Functional Mapping of PilF and PilQ in the Pseudomonas aeruginosa Type IV Pilus System
- Jason Koo ,
- Tim Tang ,
- Hanjeong Harvey ,
- Stephanie Tammam ,
- Liliana Sampaleanu ,
- Lori L. Burrows , and
- P. Lynne Howell
Abstract

Pseudomonas aeruginosa uses type IV pili (T4P) to interact with the environment and as key virulence factors when acting as an opportunistic pathogen. Assembly of the outer membrane PilQ secretin channel through which the pili are extruded is essential for pilus biogenesis. The P. aeruginosa T4P pilotin, PilF, is required for PilQ outer membrane localization and assembly into secretins and contains six tetratricopeptide (TPR) protein–protein interaction motifs, suggesting that the two proteins interact. In this study, we found that the first four TPR motifs of PilF are sufficient for PilQ outer membrane targeting, oligomerization, and function. Guided by our structure of PilF, site-directed mutagenesis of the protein surface revealed that a hydrophobic groove on the first TPR is required for PilF-mediated PilQ assembly. Deletion of individual domains within PilQ suggests that the N0, KH-like, or secretin domain, but not the C-terminus, interacts with PilF. Purified PilQ was found to pull down PilF from Pseudomonas cell lysates. Together, these data allow us to propose a model for PilF function in the T4P system. PilF interacts directly or indirectly with the PilQ monomer after translocation of both proteins through the inner membrane and acts as a co-chaperone with the Lol system to facilitate transit across the periplasm to the outer membrane. The mechanism of PilQ insertion and assembly, which appears to be independent of the Bam system, remains to be determined.
Cited By
This article is cited by 32 publications.
- Chenxing Tan, Chuhao Li, Ming Hu, Anqun Hu, Yang Xue, Xiaofan Zhou, Jianuan Zhou. Comparative Pathogenomic Analysis of Two Banana Pathogenic Dickeya Strains Isolated from China and the Philippines. International Journal of Molecular Sciences 2022, 23 (21) , 12758. https://doi.org/10.3390/ijms232112758
- Guanhua Xuan, Hong Lin, Jiuna Kong, Jingxue Wang, . Phage Resistance Evolution Induces the Sensitivity of Specific Antibiotics in Pseudomonas aeruginosa PAO1. Microbiology Spectrum 2022, 10 (5) https://doi.org/10.1128/spectrum.01356-22
- Yuan Hu, Junjie Zheng, Jianzhong Zhang. Natural Transformation in Acinetobacter baumannii W068: A Genetic Analysis Reveals the Involvements of the CRP, XcpV, XcpW, TsaP, and TonB2. Frontiers in Microbiology 2022, 12 https://doi.org/10.3389/fmicb.2021.738034
- Edgar E. Llontop, William Cenens, Denize C. Favaro, Germán G. Sgro, Roberto K. Salinas, Cristiane R. Guzzo, Chuck S. Farah, . The PilB-PilZ-FimX regulatory complex of the Type IV pilus from Xanthomonas citri. PLOS Pathogens 2021, 17 (8) , e1009808. https://doi.org/10.1371/journal.ppat.1009808
- Matylda Anna Izert, Patrycja Emanuela Szybowska, Maria Wiktoria Górna, Matthew Merski. The Effect of Mutations in the TPR and Ankyrin Families of Alpha Solenoid Repeat Proteins. Frontiers in Bioinformatics 2021, 1 https://doi.org/10.3389/fbinf.2021.696368
- Matthew McCallum, Stephanie Tammam, John L. Rubinstein, Lori L. Burrows, P. Lynne Howell. CryoEM map of Pseudomonas aeruginosa PilQ enables structural characterization of TsaP. Structure 2021, 29 (5) , 457-466.e4. https://doi.org/10.1016/j.str.2020.11.019
- Rui Xiang, Junchao Wang, Wenjuan Xu, Min Zhang, Mingzhu Wang. Amuc_1102 from Akkermansia muciniphila adopts an immunoglobulin-like fold related to archaeal type IV pilus. Biochemical and Biophysical Research Communications 2021, 547 , 59-64. https://doi.org/10.1016/j.bbrc.2021.02.022
- Jizhen Cao, Chun Liu, Qing Wang, Defeng Zhang, Ouqin Chang, Yingying Wang, Cunbin Shi, Linchuan Wang. Investigating of type IV pili to the pathogenicity of Aeromonas schubertii. Aquaculture 2021, 530 , 735800. https://doi.org/10.1016/j.aquaculture.2020.735800
- Areli Luna Rico, Weili Zheng, Nathalie Petiot, Edward H. Egelman, Olivera Francetic. Functional reconstitution of the type IVa pilus assembly system from enterohaemorrhagic Escherichia coli. Molecular Microbiology 2019, 111 (3) , 732-749. https://doi.org/10.1111/mmi.14188
- Christina Merakou, Matthew M. Schaefers, Gregory P. Priebe. Progress Toward the Elusive Pseudomonas aeruginosa Vaccine. Surgical Infections 2018, 19 (8) , 757-768. https://doi.org/10.1089/sur.2018.233
- M. Gholami, A.S. Chirani, S. Razavi, R. Falak, G. Irajian. Immunogenicity of a fusion protein containing PilQ and disulphide turn region of PilA from Pseudomonas aeruginosa in mice. Letters in Applied Microbiology 2017, 65 (5) , 439-445. https://doi.org/10.1111/lam.12796
- Christine Pourcel, Cédric Midoux, Gilles Vergnaud, Libera Latino. A carrier state is established in Pseudomonas aeruginosa by phage LeviOr01, a newly isolated ssRNA levivirus. Journal of General Virology 2017, 98 (8) , 2181-2189. https://doi.org/10.1099/jgv.0.000883
- Pauline Basso, Michel Ragno, Sylvie Elsen, Emeline Reboud, Guillaume Golovkine, Stephanie Bouillot, Philippe Huber, Stephen Lory, Eric Faudry, Ina Attrée, , Alain Filloux, Joanna Goldberg, Daniel Wozniak. Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis. mBio 2017, 8 (1) https://doi.org/10.1128/mBio.02250-16
- Tyson Carter, Ryan N. C. Buensuceso, Stephanie Tammam, Ryan P. Lamers, Hanjeong Harvey, P. Lynne Howell, Lori L. Burrows, . The Type IVa Pilus Machinery Is Recruited to Sites of Future Cell Division. mBio 2017, 8 (1) https://doi.org/10.1128/mBio.02103-16
- Jason Koo, Ryan P. Lamers, John L. Rubinstein, Lori L. Burrows, P. Lynne Howell. Structure of the Pseudomonas aeruginosa Type IVa Pilus Secretin at 7.4 Å. Structure 2016, 24 (10) , 1778-1787. https://doi.org/10.1016/j.str.2016.08.007
- Tiffany L. Leighton, Daniel H. Yong, P. Lynne Howell, Lori L. Burrows. Type IV Pilus Alignment Subcomplex Proteins PilN and PilO Form Homo- and Heterodimers in Vivo. Journal of Biological Chemistry 2016, 291 (38) , 19923-19938. https://doi.org/10.1074/jbc.M116.738377
- Noora Ottman, Laura Huuskonen, Justus Reunanen, Sjef Boeren, Judith Klievink, Hauke Smidt, Clara Belzer, Willem M. de Vos. Characterization of Outer Membrane Proteome of Akkermansia muciniphila Reveals Sets of Novel Proteins Exposed to the Human Intestine. Frontiers in Microbiology 2016, 7 https://doi.org/10.3389/fmicb.2016.01157
- Yi-Wei Chang, Lee A. Rettberg, Anke Treuner-Lange, Janet Iwasa, Lotte Søgaard-Andersen, Grant J. Jensen. Architecture of the type IVa pilus machine. Science 2016, 351 (6278) https://doi.org/10.1126/science.aad2001
