ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Interaction of 14-3-3ζ with Microtubule-Associated Protein Tau within Alzheimer’s Disease Neurofibrillary Tangles

View Author Information
The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Quebec, Canada H3T 1E2
Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 0G4
§ Department of Pathology, University of Montreal, Montreal, Quebec, Canada H3T 1E2
*Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Rd., Montreal, Quebec, Canada H3T 1E2. Telephone: (514) 340-8222, ext. 4866. Fax: (514) 340-7502. E-mail: [email protected]
Cite this: Biochemistry 2013, 52, 37, 6445–6455
Publication Date (Web):August 20, 2013
https://doi.org/10.1021/bi400442d
Copyright © 2013 American Chemical Society

    Article Views

    1281

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Alzheimer’s disease (AD) is characterized by the presence of abnormal, straight filaments and paired helical filaments (PHFs) that are coated with amorphous aggregates. When PHFs are treated with alkali, they untwist and form filaments with a ribbonlike morphology. Tau protein is the major component of all of these ultrastructures. 14-3-3ζ is present in NFTs and is significantly upregulated in AD brain. The molecular basis of the association of 14-3-3ζ within NFTs and the pathological significance of its association are not known. In this study, we have found that 14-3-3ζ is copurified and co-immunoprecipitates with tau from NFTs of AD brain extract. In vitro, tau binds to both phosphorylated and nonphosphorylated tau. When incubated with 14-3-3ζ, tau forms amorphous aggregates, single-stranded, straight filaments, ribbonlike filaments, and PHF-like filaments, all of which resemble the corresponding ultrastructures found in AD brain. Immuno-electron microscopy determined that both tau and 14-3-3ζ are present in these ultrastructures and that they are formed in an incubation time-dependent manner. Amorphous aggregates are formed first. As the incubation time increases, the size of amorphous aggregates increases and they are incorporated into single-stranded filaments. Single-stranded filaments laterally associate to form double-stranded, ribbonlike, and PHF-like filaments. Both tau and phosphorylated tau aggregate in a similar manner when they are incubated with 14-3-3ζ. Our data suggest that 14-3-3ζ has a role in the fibrillization of tau in AD brain, and that tau phosphorylation does not affect 14-3-3ζ-induced tau aggregation.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Figures 1–4. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 54 publications.

    1. Xavier Guillory, Madita Wolter, Seppe Leysen, João Filipe Neves, Ave Kuusk, Sylvia Genet, Bente Somsen, John Kenneth Morrow, Emma Rivers, Lotte van Beek, Joe Patel, Robert Goodnow, Heike Schoenherr, Nathan Fuller, Qing Cao, Richard G. Doveston, Luc Brunsveld, Michelle R. Arkin, Paola Castaldi, Helen Boyd, Isabelle Landrieu, Hongming Chen, Christian Ottmann. Fragment-based Differential Targeting of PPI Stabilizer Interfaces. Journal of Medicinal Chemistry 2020, 63 (13) , 6694-6707. https://doi.org/10.1021/acs.jmedchem.9b01942
    2. Sebastian A. Andrei, Femke A. Meijer, João Filipe Neves, Luc Brunsveld, Isabelle Landrieu, Christian Ottmann, Lech-Gustav Milroy. Inhibition of 14-3-3/Tau by Hybrid Small-Molecule Peptides Operating via Two Different Binding Modes. ACS Chemical Neuroscience 2018, 9 (11) , 2639-2654. https://doi.org/10.1021/acschemneuro.8b00118
    3. Manor Askenazi, Tomas Kavanagh, Geoffrey Pires, Beatrix Ueberheide, Thomas Wisniewski, Eleanor Drummond. Compilation of reported protein changes in the brain in Alzheimer’s disease. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40208-x
    4. Alla P. Toropova, Andrey A. Toropov, Parvin Kumar, Ashwani Kumar, P. Ganga Raju Achary. Fragments of local symmetry in a sequence of amino acids: Does one can use for QSPR/QSAR of peptides?. Journal of Molecular Structure 2023, 1293 , 136300. https://doi.org/10.1016/j.molstruc.2023.136300
    5. Emira J. Visser, Priyadarshini Jaishankar, Eline Sijbesma, Marloes A. M. Pennings, Edmee M. F. Vandenboorn, Xavier Guillory, R. Jeffrey Neitz, John Morrow, Shubhankar Dutta, Adam R. Renslo, Luc Brunsveld, Michelle R. Arkin, Christian Ottmann. From Tethered to Freestanding Stabilizers of 14‐3‐3 Protein‐Protein Interactions through Fragment Linking. Angewandte Chemie 2023, 135 (37) https://doi.org/10.1002/ange.202308004
    6. Emira J. Visser, Priyadarshini Jaishankar, Eline Sijbesma, Marloes A. M. Pennings, Edmee M. F. Vandenboorn, Xavier Guillory, R. Jeffrey Neitz, John Morrow, Shubhankar Dutta, Adam R. Renslo, Luc Brunsveld, Michelle R. Arkin, Christian Ottmann. From Tethered to Freestanding Stabilizers of 14‐3‐3 Protein‐Protein Interactions through Fragment Linking. Angewandte Chemie International Edition 2023, 62 (37) https://doi.org/10.1002/anie.202308004
    7. Reyhane Kamelnia, Bahram Goliaei, Seyed Peyman Shariatpanahi, Faramarz Mehrnejad, Atiyeh Ghasemi, Ashkan Zare Karizak, Azadeh Ebrahim-Habibi. Chemical Modification of the Amino Groups of Human Insulin: Investigating Structural Properties and Amorphous Aggregation of Acetylated Species. The Protein Journal 2023, 42 (4) , 383-398. https://doi.org/10.1007/s10930-023-10131-7
    8. Rowan A. W. Radford, Stephanie L. Rayner, Paulina Szwaja, Marco Morsch, Flora Cheng, Tianyi Zhu, Jocelyn Widagdo, Victor Anggono, Dean L. Pountney, Roger Chung, Albert Lee. Identification of phosphorylated tau protein interactors in progressive supranuclear palsy ( PSP ) reveals networks involved in protein degradation, stress response, cytoskeletal dynamics, metabolic processes, and neurotransmission. Journal of Neurochemistry 2023, 165 (4) , 563-586. https://doi.org/10.1111/jnc.15796
    9. Martin Cente, Katarina Matyasova, Nikoleta Csicsatkova, Adela Tomikova, Sara Porubska, Yun Niu, Marek Majdan, Peter Filipcik, Igor Jurisica. Traumatic MicroRNAs: Deconvolving the Signal After Severe Traumatic Brain Injury. Cellular and Molecular Neurobiology 2023, 43 (3) , 1061-1075. https://doi.org/10.1007/s10571-022-01254-z
    10. Tagan A. Griffin, Paul D. Schnier, Elisa M. Cleveland, Robert W. Newberry, Julia Becker, George A. Carlson. Fibril treatment changes protein interactions of tau and α-synuclein in human neurons. Journal of Biological Chemistry 2023, 299 (3) , 102888. https://doi.org/10.1016/j.jbc.2023.102888
