Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Rhodopsin Forms a Dimer with Cytoplasmic Helix 8 Contacts in Native Membranes

View Author Information
Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
*E-mail: [email protected]. Phone: (212) 327-8284.
Cite this: Biochemistry 2012, 51, 9, 1819–1821
Publication Date (Web):February 18, 2012
https://doi.org/10.1021/bi3001598
Copyright © 2012 American Chemical Society

    Article Views

    1529

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    G protein-coupled receptors form dimers and higher-order oligomers in membranes, but the precise mode of receptor–receptor interaction remains unknown. To probe the intradimeric proximity of helix 8 (H8), we conducted chemical cross-linking of endogenous cysteines in rhodopsin in disk membranes. We identified a Cys316–Cys316 cross-link using partial proteolysis and liquid chromatography with mass spectrometry. These results show that a symmetric dimer interface mediated by H1 and H8 contacts is present in native membranes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Complete materials and methods, additional cross-linking gels, and mass spectrometry data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 58 publications.

    1. Ismail Erol, Bunyemin Cosut, Serdar Durdagi. Toward Understanding the Impact of Dimerization Interfaces in Angiotensin II Type 1 Receptor. Journal of Chemical Information and Modeling 2019, 59 (10) , 4314-4327. https://doi.org/10.1021/acs.jcim.9b00294
    2. Valentina Corradi, Besian I. Sejdiu, Haydee Mesa-Galloso, Haleh Abdizadeh, Sergei Yu. Noskov, Siewert J. Marrink, D. Peter Tieleman. Emerging Diversity in Lipid–Protein Interactions. Chemical Reviews 2019, 119 (9) , 5775-5848. https://doi.org/10.1021/acs.chemrev.8b00451
    3. Chamnongsak Ken Chanthamontri, David S. Jordan, Wenjie Wang, Chao Wu, Yanchun Lin, Tom J. Brett, Michael L. Gross, Daisy W. Leung. The Ebola Viral Protein 35 N-Terminus Is a Parallel Tetramer. Biochemistry 2019, 58 (6) , 657-664. https://doi.org/10.1021/acs.biochem.8b01154
    4. D. Paul Mallory, Elizabeth Gutierrez, Margaret Pinkevitch, Christie Klinginsmith, William D. Comar, Francis J. Roushar, Jonathan P. Schlebach, Adam W. Smith, Beata Jastrzebska. The Retinitis Pigmentosa-Linked Mutations in Transmembrane Helix 5 of Rhodopsin Disrupt Cellular Trafficking Regardless of Oligomerization State. Biochemistry 2018, 57 (35) , 5188-5201. https://doi.org/10.1021/acs.biochem.8b00403
    5. Craig B. Gutierrez, Sarah A. Block, Clinton Yu, Stephanie M. Soohoo, Alexander S. Huszagh, Scott D. Rychnovsky, Lan Huang. Development of a Novel Sulfoxide-Containing MS-Cleavable Homobifunctional Cysteine-Reactive Cross-Linker for Studying Protein–Protein Interactions. Analytical Chemistry 2018, 90 (12) , 7600-7607. https://doi.org/10.1021/acs.analchem.8b01287
    6. Xavier Periole . Interplay of G Protein-Coupled Receptors with the Membrane: Insights from Supra-Atomic Coarse Grain Molecular Dynamics Simulations. Chemical Reviews 2017, 117 (1) , 156-185. https://doi.org/10.1021/acs.chemrev.6b00344
    7. Abhinav Sinha, Amber M. Jones Brunette, Jonathan F. Fay, Christopher T. Schafer, and David L. Farrens . Rhodopsin TM6 Can Interact with Two Separate and Distinct Sites on Arrestin: Evidence for Structural Plasticity and Multiple Docking Modes in Arrestin–Rhodopsin Binding. Biochemistry 2014, 53 (20) , 3294-3307. https://doi.org/10.1021/bi401534y