- Alireza Salimi Chirani, Robabeh Majidzadeh, Hossein Dabiri, Javad Rezaei, Ali Esmaili, Yasamin Abdanan Kord, Narges Khabazzadeh Tehrani, Negin Attaran. Immunological study on integrated PilQ and disulphide loop region of PilA against acute Pseudomonas aeruginosa infection: In silico analysis and in vitro production. Journal of Acute Disease 2016, 5 (2) , 131-142. https://doi.org/10.1016/j.joad.2015.11.006
- Tiffany L. Leighton, Ryan N. C. Buensuceso, P. Lynne Howell, Lori L. Burrows. Biogenesis of P seudomonas aeruginosa type IV pili and regulation of their function. Environmental Microbiology 2015, 17 (11) , 4148-4163. https://doi.org/10.1111/1462-2920.12849
- Cécile Berne, Adrien Ducret, Gail G. Hardy, Yves V. Brun. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. 2015, 163-199. https://doi.org/10.1128/9781555817466.ch9
- Cécile Berne, Adrien Ducret, Gail G. Hardy, Yves V. Brun, , , , . Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. Microbiology Spectrum 2015, 3 (4) https://doi.org/10.1128/microbiolspec.MB-0018-2015
- Tiffany L. Leighton, Neha Dayalani, Liliana M. Sampaleanu, P. Lynne Howell, Lori L. Burrows, . Novel Role for PilNO in Type IV Pilus Retraction Revealed by Alignment Subcomplex Mutations. Journal of Bacteriology 2015, 197 (13) , 2229-2238. https://doi.org/10.1128/JB.00220-15
- Caroline Perdu, Philippe Huber, Stéphanie Bouillot, Ariel Blocker, Sylvie Elsen, Ina Attrée, Eric Faudry, . ExsB Is Required for Correct Assembly of the Pseudomonas aeruginosa Type III Secretion Apparatus in the Bacterial Membrane and Full Virulence In Vivo. Infection and Immunity 2015, 83 (5) , 1789-1798. https://doi.org/10.1128/IAI.00048-15
- Joshua A. Lieberman, Courtney D. Petro, Stefani Thomas, Austin Yang, Michael S. Donnenberg, . Type IV Pilus Secretins Have Extracellular C Termini. mBio 2015, 6 (2) https://doi.org/10.1128/mBio.00322-15
- Sobhan Nandi, Shauna Swanson, Joshua Tomberg, Robert A. Nicholas, . Diffusion of Antibiotics through the PilQ Secretin in Neisseria gonorrhoeae Occurs through the Immature, Sodium Dodecyl Sulfate-Labile Form. Journal of Bacteriology 2015, 197 (8) , 1308-1321. https://doi.org/10.1128/JB.02628-14
- Alain Filloux, Agnes Sagfors. News and views on protein secretion systems. 2015, 77-108. https://doi.org/10.1016/B978-0-12-800188-2.00003-3
- Jamie-Lee Berry, Vladimir Pelicic. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiology Reviews 2015, 39 (1) , 134-154. https://doi.org/10.1093/femsre/fuu001
- Tommaso Tosi, Leandro F. Estrozi, Viviana Job, Ingrid Guilvout, Anthony P. Pugsley, Guy Schoehn, Andréa Dessen. Structural Similarity of Secretins from Type II and Type III Secretion Systems. Structure 2014, 22 (9) , 1348-1355. https://doi.org/10.1016/j.str.2014.07.005
- Domenica Farci, Matthew W. Bowler, Joanna Kirkpatrick, Sean McSweeney, Enzo Tramontano, Dario Piano. New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Biochimica et Biophysica Acta (BBA) - Biomembranes 2014, 1838 (7) , 1978-1984. https://doi.org/10.1016/j.bbamem.2014.02.014
- Lisa C Metzger, Melanie Blokesch. Composition of the DNA-uptake complex of Vibrio cholerae. Mobile Genetic Elements 2014, 4 (1) , e28142. https://doi.org/10.4161/mge.28142
- Vladimir N Uversky. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. Intrinsically Disordered Proteins 2014, 2 (1) , e970499. https://doi.org/10.4161/21690693.2014.970499