    11. Ryan K. Betters, Emma Luhmann, Amy C. Gottschalk, Zhen Xu, Mallory R. Shin, Christopher P. Ptak, Kimberly L. Fiock, Lilliana C. Radoshevich, Marco M. Hefti. Characterization of the Tau Interactome in Human Brain Reveals Isoform-Dependent Interaction with 14-3-3 Family Proteins. eneuro 2023, 10 (3) , ENEURO.0503-22.2023. https://doi.org/10.1523/ENEURO.0503-22.2023
    12. Hassan Ainani, Najat Bouchmaa, Reda Ben Mrid, Rachid El Fatimy. Liquid-liquid phase separation of protein tau: An emerging process in Alzheimer's disease pathogenesis. Neurobiology of Disease 2023, 178 , 106011. https://doi.org/10.1016/j.nbd.2023.106011
    13. Asra Nasir Khan, Rizwan Hasan Khan. Protein misfolding and related human diseases: A comprehensive review of toxicity, proteins involved, and current therapeutic strategies. International Journal of Biological Macromolecules 2022, 223 , 143-160. https://doi.org/10.1016/j.ijbiomac.2022.11.031
    14. Rayane Hedna, Hervé Kovacic, Alessandra Pagano, Vincent Peyrot, Maxime Robin, François Devred, Gilles Breuzard. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers 2022, 14 (21) , 5386. https://doi.org/10.3390/cancers14215386
    15. Veronika Obsilova, Tomas Obsil. Structural insights into the functional roles of 14-3-3 proteins. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.1016071
    16. Naghmeh Saadati-Eskandari, Latifeh Navidpour, Parichehreh Yaghmaei, Azadeh Ebrahim-Habibi. Phenylalanine and indole effects on the pathogenicity of human lysozyme amorphous aggregates. Enzyme and Microbial Technology 2022, 158 , 110036. https://doi.org/10.1016/j.enzmictec.2022.110036
    17. Yuanyuan Lu. Early increase of cerebrospinal fluid 14-3-3ζ protein in the alzheimer's disease continuum. Frontiers in Aging Neuroscience 2022, 14 https://doi.org/10.3389/fnagi.2022.941927
    18. Xianlong Huang, Zhiwen Zheng, Yixin Wu, Meng Gao, Zhengding Su, Yongqi Huang. 14-3-3 Proteins are Potential Regulators of Liquid–Liquid Phase Separation. Cell Biochemistry and Biophysics 2022, 80 (2) , 277-293. https://doi.org/10.1007/s12013-022-01067-3
    19. Yue Han, Haiqiong Ye, Ping Li, Yifan Zeng, Jing Yang, Meng Gao, Zhengding Su, Yongqi Huang. In vitro characterization and molecular dynamics simulation reveal mechanism of 14-3-3ζ regulated phase separation of the tau protein. International Journal of Biological Macromolecules 2022, 208 , 1072-1081. https://doi.org/10.1016/j.ijbiomac.2022.03.215
    20. Javed Masood Khan, Ajamaluddin Malik, Fohad Mabood Husain, Mohammed J. Hakeem, Abdullah S. Alhomida. Sunset Yellow Dye Induces Amorphous Aggregation in β-Lactoglobulin at Acidic pH: A Multi-Techniques Approach. Polymers 2022, 14 (3) , 395. https://doi.org/10.3390/polym14030395
    21. Rachel Underwood, Mary Gannon, Aneesh Pathak, Navya Kapa, Sidhanth Chandra, Alyssa Klop, Talene A. Yacoubian. 14-3-3 mitigates alpha-synuclein aggregation and toxicity in the in vivo preformed fibril model. Acta Neuropathologica Communications 2021, 9 (1) https://doi.org/10.1186/s40478-020-01110-5
