ACS Publications. Most Trusted. Most Cited. Most Read
Biochemical and in Vivo Characterization of a Small, Membrane-Permeant, Caspase-Activatable Far-Red Fluorescent Peptide for Imaging Apoptosis
My Activity
    Article

    Biochemical and in Vivo Characterization of a Small, Membrane-Permeant, Caspase-Activatable Far-Red Fluorescent Peptide for Imaging Apoptosis
    Click to copy article linkArticle link copied!

    View Author Information
    Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Molecular Microbiology, and Department of Molecular Biology & Pharmacology, Washington University Medical School, St. Louis, Missouri 63110
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2007, 46, 13, 4055–4065
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi061959n
    Published March 10, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Apoptosis is an important process involved in diverse developmental pathways, homeostasis, and response to therapy for a variety of diseases. Thus, noninvasive methods to study regulation and to monitor cell death in cells and whole animals are desired. To specifically detect apoptosis in vivo, a novel cell-permeable activatable caspase substrate, TcapQ647, was synthesized and Km, kcat, and Ki values were biochemically characterized. Specific cleavage of TcapQ647 by effector caspases was demonstrated using a panel of purified recombinant enzyme assays. Of note, caspase 3 was shown to cleave TcapQ647 with a kcat 7-fold greater than caspase 7 and 16-fold greater than caspase 6. No evidence of TcapQ647 cleavage by initiator caspases was observed. In KB 3-1 or Jurkat cells treated with cytotoxic agents or C6-ceramide, TcapQ647 detected apoptosis in individual- and population-based fluorescent cell assays in an effector caspase inhibitor-specific manner. Further, only background fluorescence was observed in cells incubated with dTcapQ647, a noncleavable all d-amino acid control peptide. Finally, in vivo experiments demonstrated the utility of TcapQ647 to detect parasite-induced apoptosis in human colon xenograft and liver abscess mouse models. Thus, TcapQ647 represents a sensitive, effector caspase-specific far-red “smart” probe to noninvasively monitor apoptosis in vivo.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     This work was supported by NIH Grants P50 CA94056, RO1 CA82841, and RO1 AI30084.

     Molecular Imaging Center, Mallinckrodt Institute of Radiology.

    §

     Department of Molecular Microbiology.

    *

     Correspondence to this author at Mallinckrodt Institute of Radiology, Washington University Medical School, 510 S. Kingshighway Blvd., Box 8225, St. Louis, MO 63110. Tel:  314-362-9356. Fax:  314-362-0152. E-mail:  [email protected].

     Department of Molecular Biology & Pharmacology.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 76 publications.

    1. Zhenghan Di, Xiulin Yi, Lele Li. Protease-Triggered, Spatially Controlled DNA Assembly in Apoptotic Cells for Early Evaluation of Therapeutic Efficacy. Journal of the American Chemical Society 2023, 145 (14) , 7931-7940. https://doi.org/10.1021/jacs.2c13214
    2. Subramaniyam Sivagnanam, Kiran Das, Ieshita Pan, Atanu Barik, Adele Stewart, Biswanath Maity, Priyadip Das. Functionalized Fluorescent Nanostructures Generated from Self-Assembly of a Cationic Tripeptide Direct Cell-Selective Chemotherapeutic Drug Delivery. ACS Applied Bio Materials 2023, 6 (2) , 836-847. https://doi.org/10.1021/acsabm.2c00996
