhancing Two‐Photon Absorption in Green and Yellow Fluorescent Proteins. ChemPhysChem 2022, 23 (7) https://doi.org/10.1002/cphc.202200003
    97. Martyna Jankowska, Karolina Sulowska, Kamil Wiwatowski, Joanna Niedziółka-Jönsson, Sebastian Mackowski. Real-Time Fluorescence Imaging of His-Tag-Driven Conjugation of mCherry Proteins to Silver Nanowires. Chemosensors 2022, 10 (4) , 149. https://doi.org/10.3390/chemosensors10040149
    98. Sandrine Legault, Derek P. Fraser-Halberg, Ralph L. McAnelly, Matthew G. Eason, Michael C. Thompson, Roberto A. Chica. Generation of bright monomeric red fluorescent proteins via computational design of enhanced chromophore packing. Chemical Science 2022, 13 (5) , 1408-1418. https://doi.org/10.1039/D1SC05088E
    99. Yuao Sun, Yao Wang, Keyang Chen, Yujie Sun, Sheng Wang. Rational engineering and synthetic applications of a high specificity BiFC probe derived from Springgreen-M. The Analyst 2022, 9 https://doi.org/10.1039/D2AN01124G
    100. Xuelin Jin, Kyubong Jo. Single-Molecule DNA Visualization. 2022, 1-30. https://doi.org/10.1007/978-981-16-1313-5_53-1
    Load more citations

    Biochemistry

    Cite this: Biochemistry 2006, 45, 32, 9639–9647
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi060773l
    Published July 25, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    12k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.