    8. William K. Myers, Xianzhong Xu, Congmin Li, Jens O. Lagerstedt, Madhu S. Budamagunta, John C. Voss, R. David Britt, and James B. Ames . Double Electron–Electron Resonance Probes Ca2+-Induced Conformational Changes and Dimerization of Recoverin. Biochemistry 2013, 52 (34) , 5800-5808. https://doi.org/10.1021/bi400538w
    9. Xavier Periole, Adam M. Knepp, Thomas P. Sakmar, Siewert J. Marrink, and Thomas Huber . Structural Determinants of the Supramolecular Organization of G Protein-Coupled Receptors in Bilayers. Journal of the American Chemical Society 2012, 134 (26) , 10959-10965. https://doi.org/10.1021/ja303286e
    10. Tivadar Orban, Chih-chin Huang, Kristoff T. Homan, Beata Jastrzebska, John J. G. Tesmer, and Krzysztof Palczewski . Substrate-Induced Changes in the Dynamics of Rhodopsin Kinase (G Protein-Coupled Receptor Kinase 1). Biochemistry 2012, 51 (16) , 3404-3411. https://doi.org/10.1021/bi300295y
    11. Benjamin M. Scott, Steven K. Chen, Alexander Van Nynatten, Jing Liu, Ryan K. Schott, Elise Heon, Sergio G. Peisajovich, Belinda S. W. Chang. Scaling up Functional Analyses of the G Protein-Coupled Receptor Rhodopsin. Journal of Molecular Evolution 2024, 92 (1) , 61-71. https://doi.org/10.1007/s00239-024-10154-3
    12. Dipesh Kumar Verma, Himanshu Malhotra, Torsten Woellert, Peter D. Calvert. Hydrophobic interaction between the TM1 and H8 is essential for rhodopsin trafficking to vertebrate photoreceptor outer segments. Journal of Biological Chemistry 2023, 299 (12) , 105412. https://doi.org/10.1016/j.jbc.2023.105412
    13. Klaus Peter Hofmann, Trevor D. Lamb. Rhodopsin, light-sensor of vision. Progress in Retinal and Eye Research 2023, 93 , 101116. https://doi.org/10.1016/j.preteyeres.2022.101116
    14. George Khelashvili, Anoop Narayana Pillai, Joon Lee, Kalpana Pandey, Alexander M. Payne, Zarek Siegel, Michel A. Cuendet, Tylor R. Lewis, Vadim Y. Arshavsky, Johannes Broichhagen, Joshua Levitz, Anant K. Menon. Unusual mode of dimerization of retinitis pigmentosa-associated F220C rhodopsin. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-90039-3
    15. Paul S.-H. Park. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Pflügers Archiv - European Journal of Physiology 2021, 473 (9) , 1361-1376. https://doi.org/10.1007/s00424-021-02522-5
    16. Ying Liu, Yu-Ting Shao, Richard Ward, Li Ma, Hao-Xin Gui, Qian Hao, Xi Mu, Yang Yang, Su An, Xiao-Xi Guo, Tian-Rui Xu. The C-terminal of the α1b-adreneroceptor is a key determinant for its structure integrity and biological functions. Bioscience, Biotechnology, and Biochemistry 2021, 85 (5) , 1128-1139. https://doi.org/10.1093/bbb/zbab034
    17. Xiaoming Fang, Andrew A. Peden, Fredericus J. M. van Eeden, Jarema J. Malicki. Identification of additional outer segment targeting signals in zebrafish rod opsin. Journal of Cell Science 2021, 134 (6) https://doi.org/10.1242/jcs.254995
    18. Matthias Kotthoff, Julia Bauer, Franziska Haag, Dietmar Krautwurst. Conserved C‐terminal motifs in odorant receptors instruct their cell surface expression and cAMP signaling. The FASEB Journal 2021, 35 (2) https://doi.org/10.1096/fj.202000182RR
    19. Kristina N. Woods, Jürgen Pfeffer. Conformational perturbation, allosteric modulation of cellular signaling pathways, and disease in P23H rhodopsin. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-59583-2
    20. Anette Kaiser, Irene Coin. Capturing Peptide–GPCR Interactions and Their Dynamics. Molecules 2020, 25 (20) , 4724. https://doi.org/10.3390/molecules25204724
    21. Alexandra Fletcher-Jones, Keri L. Hildick, Ashley J. Evans, Yasuko Nakamura, Jeremy M. Henley, Kevin A. Wilkinson. Protein Interactors and Trafficking Pathways That Regulate the Cannabinoid Type 1 Receptor (CB1R). Frontiers in Molecular Neuroscience 2020, 13 https://doi.org/10.3389/fnmol.2020.00108
    22. Yukito Kaneshige, Fumio Hayashi, Kenichi Morigaki, Yasushi Tanimoto, Hayato Yamashita, Masashi Fujii, Akinori Awazu, . Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes. PLOS ONE 2020, 15 (2) , e0226123. https://doi.org/10.1371/journal.pone.0226123
    23. Beata Jastrzebska, Joseph T. Ortega, Paul S.-H. Park. Supramolecular structure of opsins. 2020, 81-95. https://doi.org/10.1016/B978-0-12-816228-6.00005-2
    24. Dorothy Yanling Zhao, Matthias Pöge, Takefumi Morizumi, Sahil Gulati, Ned Van Eps, Jianye Zhang, Przemyslaw Miszta, Slawomir Filipek, Julia Mahamid, Jürgen M. Plitzko, Wolfgang Baumeister, Oliver P. Ernst, Krzysztof Palczewski. Cryo-EM structure of the native rhodopsin dimer in nanodiscs. Journal of Biological Chemistry 2019, 294 (39) , 14215-14230. https://doi.org/10.1074/jbc.RA119.010089
    25. Tamar Getter, Sahil Gulati, Remy Zimmerman, Yuanyuan Chen, Frans Vinberg, Krzysztof Palczewski. Stereospecific modulation of dimeric rhodopsin. The FASEB Journal 2019, 33 (8) , 9526-9539. https://doi.org/10.1096/fj.201900443RR
    26. Sebastian Kmiecik, Jacek Wabik, Michal Kolinski, Maksim Kouza, Andrzej Kolinski. Protein Dynamics Simulations Using Coarse-Grained Models. 2019, 61-87. https://doi.org/10.1007/978-3-319-95843-9_3
    27. Jingjing Zang, Stephan C. F. Neuhauss. The Binding Properties and Physiological Functions of Recoverin. Frontiers in Molecular Neuroscience 2018, 11 https://doi.org/10.3389/fnmol.2018.00473
    28. Sandeep Kumar, Alyssia Lambert, Jon Rainier, Yingbin Fu. Disruption of Rhodopsin Dimerization in Mouse Rod Photoreceptors by Synthetic Peptides Targeting Dimer Interface. 2018, 115-128. https://doi.org/10.1007/978-1-4939-7720-8_8
    29. Leonid S. Brown, Oliver P. Ernst. Recent advances in biophysical studies of rhodopsins – Oligomerization, folding, and structure. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2017, 1865 (11) , 1512-1521. https://doi.org/10.1016/j.bbapap.2017.08.007
    30. Vikas K. Parmar, Ellinor Grinde, Joseph E. Mazurkiewicz, Katharine Herrick-Davis. Beta2-adrenergic receptor homodimers: Role of transmembrane domain 1 and helix 8 in dimerization and cell surface expression. Biochimica et Biophysica Acta (BBA) - Biomembranes 2017, 1859 (9) , 1445-1455. https://doi.org/10.1016/j.bbamem.2016.12.007
    31. Keiji Seno, Fumio Hayashi. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin. Journal of Biological Chemistry 2017, 292 (37) , 15321-15328. https://doi.org/10.1074/jbc.M117.804880
    32. Thomas P. Sakmar, Xavier Periole, Thomas Huber. Probing Self-Assembly of G Protein-Coupled Receptor Oligomers in Membranes Using Molecular Dynamics Modeling and Experimental Approaches. 2017, 385-414. https://doi.org/10.1007/978-3-319-60174-8_15
    33. Beata Jastrzebska. Class A GPCR: Light Sensing G Protein-Coupled Receptor – Focus on Rhodopsin Dimer. 2017, 79-97. https://doi.org/10.1007/978-3-319-60174-8_4
    34. Takaaki Sato, Takashi Kawasaki, Shouhei Mine, Hiroyoshi Matsumura. Functional Role of the C-Terminal Amphipathic Helix 8 of Olfactory Receptors and Other G Protein-Coupled Receptors. International Journal of Molecular Sciences 2016, 17 (11) , 1930. https://doi.org/10.3390/ijms17111930
    35. Tao Zhang, Li-Hui Cao, Sandeep Kumar, Nduka O. Enemchukwu, Ning Zhang, Alyssia Lambert, Xuchen Zhao, Alex Jones, Shixian Wang, Emily M. Dennis, Amrita Fnu, Sam Ham, Jon Rainier, King-Wai Yau, Yingbin Fu. Dimerization of visual pigments in vivo. Proceedings of the National Academy of Sciences 2016, 113 (32) , 9093-9098. https://doi.org/10.1073/pnas.1609018113
    36. Elvir Becirovic, Sybille Böhm, Ong N. P. Nguyen, Lisa M. Riedmayr, Verena Hammelmann, Christian Schön, Elisabeth S. Butz, Christian Wahl-Schott, Martin Biel, Stylianos Michalakis. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments. Frontiers in Neuroscience 2016, 10 https://doi.org/10.3389/fnins.2016.00356
    37. Beata Jastrzebska, Yuanyuan Chen, Tivadar Orban, Hui Jin, Lukas Hofmann, Krzysztof Palczewski. Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface. Journal of Biological Chemistry 2015, 290 (42) , 25728-25744. https://doi.org/10.1074/jbc.M115.662684
    38. María José Varela Liste, Gianluigi Caltabiano, Richard J. Ward, Elisa Alvarez-Curto, Sara Marsango, Graeme Milligan. The Molecular Basis of Oligomeric Organization of the Human M 3 Muscarinic Acetylcholine Receptor. Molecular Pharmacology 2015, 87 (6) , 936-953. https://doi.org/10.1124/mol.114.096925
    39. Takashi Kawasaki, Takahiro Saka, Shouhei Mine, Eiichi Mizohata, Tsuyoshi Inoue, Hiroyoshi Matsumura, Takaaki Sato. The N‐terminal acidic residue of the cytosolic helix 8 of an odorant receptor is responsible for different response dynamics via G‐protein. FEBS Letters 2015, 589 (10) , 1136-1142. https://doi.org/10.1016/j.febslet.2015.03.025
    40. Li Xue, Xavier Rovira, Pauline Scholler, Han Zhao, Jianfeng Liu, Jean-Philippe Pin, Philippe Rondard. Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nature Chemical Biology 2015, 11 (2) , 134-140. https://doi.org/10.1038/nchembio.1711
    41. Michael A. Goren, Takefumi Morizumi, Indu Menon, Jeremiah S. Joseph, Jeremy S. Dittman, Vadim Cherezov, Raymond C. Stevens, Oliver P. Ernst, Anant K. Menon. Constitutive phospholipid scramblase activity of a G protein-coupled receptor. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms6115
    42. Elvir Becirovic, O.N. Phuong Nguyen, Christos Paparizos, Elisabeth S. Butz, Gabi Stern-Schneider, Uwe Wolfrum, Stefanie M. Hauck, Marius Ueffing, Christian Wahl-Schott, Stylianos Michalakis, Martin Biel. Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors. Human Molecular Genetics 2014, 23 (22) , 5989-5997. https://doi.org/10.1093/hmg/ddu323
    43. Nicholas J. Reish, Evan R. Boitet, Katie L. Bales, Alecia K. Gross. Nucleotide Bound to rab11a Controls Localization in Rod Cells But Not Interaction with Rhodopsin. The Journal of Neuroscience 2014, 34 (45) , 14854-14863. https://doi.org/10.1523/JNEUROSCI.1943-14.2014
    44. Nevin A. Lambert, Jonathan A. Javitch. CrossTalk opposing view: Weighing the evidence for class A GPCR dimers, the jury is still out. The Journal of Physiology 2014, 592 (12) , 2443-2445. https://doi.org/10.1113/jphysiol.2014.272997