    3. Punita Bathla, Britto S. Sandanaraj. Development of Activity-Based Reporter Gene Technology for Imaging of Protease Activity with an Exquisite Specificity in a Single Live Cell. ACS Chemical Biology 2019, 14 (10) , 2276-2285. https://doi.org/10.1021/acschembio.9b00614
    4. Minggang Tian, Yanyan Ma, Weiying Lin. Fluorescent Probes for the Visualization of Cell Viability. Accounts of Chemical Research 2019, 52 (8) , 2147-2157. https://doi.org/10.1021/acs.accounts.9b00289
    5. Marcin Poreba, Aleksandra Szalek, Paulina Kasperkiewicz, Wioletta Rut, Guy S. Salvesen, and Marcin Drag . Small Molecule Active Site Directed Tools for Studying Human Caspases. Chemical Reviews 2015, 115 (22) , 12546-12629. https://doi.org/10.1021/acs.chemrev.5b00434
    6. Bryan A. Smith and Bradley D. Smith . Biomarkers and Molecular Probes for Cell Death Imaging and Targeted Therapeutics. Bioconjugate Chemistry 2012, 23 (10) , 1989-2006. https://doi.org/10.1021/bc3003309
    7. James R. Johnson, Brandon Kocher, Edward M. Barnett, Jayne Marasa, and David Piwnica-Worms . Caspase-Activated Cell-Penetrating Peptides Reveal Temporal Coupling Between Endosomal Release and Apoptosis in an RGC-5 Cell Model. Bioconjugate Chemistry 2012, 23 (9) , 1783-1793. https://doi.org/10.1021/bc300036z
    8. Dustin Maxwell, Qing Chang, Xu Zhang, Edward M. Barnett and David Piwnica-Worms . An Improved Cell-Penetrating, Caspase-Activatable, Near-Infrared Fluorescent Peptide for Apoptosis Imaging. Bioconjugate Chemistry 2009, 20 (4) , 702-709. https://doi.org/10.1021/bc800516n
    9. Zongren Zhang, Jinda Fan, Philip P. Cheney, Mikhail Y. Berezin, W. Barry Edwards, Walter J. Akers, Duanwen Shen, Kexian Liang, Joseph P. Culver and Samuel Achilefu . Activatable Molecular Systems Using Homologous Near-Infrared Fluorescent Probes for Monitoring Enzyme Activities in Vitro, in Cellulo, and in Vivo. Molecular Pharmaceutics 2009, 6 (2) , 416-427. https://doi.org/10.1021/mp800264k
    10. Junqi Li and Shao Q. Yao. “Singapore Green”: A New Fluorescent Dye for Microarray and Bioimaging Applications. Organic Letters 2009, 11 (2) , 405-408. https://doi.org/10.1021/ol802700w
    11. Jean-Alexandre Richard, Yves Meyer, Valérie Jolivel, Marc Massonneau, Raphaël Dumeunier, David Vaudry, Hubert Vaudry, Pierre-Yves Renard and Anthony Romieu. Latent Fluorophores Based on a Self-Immolative Linker Strategy and Suitable for Protease Sensing. Bioconjugate Chemistry 2008, 19 (8) , 1707-1718. https://doi.org/10.1021/bc8001997
    12. Anthony Romieu, Dominique Brossard, Maxime Hamon, Hakim Outaabout, Christophe Portal and Pierre-Yves Renard. Postsynthetic Derivatization of Fluorophores with α-Sulfo-β-alanine Dipeptide Linker. Application to the Preparation of Water-Soluble Cyanine and Rhodamine Dyes. Bioconjugate Chemistry 2008, 19 (1) , 279-289. https://doi.org/10.1021/bc7003268
    13. Ya-Xi Ye, Jian-Cheng Pan, Hai-Chao Wang, Xing-Tao Zhang, Hai-Liang Zhu, Xin-Hua Liu. Advances in small-molecule fluorescent probes for the study of apoptosis. Chemical Society Reviews 2024, 53 (18) , 9133-9189. https://doi.org/10.1039/D4CS00502C
    14. Bo Hu, Shiwen Gao, Xiaoyang Han, Caifeng Ding. Recent advances in fluorescence biosensor for caspase detecting and imaging in biomedical applications. TrAC Trends in Analytical Chemistry 2023, 168 , 117337. https://doi.org/10.1016/j.trac.2023.117337