    22. Meihua Jin, Xiaocen Jin, Hidenori Homma, Kyota Fujita, Hikari Tanaka, Shigeo Murayama, Hiroyasu Akatsu, Kazuhiko Tagawa, Hitoshi Okazawa. Prediction and verification of the AD-FTLD common pathomechanism based on dynamic molecular network analysis. Communications Biology 2021, 4 (1) https://doi.org/10.1038/s42003-021-02475-6
    23. Kristine Kitoka, Rostislav Skrabana, Norbert Gasparik, Jozef Hritz, Kristaps Jaudzems. NMR Studies of Tau Protein in Tauopathies. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.761227
    24. F. Sanders Pair, Talene A. Yacoubian. 14-3-3 Proteins: Novel Pharmacological Targets in Neurodegenerative Diseases. Trends in Pharmacological Sciences 2021, 42 (4) , 226-238. https://doi.org/10.1016/j.tips.2021.01.001
    25. João Filipe Neves, Olivia Petrvalská, Francesco Bosica, François‐Xavier Cantrelle, Hamida Merzougui, Gavin O'Mahony, Xavier Hanoulle, Tomáš Obšil, Isabelle Landrieu. Phosphorylated full‐length Tau interacts with 14‐3‐3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14‐3‐3 dimer. The FEBS Journal 2021, 288 (6) , 1918-1934. https://doi.org/10.1111/febs.15574
    26. Stéphanie Papin, Paolo Paganetti. Emerging Evidences for an Implication of the Neurodegeneration-Associated Protein TAU in Cancer. Brain Sciences 2020, 10 (11) , 862. https://doi.org/10.3390/brainsci10110862
    27. Stephany Francisco, Margarida Ferreira, Gabriela Moura, Ana Raquel Soares, Manuel A.S. Santos. Does proteostasis get lost in translation? Implications for protein aggregation across the lifespan. Ageing Research Reviews 2020, 62 , 101119. https://doi.org/10.1016/j.arr.2020.101119
    28. Qiang Gu, Elvis Cuevas, James Raymick, Jyotshna Kanungo, Sumit Sarkar. Downregulation of 14-3-3 Proteins in Alzheimer’s Disease. Molecular Neurobiology 2020, 57 (1) , 32-40. https://doi.org/10.1007/s12035-019-01754-y
    29. Cristina Pinto, Danilo B. Medinas, Francisco Fuentes-Villalobos, Jaime Maripillán, Ariel F. Castro, Agustín D. Martínez, Nelson Osses, Claudio Hetz, Juan P. Henríquez. β-catenin aggregation in models of ALS motor neurons: GSK3β inhibition effect and neuronal differentiation. Neurobiology of Disease 2019, 130 , 104497. https://doi.org/10.1016/j.nbd.2019.104497
    30. Eric Valeur, Frank Narjes, Christian Ottmann, Alleyn T. Plowright. Emerging modes-of-action in drug discovery. MedChemComm 2019, 10 (9) , 1550-1568. https://doi.org/10.1039/C9MD00263D
    31. Nataliya I. Trushina, Lidia Bakota, Armen Y. Mulkidjanian, Roland Brandt. The Evolution of Tau Phosphorylation and Interactions. Frontiers in Aging Neuroscience 2019, 11 https://doi.org/10.3389/fnagi.2019.00256
    32. Naghmeh Saadati-Eskandari, Latifeh Navidpour, Parichehreh Yaghmaei, Azadeh Ebrahim-Habibi. Amino Acids as Additives against Amorphous Aggregation: In Vitro and In Silico Study on Human Lysozyme. Applied Biochemistry and Biotechnology 2019, 189 (1) , 305-317. https://doi.org/10.1007/s12010-019-03010-4
    33. Yazi D. Ke, Gabriella Chan, Kristie Stefanoska, Carol Au, Mian Bi, Julius Müller, Magdalena Przybyla, Astrid Feiten, Emmanuel Prikas, Glenda M. Halliday, Olivier Piguet, Matthew C. Kiernan, Michael Kassiou, John R. Hodges, Clement T. Loy, John S. Mattick, Arne Ittner, Jillian J. Kril, Greg T. Sutherland, Lars M. Ittner. CNS cell type–specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by progressive tau accumulation. Journal of Biological Chemistry 2019, 294 (38) , 14149-14162. https://doi.org/10.1074/jbc.RA118.005263
    34. Pascale Barbier, Orgeta Zejneli, Marlène Martinho, Alessia Lasorsa, Valérie Belle, Caroline Smet-Nocca, Philipp O. Tsvetkov, François Devred, Isabelle Landrieu. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Frontiers in Aging Neuroscience 2019, 11 https://doi.org/10.3389/fnagi.2019.00204
    35. Yuwen Chen, Xingyu Chen, Zhiyang Yao, Yuqi Shi, Junwen Xiong, Jingjing Zhou, Zhengding Su, Yongqi Huang. 14-3-3/Tau Interaction and Tau Amyloidogenesis. Journal of Molecular Neuroscience 2019, 68 (4) , 620-630. https://doi.org/10.1007/s12031-019-01325-9
    36. Joydev Hatai, Carsten Schmuck. Artificial Peptide and Protein Receptors. 2019, 79-113. https://doi.org/10.1002/9783527814923.ch3
    37. Katerina Papanikolopoulou, Sofia Grammenoudi, Martina Samiotaki, Efthimios M C Skoulakis. Differential effects of 14-3-3 dimers on Tau phosphorylation, stability and toxicity in vivo. Human Molecular Genetics 2018, 27 (13) , 2244-2261. https://doi.org/10.1093/hmg/ddy129
    38. Nadia Melo Borges, Geraldo Rodrigues Sartori, Jean F. R. Ribeiro, Josmar R. Rocha, João B. L. Martins, Carlos A. Montanari, Ricardo Gargano. Similarity search combined with docking and molecular dynamics for novel hAChE inhibitor scaffolds. Journal of Molecular Modeling 2018, 24 (1) https://doi.org/10.1007/s00894-017-3548-9
    39. Natalia Mast, Joseph B. Lin, Kyle W. Anderson, Ingemar Bjorkhem, Irina A. Pikuleva, . Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1). PLOS ONE 2017, 12 (10) , e0187168. https://doi.org/10.1371/journal.pone.0187168
    40. Michael B. McFerrin, Xiaofei Chi, Gary Cutter, Talene A. Yacoubian. Dysregulation of 14‐3‐3 proteins in neurodegenerative diseases with Lewy body or Alzheimer pathology. Annals of Clinical and Translational Neurology 2017, 4 (7) , 466-477. https://doi.org/10.1002/acn3.421
    41. Nicole Groh, Anika Bühler, Chaolie Huang, Ka Wan Li, Pim van Nierop, August B. Smit, Marcus Fändrich, Frank Baumann, Della C. David. Age-Dependent Protein Aggregation Initiates Amyloid-β Aggregation. Frontiers in Aging Neuroscience 2017, 9 https://doi.org/10.3389/fnagi.2017.00138
    42. Stuart K. Calderwood, Ayesha Murshid. Molecular Chaperone Accumulation in Cancer and Decrease in Alzheimer's Disease: The Potential Roles of HSF1. Frontiers in Neuroscience 2017, 11 https://doi.org/10.3389/fnins.2017.00192
    43. Srinivas Ayyadevara, Meenakshisundaram Balasubramaniam, Paul A. Parcon, Steven W. Barger, W. Sue T. Griffin, Ramani Alla, Alan J. Tackett, Samuel G. Mackintosh, Emanuel Petricoin, Weidong Zhou, Robert J. Shmookler Reis. Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer's hippocampus from normal controls. Aging Cell 2016, 15 (5) , 924-939. https://doi.org/10.1111/acel.12501
    44. Hiroki Jozawa, Md. Golam Kabir, Tamotsu Zako, Mizuo Maeda, Kazuhiro Chiba, Yutaka Kuroda. Amorphous protein aggregation monitored using fluorescence self‐quenching. FEBS Letters 2016, 590 (20) , 3501-3509. https://doi.org/10.1002/1873-3468.12439
    45. Tong Li, Hemant K. Paudel, . 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells. PLOS ONE 2016, 11 (8) , e0160635. https://doi.org/10.1371/journal.pone.0160635
    46. Stefan J. Kempf, Athanasios Metaxas, María Ibáñez-Vea, Sultan Darvesh, Bente Finsen, Martin R. Larsen. An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer's mouse model. Oncotarget 2016, 7 (23) , 33627-33648. https://doi.org/10.18632/oncotarget.9092
    47. Zhiyou Cai, Nannuan Liu, Chuanling Wang, Biyong Qin, Yingjun Zhou, Ming Xiao, Liying Chang, Liang-Jun Yan, Bin Zhao. Role of RAGE in Alzheimer’s Disease. Cellular and Molecular Neurobiology 2016, 36 (4) , 483-495. https://doi.org/10.1007/s10571-015-0233-3
    48. David Bier, Maria Bartel, Katharina Sies, Sebastian Halbach, Yusuke Higuchi, Yu Haranosono, Tilman Brummer, Nobuo Kato, Christian Ottmann. Small-Molecule Stabilization of the 14-3-3/Gab2 Protein-Protein Interaction (PPI) Interface. ChemMedChem 2016, 11 (8) , 911-918. https://doi.org/10.1002/cmdc.201500484
    49. Patricia Akemi Assato, Julhiany de Fátima da Silva, Haroldo Cesar de Oliveira, Caroline Maria Marcos, Danuza Rossi, Sandro Roberto Valentini, Maria José Soares Mendes-Giannini, Cleslei Fernando Zanelli, Ana Marisa Fusco-Almeida. Functional analysis of Paracoccidioides brasiliensis 14-3-3 adhesin expressed in Saccharomyces cerevisiae. BMC Microbiology 2015, 15 (1) https://doi.org/10.1186/s12866-015-0586-2
    50. María Victoria Zelaya, Estela Pérez-Valderrama, Xabier Martínez de Morentin, Teresa Tuñon, Isidro Ferrer, María Rosario Luquin, Joaquín Fernandez-Irigoyen, Enrique Santamaría. Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer's disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies. Oncotarget 2015, 6 (37) , 39437-39456. https://doi.org/10.18632/oncotarget.6254
    51. Yuyoung Joo, Benjamin Schumacher, Isabelle Landrieu, Maria Bartel, Caroline Smet‐Nocca, Ahram Jang, Hee Soon Choi, Noo Li Jeon, Keun‐A Chang, Hye‐Sun Kim, Christian Ottmann, Yoo‐Hun Suh. Involvement of 14‐3‐3 in tubulin instability and impaired axon development is mediated by Tau. The FASEB Journal 2015, 29 (10) , 4133-4144. https://doi.org/10.1096/fj.14-265009
    52. Saeed Sadigh-Eteghad, Alireza Majdi, Mahnaz Talebi, Javad Mahmoudi, Shirin Babri. Regulation of nicotinic acetylcholine receptors in Alzheimer׳s disease: A possible role of chaperones. European Journal of Pharmacology 2015, 755 , 34-41. https://doi.org/10.1016/j.ejphar.2015.02.047
    53. Jeffrey B. Mortenson, Lisa N. Heppler, Courtney J. Banks, Vajira K. Weerasekara, Matthew D. Whited, Stephen R. Piccolo, William E. Johnson, J. Will Thompson, Joshua L. Andersen. Histone Deacetylase 6 (HDAC6) Promotes the Pro-survival Activity of 14-3-3ζ via Deacetylation of Lysines within the 14-3-3ζ Binding Pocket. Journal of Biological Chemistry 2015, 290 (20) , 12487-12496. https://doi.org/10.1074/jbc.M114.607580
    54. Belén Ansoleaga, Mariona Jové, Agatha Schlüter, Paula Garcia-Esparcia, Jesús Moreno, Aurora Pujol, Reinald Pamplona, Manuel Portero-Otín, Isidre Ferrer. Deregulation of purine metabolism in Alzheimer's disease. Neurobiology of Aging 2015, 36 (1) , 68-80. https://doi.org/10.1016/j.neurobiolaging.2014.08.004

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect