ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Structure and Function Relationship of Murine Insulin-like Peptide 5 (INSL5): Free C-Terminus Is Essential for RXFP4 Receptor Binding and Activation

View Author Information
† § Florey Neuroscience Institutes, Department of Biochemistry and Molecular Biology, and §School of Chemistry, The University of Melbourne, Victoria 3010, Australia
Ph: +61 3 83447285. Fax: +61 3 93481707. E-mail: [email protected] (J.D.W.); [email protected] (M.A.H.).
Cite this: Biochemistry 2011, 50, 39, 8352–8361
Publication Date (Web):August 25, 2011
https://doi.org/10.1021/bi201093m
Copyright © Published 2011 by the American Chemical Society

    Article Views

    759

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (553 KB)

    Abstract

    Abstract Image

    Insulin-like peptide 5 (INSL5) is a member of insulin/relaxin superfamily of peptides. It has recently been identified as the cognate ligand for the G-protein-coupled receptor, RXFP4. Although the complete physiological role of this naturally occurring peptide is still under investigation, there is evidence that it acts to both stimulate appetite and activate colon motility. This suggests that both agonists and antagonists of the peptide may have potential therapeutic applications. To further investigate the physiological role of this peptide and because of the ready availability of the mouse as an experimental animal, the preparation of mouse INSL5 was undertaken. Because of its complex structure and the intractable nature of the two constituent chains, different solid phase synthesis strategies were investigated, including the use of a temporary B-chain solubilizing tag. Unfortunately, none provided significantly improved yield of purified mouse INSL5 which reflects the complexity of this peptide. In addition to the native peptide, two mouse INSL5 analogues were also prepared. One had its two chains as C-terminal amides, and the other contained a europium chelate monolabel for use in RXFP4 receptor assays. It was found that the INSL5 amide was substantially less potent than the native acid form. A similar observation was made for the human peptide acid and amide, highlighting the necessity for free C-terminal carboxylates for function. Two additional human INSL5 analogues were prepared to further investigate the necessity of a free C-terminal. The results together provide a first insight into the mechanism whereby INSL5 binds to and activates RXFP4.

    Cited By

    This article is cited by 42 publications.