    15. Xudong Qiu, Seth T. Gammon, James R. Johnson, Federica Pisaneschi, Steven W. Millward, Edward M. Barnett, David Piwnica-Worms. Apoptosis Detection in Retinal Ganglion Cells Using Quantitative Changes in Multichannel Fluorescence Colocalization. Biosensors 2022, 12 (9) , 693. https://doi.org/10.3390/bios12090693
    16. Qian Lei, Xueyan Huang, Lijuan Zheng, Fan Zheng, Jie Dong, Fei Chen, Wenbin Zeng. Biosensors for Caspase-3: From chemical methodologies to biomedical applications. Talanta 2022, 240 , 123198. https://doi.org/10.1016/j.talanta.2021.123198
    17. Pengzhan Wang, Huocheng Yang, Chang Liu, Mingqiang Qiu, Xin Ma, Zhiqiang Mao, Yao Sun, Zhihong Liu. Recent advances in the development of activatable multifunctional probes for in vivo imaging of caspase-3. Chinese Chemical Letters 2021, 32 (1) , 168-178. https://doi.org/10.1016/j.cclet.2020.11.056
    18. Joanna Napp, Andrea Markus, Frauke Alves. Optical and Optoacoustic Imaging. 2020, 439-492. https://doi.org/10.1007/978-3-030-42618-7_13
    19. Partha Sarathi Addy, Yunan Zheng, James S. Italia, Abhishek Chatterjee. A “Quenchergenic” Chemoselective Protein Labeling Strategy. ChemBioChem 2019, 20 (13) , 1659-1663. https://doi.org/10.1002/cbic.201800817
    20. Sri Murugan Poongkavithai Vadevoo, Smriti Gurung, Fatima Khan, Md. Enamul Haque, Gowri Rangaswamy Gunassekaran, Lianhua Chi, Uttapol Permpoon, Byungheon Lee. Peptide-based targeted therapeutics and apoptosis imaging probes for cancer therapy. Archives of Pharmacal Research 2019, 42 (2) , 150-158. https://doi.org/10.1007/s12272-019-01125-0
    21. Valeriy G. Ostapchenko, Jonatan Snir, Mojmir Suchy, Jue Fan, M. Rebecca Cobb, Blaine A. Chronik, Michael Kovacs, Vania F. Prado, Robert H. E. Hudson, Stephen H. Pasternak, Marco A. M. Prado, Robert Bartha. Detection of Active Caspase-3 in Mouse Models of Stroke and Alzheimer’s Disease with a Novel Dual Positron Emission Tomography/Fluorescent Tracer [ 68 Ga]Ga-TC3-OGDOTA. Contrast Media & Molecular Imaging 2019, 2019 , 1-17. https://doi.org/10.1155/2019/6403274
    22. E. J. van Rooden, M. Kohsiek, R. Kreekel, A. C. M. van Esbroeck, A. M. C. H. van den Nieuwendijk, A. P. A. Janssen, R. J. B. H. N. van den Berg, H. S. Overkleeft, M. van der Stelt. Design and Synthesis of Quenched Activity‐based Probes for Diacylglycerol Lipase and α,β‐Hydrolase Domain Containing Protein 6. Chemistry – An Asian Journal 2018, 13 (22) , 3491-3500. https://doi.org/10.1002/asia.201800452
    23. Hong-Wen Liu, Lanlan Chen, Chengyan Xu, Zhe Li, Haiyang Zhang, Xiao-Bing Zhang, Weihong Tan. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chemical Society Reviews 2018, 47 (18) , 7140-7180. https://doi.org/10.1039/C7CS00862G
    24. Michael Dobosz, Ute Haupt, Werner Scheuer. Improved decision making for prioritizing tumor targeting antibodies in human xenografts: Utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule. mAbs 2017, 9 (1) , 140-153. https://doi.org/10.1080/19420862.2016.1238996
    25. Kyung oh Jung, Hyewon Youn, Seung Hoo Kim, Young-Hwa Kim, Keon Wook Kang, June-Key Chung. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM. Biochemical and Biophysical Research Communications 2016, 477 (3) , 483-489. https://doi.org/10.1016/j.bbrc.2016.06.068
    26. Cristina Martelli, Alessia Lo Dico, Cecilia Diceglie, Giovanni Lucignani, Luisa Ottobrini. Optical imaging probes in oncology. Oncotarget 2016, 7 (30) , 48753-48787. https://doi.org/10.18632/oncotarget.9066
    27. Satoru Tsuda, Yuji Tanaka, Hiroshi Kunikata, Yu Yokoyama, Masayuki Yasuda, Azusa Ito, Toru Nakazawa. Real-time imaging of RGC death with a cell-impermeable nucleic acid dyeing compound after optic nerve crush in a murine model. Experimental Eye Research 2016, 146 , 179-188. https://doi.org/10.1016/j.exer.2016.03.017
    28. Kyungmin Ji, Joshua Heyza, Dora Cavallo-Medved, Bonnie F. Sloane. Pathomimetic cancer avatars for live-cell imaging of protease activity. Biochimie 2016, 122 , 68-76. https://doi.org/10.1016/j.biochi.2015.09.015
    29. Martijn Verdoes, Steven H.L. Verhelst. Detection of protease activity in cells and animals. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2016, 1864 (1) , 130-142. https://doi.org/10.1016/j.bbapap.2015.04.029
    30. Baogang Xu, Monica Shokeen, Gail P. Sudlow, Scott E. Harpstrite, Kexian Liang, Philip P. Cheney, W. Barry Edwards, Vijay Sharma, Richard Laforest, Walter J. Akers, Samuel Achilefu. Utilizing the Multiradionuclide Resolving Power of SPECT and Dual Radiolabeled Single Molecules to Assess Treatment Response of Tumors. Molecular Imaging and Biology 2015, 17 (5) , 671-679. https://doi.org/10.1007/s11307-015-0842-8
    31. Frédéric Chagnon, Alexandra Bourgouin, Réjean Lebel, Marc-André Bonin, Eric Marsault, Martin Lepage, Olivier Lesur. Smart imaging of acute lung injury: exploration of myeloperoxidase activity using in vivo endoscopic confocal fluorescence microscopy. American Journal of Physiology-Lung Cellular and Molecular Physiology 2015, 309 (6) , L543-L551. https://doi.org/10.1152/ajplung.00289.2014
    32. Sander M. J. van Duijnhoven, Marc S. Robillard, Sander Langereis, Holger Grüll. Bioresponsive probes for molecular imaging: concepts and in vivo applications. Contrast Media & Molecular Imaging 2015, 10 (4) , 282-308. https://doi.org/10.1002/cmmi.1636
    33. Zhe Wang, Fu Wang, Naoki Hida, Dale O Kiesewetter, Jie Tian, Gang Niu, Xiaoyuan Chen. Design of a functional cyclic HSV1-TK reporter and its application to PET imaging of apoptosis. Nature Protocols 2015, 10 (5) , 807-821. https://doi.org/10.1038/nprot.2015.048
    34. Min Tang, Jiaguo Huang, Xinxian Weng, Lifang Yang, Meihui Liu, Ming Zhou, Xiaobo Wang, Jinghe Gao, Wei Yi, Wenbin Zeng, Lunquan Sun, Ya Cao. Evaluation of a dansyl-based amino acid DNSBA as an imaging probe for apoptosis detection. Apoptosis 2015, 20 (3) , 410-420. https://doi.org/10.1007/s10495-014-1075-z
    35. Pradip Chaudhari. Preclinical Animal Model and Non-invasive Imaging in Apoptosis. 2015, 203-237. https://doi.org/10.1007/978-3-319-19497-4_6
    36. Qiong Wang, Wenqin Hu, Qingyue Feng, Xiu-Hui Cao, Weiwei Chai, Changqing Yi, Mei-Jin Li. Coumarin-modified gold nanoprobes for the sensitive detection of caspase-3. RSC Advances 2015, 5 (54) , 43824-43830. https://doi.org/10.1039/C5RA05350A
    37. Valérie Jolivel, Sébastien Arthaud, Béatrice Botia, Christophe Portal, Bruno Delest, Guillaume Clavé, Jérôme Leprince, Anthony Romieu, Pierre-Yves Renard, Omar Touzani, Heidi Ligeret, Pauline Noack, Marc Massonneau, Alain Fournier, Hubert Vaudry, David Vaudry. Biochemical Characterization of a Caspase-3 Far-red Fluorescent Probe for Non-invasive Optical Imaging of Neuronal Apoptosis. Journal of Molecular Neuroscience 2014, 54 (3) , 451-462. https://doi.org/10.1007/s12031-014-0325-4
    38. Fu Wang, Zhe Wang, Naoki Hida, Dale O. Kiesewetter, Ying Ma, Kai Yang, Pengfei Rong, Jimin Liang, Jie Tian, Gang Niu, Xiaoyuan Chen. A cyclic HSV1-TK reporter for real-time PET imaging of apoptosis. Proceedings of the National Academy of Sciences 2014, 111 (14) , 5165-5170. https://doi.org/10.1073/pnas.1321374111
    39. Xudong Qiu, James R. Johnson, Bradley S. Wilson, Seth T. Gammon, David Piwnica-Worms, Edward M. Barnett, . Single-Cell Resolution Imaging of Retinal Ganglion Cell Apoptosis In Vivo Using a Cell-Penetrating Caspase-Activatable Peptide Probe. PLoS ONE 2014, 9 (2) , e88855. https://doi.org/10.1371/journal.pone.0088855
    40. Samantha B. Nicholls, Bradley T. Hyman. Measuring Caspase Activity In Vivo. 2014, 251-269. https://doi.org/10.1016/B978-0-12-417158-9.00010-8
    41. Cheryl Tajon, Young-Wook Jun, Charles S. Craik. Single-Molecule Sensing of Caspase Activation in Live Cells via Plasmon Coupling Nanotechnology. 2014, 271-297. https://doi.org/10.1016/B978-0-12-417158-9.00011-X
    42. Deju Ye, Adam J. Shuhendler, Prachi Pandit, Kimberly D. Brewer, Sui Seng Tee, Lina Cui, Grigory Tikhomirov, Brian Rutt, Jianghong Rao. Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis. Chem. Sci. 2014, 5 (10) , 3845-3852. https://doi.org/10.1039/C4SC01392A
    43. Megan E. Capozzi, Andrew Y. Gordon, John S. Penn, Ashwath Jayagopal. Molecular Imaging of Retinal Disease. Journal of Ocular Pharmacology and Therapeutics 2013, 29 (2) , 275-286. https://doi.org/10.1089/jop.2012.0279
    44. Anming Tang, Bin Mei, Weijuan Wang, Wanglai Hu, Fang Li, Jun Zhou, Qing Yang, Hua Cui, Mian Wu, Gaolin Liang. FITC–quencher based caspase 3-activatable nanoprobes for effectively sensing caspase 3 in vitro and in cells. Nanoscale 2013, 5 (19) , 8963. https://doi.org/10.1039/c3nr03339b
    45. Ryan K. Orosco, Roger Y. Tsien, Quyen T. Nguyen. Fluorescence Imaging in Surgery. IEEE Reviews in Biomedical Engineering 2013, 6 , 178-187. https://doi.org/10.1109/RBME.2013.2240294
    46. D.A. Dorward, C.D. Lucas, A.G. Rossi, C. Haslett, K. Dhaliwal. Imaging inflammation: Molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacology & Therapeutics 2012, 135 (2) , 182-199. https://doi.org/10.1016/j.pharmthera.2012.05.006
    47. Yu Kushida, Kenjiro Hanaoka, Toru Komatsu, Takuya Terai, Tasuku Ueno, Kengo Yoshida, Masanobu Uchiyama, Tetsuo Nagano. Red fluorescent scaffold for highly sensitive protease activity probes. Bioorganic & Medicinal Chemistry Letters 2012, 22 (12) , 3908-3911. https://doi.org/10.1016/j.bmcl.2012.04.114
    48. Chai-Hoon Quek, Kam W. Leong. Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging. Nanomaterials 2012, 2 (2) , 92-112. https://doi.org/10.3390/nano2020092
    49. Laura E Edgington, Martijn Verdoes, Matthew Bogyo. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Current Opinion in Chemical Biology 2011, 15 (6) , 798-805. https://doi.org/10.1016/j.cbpa.2011.10.012
    50. Sakib F. Elahi, Thomas D. Wang. Future and advances in endoscopy. Journal of Biophotonics 2011, 4 (7-8) , 471-481. https://doi.org/10.1002/jbio.201100048
    51. N Yivgi-Ohana, M Eifer, Y Addadi, M Neeman, A Gross. Utilizing mitochondrial events as biomarkers for imaging apoptosis. Cell Death & Disease 2011, 2 (6) , e166-e166. https://doi.org/10.1038/cddis.2011.47
    52. Manuelle Debunne, Christophe Portal, Bruno Delest, Ebba Brakenhielm, Françoise Lallemand, Jean-Paul Henry, Heidi Ligeret, Pauline Noack, Marc Massonneau, Anthony Romieu, Pierre-Yves Renard, Christian Thuillez, Vincent Richard. In Vitro and Ex Vivo Evaluation of Smart Infra-Red Fluorescent Caspase-3 Probes for Molecular Imaging of Cardiovascular Apoptosis. International Journal of Molecular Imaging 2011, 2011 , 1-13. https://doi.org/10.1155/2011/413290
    53. Chantal A.C. Beekman, Tessa Buckle, Anne C. van Leeuwen, Renato A. Valdés Olmos, Marcel Verheij, Sven Rottenberg, Fijs W.B. van Leeuwen. Questioning the value of 99mTc-HYNIC-annexin V based response monitoring after docetaxel treatment in a mouse model for hereditary breast cancer. Applied Radiation and Isotopes 2011, 69 (4) , 656-662. https://doi.org/10.1016/j.apradiso.2010.12.012
    54. Andrew Razgulin, Nan Ma, Jianghong Rao. Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chemical Society Reviews 2011, 40 (7) , 4186. https://doi.org/10.1039/c1cs15035a
    55. S. Dufort, L. Sancey, C. Wenk, V. Josserand, J.L. Coll. Optical small animal imaging in the drug discovery process. Biochimica et Biophysica Acta (BBA) - Biomembranes 2010, 1798 (12) , 2266-2273. https://doi.org/10.1016/j.bbamem.2010.03.016
    56. Gang Niu, Xiaoyuan Chen. Apoptosis Imaging: Beyond Annexin V. Journal of Nuclear Medicine 2010, 51 (11) , 1659-1662. https://doi.org/10.2967/jnumed.110.078584
    57. Randall D. Reif, Charmaine Aguas, Michelle M. Martinez, Dimitri Pappas. Temporal dynamics of receptor-induced apoptosis in an affinity microdevice. Analytical and Bioanalytical Chemistry 2010, 397 (8) , 3387-3396. https://doi.org/10.1007/s00216-010-3567-1
    58. Britto S Sandanaraj, Rainer Kneuer, Nicolau Beckmann. Optical and Magnetic Resonance Imaging as Complementary Modalities in Drug Discovery. Future Medicinal Chemistry 2010, 2 (3) , 317-337. https://doi.org/10.4155/fmc.09.175
    59. Veerle Kersemans, Bart Cornelissen. Targeting the Tumour: Cell Penetrating Peptides for Molecular Imaging and Radiotherapy. Pharmaceuticals 2010, 3 (3) , 600-620. https://doi.org/10.3390/ph3030600
    60. Michelle M. Martinez, Randall D. Reif, Dimitri Pappas. Early detection of apoptosis in living cells by fluorescence correlation spectroscopy. Analytical and Bioanalytical Chemistry 2010, 396 (3) , 1177-1185. https://doi.org/10.1007/s00216-009-3298-3
    61. Feifan Zhou, Da Xing, Shengnan Wu, Wei R. Chen. Intravital Imaging of Tumor Apoptosis with FRET Probes During Tumor Therapy. Molecular Imaging and Biology 2010, 12 (1) , 63-70. https://doi.org/10.1007/s11307-009-0235-y
    62. Frederic Leblond, Scott C. Davis, Pablo A. Valdés, Brian W. Pogue. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. Journal of Photochemistry and Photobiology B: Biology 2010, 98 (1) , 77-94. https://doi.org/10.1016/j.jphotobiol.2009.11.007
    63. Rupa Sawant, Vladimir Torchilin. Intracellulartransduction using cell-penetrating peptides. Mol. BioSyst. 2010, 6 (4) , 628-640. https://doi.org/10.1039/B916297F
    64. Seth T Gammon, Warren M Leevy, Merrill Loechner. Carestream Molecular Imaging: imaging of cancer biology and relevant pathways in vivo. Nature Methods 2009, 6 (12) , an4-an5. https://doi.org/10.1038/nmeth.f.276
    65. Galia Blum, Robby M. Weimer, Laura E. Edgington, Walter Adams, Matthew Bogyo, . Comparative Assessment of Substrates and Activity Based Probes as Tools for Non-Invasive Optical Imaging of Cysteine Protease Activity. PLoS ONE 2009, 4 (7) , e6374. https://doi.org/10.1371/journal.pone.0006374
    66. Mats Hansen, Elo Eriste, Ülo Langel. The Internalization Mechanisms and Bioactivity of the Cell‐Penetrating Peptides. 2009, 125-143. https://doi.org/10.1002/9783527626830.ch7
    67. Edward M. Barnett, Xu Zhang, Dustin Maxwell, Qing Chang, David Piwnica-Worms. Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. Proceedings of the National Academy of Sciences 2009, 106 (23) , 9391-9396. https://doi.org/10.1073/pnas.0812884106
    68. Xinzhan Peng, Huaxian Chen, Daniel R. Draney, William Volcheck, Amy Schutz-Geschwender, D. Michael Olive. A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays. Analytical Biochemistry 2009, 388 (2) , 220-228. https://doi.org/10.1016/j.ab.2009.02.024
    69. J.-P. Vuillez, M.-D. Desruet, O. Mundler, G. Karcher. Le radiopharmaceutique : situation et perspectives depuis la 8eConférence internationale de l’ACOMEN (Bordeaux, 11–12–13mai2005). Médecine Nucléaire 2009, 33 (3) , 115-121. https://doi.org/10.1016/j.mednuc.2009.01.007
    70. Seth T. Gammon, Victor M. Villalobos, Mikhail Roshal, Mustapha Samrakandi, David Piwnica‐Worms. Rational design of novel red‐shifted BRET pairs: Platforms for real‐time single‐chain protease biosensors. Biotechnology Progress 2009, 25 (2) , 559-569. https://doi.org/10.1002/btpr.144
    71. Jirka Grosse, Daniela Grimm, Kriss Westphal, Claudia Ulbrich, Jutta Moosbauer, Fabian Pohl, Oliver Koelbl, Manfred Infanger, Christoph Eilles, Johann Schoenberger. Radiolabeled annexin V for imaging apoptosis in radiated human follicular thyroid carcinomas — is an individualized protocol necessary?. Nuclear Medicine and Biology 2009, 36 (1) , 89-98. https://doi.org/10.1016/j.nucmedbio.2008.10.004
    72. Jean-Alexandre Richard, Ludovic Jean, Caroline Schenkels, Marc Massonneau, Anthony Romieu, Pierre-Yves Renard. Self-cleavable chemiluminescent probes suitable for protease sensing. Organic & Biomolecular Chemistry 2009, 7 (14) , 2941. https://doi.org/10.1039/b905725k
    73. Hyeran Lee, Walter J. Akers, Philip P. Cheney, W. Barry Edwards, Kexian Liang, Joseph P. Culver, Samuel Achilefu. Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe. Journal of Biomedical Optics 2009, 14 (4) , 040507. https://doi.org/10.1117/1.3207156
    74. Jonathan F. Tait. Imaging of Apoptosis. Journal of Nuclear Medicine 2008, 49 (10) , 1573-1576. https://doi.org/10.2967/jnumed.108.052803
    75. Seulki Lee, Kyeongsoon Park, Kwangmeyung Kim, Kuiwon Choi, Ick Chan Kwon. Activatable imaging probes with amplified fluorescent signals. Chemical Communications 2008, 76 (36) , 4250. https://doi.org/10.1039/b806854m
    76. Shimon Gross, Britney L. Moss, David Piwnica-Worms. Veni, Vidi, Vici: In Vivo Molecular Imaging of Immune Response. Immunity 2007, 27 (4) , 533-538. https://doi.org/10.1016/j.immuni.2007.10.006

    Biochemistry

    Cite this: Biochemistry 2007, 46, 13, 4055–4065
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi061959n
    Published March 10, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    1319

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.