    45. Ryan K. Schott, Shannon P. Refvik, Frances E. Hauser, Hernán López-Fernández, Belinda S.W. Chang. Divergent Positive Selection in Rhodopsin from Lake and Riverine Cichlid Fishes. Molecular Biology and Evolution 2014, 31 (5) , 1149-1165. https://doi.org/10.1093/molbev/msu064
    46. Sergi Ferré, Vicent Casadó, Lakshmi A. Devi, Marta Filizola, Ralf Jockers, Martin J. Lohse, Graeme Milligan, Jean-Philippe Pin, Xavier Guitart, . G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives. Pharmacological Reviews 2014, 66 (2) , 413-434. https://doi.org/10.1124/pr.113.008052
    47. Jennifer M. Johnston, Marta Filizola, . Differential Stability of the Crystallographic Interfaces of Mu- and Kappa-Opioid Receptors. PLoS ONE 2014, 9 (2) , e90694. https://doi.org/10.1371/journal.pone.0090694
    48. Jennifer M. Johnston, Marta Filizola. Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods. 2014, 95-125. https://doi.org/10.1007/978-94-007-7423-0_6
    49. Sebastian Kmiecik, Jacek Wabik, Michal Kolinski, Maksim Kouza, Andrzej Kolinski. Coarse-Grained Modeling of Protein Dynamics. 2014, 55-79. https://doi.org/10.1007/978-3-642-28554-7_3
    50. Joshua N. Horn, Ta-Chun Kao, Alan Grossfield. Coarse-Grained Molecular Dynamics Provides Insight into the Interactions of Lipids and Cholesterol with Rhodopsin. 2014, 75-94. https://doi.org/10.1007/978-94-007-7423-0_5
    51. Sayan Mondal, Jennifer M. Johnston, Hao Wang, George Khelashvili, Marta Filizola, Harel Weinstein. Membrane Driven Spatial Organization of GPCRs. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep02909
    52. Mohammad Haeri, Peter D. Calvert, Eduardo Solessio, Edward N. Pugh, Barry E. Knox, . Regulation of Rhodopsin-eGFP Distribution in Transgenic Xenopus Rod Outer Segments by Light. PLoS ONE 2013, 8 (11) , e80059. https://doi.org/10.1371/journal.pone.0080059
    53. Jianxin Hu, Kelly Hu, Tong Liu, Matthew K. Stern, Rajendra Mistry, R.A.John Challiss, Stefano Costanzi, Jürgen Wess. Novel Structural and Functional Insights into M3 Muscarinic Receptor Dimer/Oligomer Formation. Journal of Biological Chemistry 2013, 288 (48) , 34777-34790. https://doi.org/10.1074/jbc.M113.503714
    54. Katharine Herrick-Davis. Functional significance of serotonin receptor dimerization. Experimental Brain Research 2013, 230 (4) , 375-386. https://doi.org/10.1007/s00221-013-3622-1
    55. Katharine Herrick-Davis, Ellinor Grinde, Ann Cowan, Joseph E. Mazurkiewicz. Fluorescence Correlation Spectroscopy Analysis of Serotonin, Adrenergic, Muscarinic, and Dopamine Receptor Dimerization: The Oligomer Number Puzzle. Molecular Pharmacology 2013, 84 (4) , 630-642. https://doi.org/10.1124/mol.113.087072
    56. Kathryn L. Chapman, John B.C. Findlay. The melanocortin 4 receptor: Oligomer formation, interaction sites and functional significance. Biochimica et Biophysica Acta (BBA) - Biomembranes 2013, 1828 (2) , 535-542. https://doi.org/10.1016/j.bbamem.2012.10.011
    57. Marta Filizola, Lakshmi A. Devi. Grand opening of structure-guided design for novel opioids. Trends in Pharmacological Sciences 2013, 34 (1) , 6-12. https://doi.org/10.1016/j.tips.2012.10.002
    58. Lars Konermann, Yan Pan. Exploring membrane protein structural features by oxidative labeling and mass spectrometry. Expert Review of Proteomics 2012, 9 (5) , 497-504. https://doi.org/10.1586/epr.12.42