    1. Xiaozhou Zhang, Ross A. D. Bathgate, Mohammed Akhter Hossain. Human Insulin-like Peptide 5 (INSL5). Identification of a Simplified Version of Two-Chain Analog A13. ACS Medicinal Chemistry Letters 2020, 11 (12) , 2455-2460. https://doi.org/10.1021/acsmedchemlett.0c00435
    2. Alexander N. Zaykov, Vasily M. Gelfanov, Fa Liu, Richard D. DiMarchi. High-Yield Synthesis of Human Insulin-Like Peptide 5 Employing a Nonconventional Strategy. Organic Letters 2018, 20 (12) , 3695-3699. https://doi.org/10.1021/acs.orglett.8b01501
    3. Keiko Hojo, Mohammed Akhter Hossain, Julien Tailhades, Fazel Shabanpoor, Lilian L. L. Wong, Emma E. K. Ong-Pålsson, Hanna E. Kastman, Sherie Ma, Andrew L. Gundlach, K. Johan Rosengren, John D. Wade, and Ross A. D. Bathgate . Development of a Single-Chain Peptide Agonist of the Relaxin-3 Receptor Using Hydrocarbon Stapling. Journal of Medicinal Chemistry 2016, 59 (16) , 7445-7456. https://doi.org/10.1021/acs.jmedchem.6b00265
    4. Nitin A. Patil, Richard A. Hughes, K. Johan Rosengren, Martina Kocan, Sheng Yu Ang, Julien Tailhades, Frances Separovic, Roger J. Summers, Johannes Grosse, John D. Wade, Ross A. D. Bathgate, and Mohammed Akhter Hossain . Engineering of a Novel Simplified Human Insulin-Like Peptide 5 Agonist. Journal of Medicinal Chemistry 2016, 59 (5) , 2118-2125. https://doi.org/10.1021/acs.jmedchem.5b01786
    5. Linda M. Haugaard-Kedström, Mohammed Akhter Hossain, Norelle L. Daly, Ross A. D. Bathgate, Ernst Rinderknecht, John D. Wade, David J. Craik, and K. Johan Rosengren . Solution Structure, Aggregation Behavior, and Flexibility of Human Relaxin-2. ACS Chemical Biology 2015, 10 (3) , 891-900. https://doi.org/10.1021/cb500918v
    6. Alessia Belgi, Ross A. D. Bathgate, Martina Kocan, Nitin Patil, Suode Zhang, Geoffrey W. Tregear, John D. Wade, and Mohammed Akhter Hossain . Minimum Active Structure of Insulin-like Peptide 5. Journal of Medicinal Chemistry 2013, 56 (23) , 9509-9516. https://doi.org/10.1021/jm400924p
    7. Md. Rabiul Awual, Md. Nazmul Hasan, Md. Munjur Hasan, Md. Shad Salman, Md. Chanmiya Sheikh, Khadiza Tul Kubra, Md. Shahinoor Islam, Hadi M. Marwani, Aminul Islam, Md. Abdul Khaleque, R.M. Waliullah, Mohammed Sohrab Hossain, Adiba Islam Rasee, Ariyan Islam Rehan, Mrs Eti Awual. Green and robust adsorption and recovery of Europium(III) with a mechanism using hybrid donor conjugate materials. Separation and Purification Technology 2023, 319 , 124088. https://doi.org/10.1016/j.seppur.2023.124088
    8. Bonnie Yang Yang, Meena Kishore Sakharkar. Alterations in Gene Pair Correlations as Potential Diagnostic Markers for Colon Cancer. International Journal of Molecular Sciences 2022, 23 (20) , 12463. https://doi.org/10.3390/ijms232012463
    9. Xuan Yang, Wangao Wei, Shisheng Tan, Linrui Guo, Song Qiao, Biao Yao, Zi Wang. Identification and verification of HCAR3 and INSL5 as new potential therapeutic targets of colorectal cancer. World Journal of Surgical Oncology 2021, 19 (1) https://doi.org/10.1186/s12957-021-02335-x
    10. Guangyao Lin, Yang Feng, Xiaoqing Cai, Caihong Zhou, Lijun Shao, Yan Chen, Linhai Chen, Qing Liu, Qingtong Zhou, Ross A.D. Bathgate, Dehua Yang, Ming-Wei Wang. High-Throughput Screening Campaign Identified a Potential Small Molecule RXFP3/4 Agonist. Molecules 2021, 26 (24) , 7511. https://doi.org/10.3390/molecules26247511
    11. Riley J. Giesler, James M. Fulcher, Michael T. Jacobsen, Michael S. Kay. Controlling Segment Solubility in Large Protein Synthesis. 2021, 185-209. https://doi.org/10.1002/9783527823567.ch7
    12. Brett Vahkal, Sergey Yegorov, Chukwunonso Onyilagha, Jacqueline Donner, Dean Reddick, Anuraag Shrivastav, Jude Uzonna, Sara V. Good. Immune System Effects of Insulin-Like Peptide 5 in a Mouse Model. Frontiers in Endocrinology 2021, 11 https://doi.org/10.3389/fendo.2020.610672
    13. Guang-yao Lin, Lin Lin, Xiao-qing Cai, An-tao Dai, Yue Zhu, Jie Li, Qing Liu, De-hua Yang, Ross A. D. Bathgate, Ming-wei Wang. High-throughput screening campaign identifies a small molecule agonist of the relaxin family peptide receptor 4. Acta Pharmacologica Sinica 2020, 41 (10) , 1328-1336. https://doi.org/10.1038/s41401-020-0390-x
    14. Shi‐Bing Li, Yan‐Yan Liu, Li Yuan, Ming‐Fang Ji, Ao Zhang, Hui‐Yu Li, Lin‐Quan Tang, Shuo‐Gui Fang, Hua Zhang, Shan Xing, Man‐Zhi Li, Qian Zhong, Shao‐Jun Lin, Wan‐Li Liu, Peng Huang, Yi‐Xin Zeng, Yu‐Ming Zheng, Zhi‐Qiang Ling, Jian‐Hua Sui, Mu‐Sheng Zeng. Autocrine INSL 5 promotes tumor progression and glycolysis via activation of STAT 5 signaling. EMBO Molecular Medicine 2020, 12 (9) https://doi.org/10.15252/emmm.202012050
    15. Shanti Diwakarla, Ross A. D. Bathgate, Xiaozhou Zhang, Mohammed Akhter Hossain, John B. Furness. Colokinetic effect of an insulin‐like peptide 5‐related agonist of the RXFP4 receptor. Neurogastroenterology & Motility 2020, 32 (5) https://doi.org/10.1111/nmo.13796
    16. Praveen Praveen, Ross A. D. Bathgate, Mohammed Akhter Hossain. Engineering of chimeric peptides as antagonists for the G protein-coupled receptor, RXFP4. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-53707-z
    17. Alexander N. Zaykov, Vasily M. Gelfanov, Diego Perez-Tilve, Brian Finan, Richard D. DiMarchi. Insulin-like peptide 5 fails to improve metabolism or body weight in obese mice. Peptides 2019, 120 , 170116. https://doi.org/10.1016/j.peptides.2019.170116
    18. Mohammed Akhter Hossain, Ross A.D. Bathgate. Challenges in the design of insulin and relaxin/insulin-like peptide mimetics. Bioorganic & Medicinal Chemistry 2018, 26 (10) , 2827-2841. https://doi.org/10.1016/j.bmc.2017.09.030
    19. Alexander N. Zaykov, Vasily M. Gelfanov, Fa Liu, Richard D. DiMarchi. Synthesis and Characterization of the R27S Genetic Variant of Insulin‐like Peptide 5. ChemMedChem 2018, 13 (8) , 852-859. https://doi.org/10.1002/cmdc.201800057
    20. Martina Kocan, Sheng Yu Ang, Roger J. Summers. Relaxin Family Peptide Receptors RXFP3 and RXFP4. 2018, 4615-4630. https://doi.org/10.1007/978-3-319-67199-4_583
    21. Sheng Y. Ang, Roger J. Summers. Insulin-Like Peptide 5 (INSL5) ☆. 2018https://doi.org/10.1016/B978-0-12-801238-3.97214-3
    22. R.G. Kay, S. Galvin, P. Larraufie, F. Reimann, F.M. Gribble. Liquid chromatography/mass spectrometry based detection and semi‐quantitative analysis of INSL5 in human and murine tissues. Rapid Communications in Mass Spectrometry 2017, 31 (23) , 1963-1973. https://doi.org/10.1002/rcm.7978
    23. Imaneh Shamayeli Yeganeh, Amir Hossein Taromchi, Fatemeh Fadaei Fathabadi, Reza Nejatbakhsh, Marefat Ghaffari Novin, Saeed Shokri. Expression and localization of relaxin family peptide receptor 4 in human spermatozoa and impact of insulin-like peptide 5 on sperm functions. Reproductive Biology 2017, 17 (4) , 327-332. https://doi.org/10.1016/j.repbio.2017.09.004
    24. Kishore Thalluri, Binbin Kou, Xu Yang, Alexander N. Zaykov, John P. Mayer, Vasily M. Gelfanov, Fa Liu, Richard D. DiMarchi. Synthesis of relaxin‐2 and insulin‐like peptide 5 enabled by novel tethering and traceless chemical excision. Journal of Peptide Science 2017, 23 (6) , 455-465. https://doi.org/10.1002/psc.3010
    25. Sheng Y Ang, Dana S Hutchinson, Nitin Patil, Bronwyn A Evans, Ross A D Bathgate, Michelle L Halls, Mohammed A Hossain, Roger J Summers, Martina Kocan. Signal transduction pathways activated by insulin‐like peptide 5 at the relaxin family peptide RXFP4 receptor. British Journal of Pharmacology 2017, 174 (10) , 1077-1089. https://doi.org/10.1111/bph.13522
    26. Nitin A Patil, K Johan Rosengren, Frances Separovic, John D Wade, Ross A D Bathgate, Mohammed Akhter Hossain. Relaxin family peptides: structure–activity relationship studies. British Journal of Pharmacology 2017, 174 (10) , 950-961. https://doi.org/10.1111/bph.13684
    27. Meng-Jun Hu, Dian Wei, Xiao-Xia Shao, Jia-Hui Wang, Ya-Li Liu, Zeng-Guang Xu, Zhan-Yun Guo. Interaction mechanism of insulin-like peptide 5 with relaxin family peptide receptor 4. Archives of Biochemistry and Biophysics 2017, 619 , 27-34. https://doi.org/10.1016/j.abb.2017.03.001
    28. Meng-Jun Hu, Xiao-Xia Shao, Jia-Hui Wang, Dian Wei, Yu-Qi Guo, Ya-Li Liu, Zeng-Guang Xu, Zhan-Yun Guo. Mechanism for insulin-like peptide 5 distinguishing the homologous relaxin family peptide receptor 3 and 4. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep29648
    29. Nitin A. Patil, Ross A. D. Bathgate, Martina Kocan, Sheng Yu Ang, Julien Tailhades, Frances Separovic, Roger Summers, Johannes Grosse, Richard A. Hughes, John D. Wade, Mohammed Akhter Hossain. The C-terminus of the B-chain of human insulin-like peptide 5 is critical for cognate RXFP4 receptor activity. Amino Acids 2016, 48 (4) , 987-992. https://doi.org/10.1007/s00726-015-2144-5
    30. Martina Kocan, Sheng Yu Ang, Roger J. Summers. Relaxin Family Peptide Receptors RXFP3 and RXFP4. 2016, 1-17. https://doi.org/10.1007/978-1-4614-6438-9_583-1
    31. Jae Hyung Kim, Sang Kwang Lee, Seong Kyu Lee, Joo Heon Kim, Michael Fredericson. Relaxin Receptor RXFP1 and RXFP2 Expression in Ligament, Tendon, and Shoulder Joint Capsule of Rats. Journal of Korean Medical Science 2016, 31 (6) , 983. https://doi.org/10.3346/jkms.2016.31.6.983
    32. Linda M. Haugaard-Kedström, Lilian L. L. Wong, Ross A. D. Bathgate, K. Johan Rosengren. Synthesis and pharmacological characterization of a europium-labelled single-chain antagonist for binding studies of the relaxin-3 receptor RXFP3. Amino Acids 2015, 47 (6) , 1267-1271. https://doi.org/10.1007/s00726-015-1961-x
    33. Michelle L. Halls, Ross A. D. Bathgate, Steve W. Sutton, Thomas B. Dschietzig, Roger J. Summers, . International Union of Basic and Clinical Pharmacology. XCV. Recent Advances in the Understanding of the Pharmacology and Biological Roles of Relaxin Family Peptide Receptors 1–4, the Receptors for Relaxin Family Peptides. Pharmacological Reviews 2015, 67 (2) , 389-440. https://doi.org/10.1124/pr.114.009472
    34. Marta Paradís-Bas, Maria Albert-Soriano, Judit Tulla-Puche, Fernando Albericio. Linear versus branched poly-lysine/arginine as polarity enhancer tags. Org. Biomol. Chem. 2014, 12 (37) , 7194-7196. https://doi.org/10.1039/C4OB01354A
    35. Valeria Cernaro, Antonio Lacquaniti, Rosaria Lupica, Antoine Buemi, Domenico Trimboli, Grazia Giorgianni, Davide Bolignano, Michele Buemi. Relaxin: New Pathophysiological Aspects and Pharmacological Perspectives for an Old Protein. Medicinal Research Reviews 2014, 34 (1) , 77-105. https://doi.org/10.1002/med.21277
    36. Fazel Shabanpoor, Ross A. D. Bathgate, John D. Wade, Mohammed Akhter Hossain, . C-Terminus of the B-Chain of Relaxin-3 Is Important for Receptor Activity. PLoS ONE 2013, 8 (12) , e82567. https://doi.org/10.1371/journal.pone.0082567
    37. Stephen P.H. Alexander, Helen E. Benson, Elena Faccenda, Adam J. Pawson, Joanna L. Sharman, Michael Spedding, John A. Peters, Anthony J. Harmar, . The Concise Guide to PHARMACOLOGY 2013/14: G Protein‐Coupled Receptors. British Journal of Pharmacology 2013, 170 (8) , 1459-1581. https://doi.org/10.1111/bph.12445
    38. Alessia Belgi, Ross A. D. Bathgate, Geoffrey W. Tregear, John D. Wade, Mohammed Akhter Hossain. Preliminary Structure–Function Relationship Studies on Insulin-Like Peptide 5 (INSL5). International Journal of Peptide Research and Therapeutics 2013, 19 (1) , 71-79. https://doi.org/10.1007/s10989-013-9341-4
    39. Hirosato Mashima, Hideki Ohno, Yumi Yamada, Toshitaka Sakai, Hirohide Ohnishi. INSL5 may be a unique marker of colorectal endocrine cells and neuroendocrine tumors. Biochemical and Biophysical Research Communications 2013, 432 (4) , 586-592. https://doi.org/10.1016/j.bbrc.2013.02.042
    40. THATCHAWAN THANASUPAWAT, KATRIN HAMMJE, IBRAHIM ADHAM, JEAN-ERIC GHIA, MARC R. DEL BIGIO, JERRY KRCEK, CUONG HOANG-VU, THOMAS KLONISCH, SABINE HOMBACH-KLONISCH. INSL5 is a novel marker for human enteroendocrine cells of the large intestine and neuroendocrine tumours. Oncology Reports 2013, 29 (1) , 149-154. https://doi.org/10.3892/or.2012.2119
    41. Ozanna Burnicka-Turek, Belal A. Mohamed, Katayoon Shirneshan, Thatchawan Thanasupawat, Sabine Hombach-Klonisch, Thomas Klonisch, Ibrahim M. Adham. INSL5-Deficient Mice Display an Alteration in Glucose Homeostasis and an Impaired Fertility. Endocrinology 2012, 153 (10) , 4655-4665. https://doi.org/10.1210/en.2012-1161
    42. Vinojini B. Nair, Chrishan S. Samuel, Frances Separovic, Mohammed Akhter Hossain, John D. Wade. Human relaxin-2: historical perspectives and role in cancer biology. Amino Acids 2012, 43 (3) , 1131-1140. https://doi.org/10.1007/s00726-012-1375-y

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect