ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Omecamtiv Mecarbil Modulates the Kinetic and Motile Properties of Porcine β-Cardiac Myosin

View Author Information
Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States
*Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507. E-mail: [email protected]. Phone: (757) 446-5108. Fax: (757) 624-2270.
Cite this: Biochemistry 2015, 54, 10, 1963–1975
Publication Date (Web):February 13, 2015
https://doi.org/10.1021/bi5015166
Copyright © 2015 American Chemical Society

    Article Views

    1669

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    We determined the effect of Omecamtiv Mecarbil, a novel allosteric effector of cardiac muscle myosin, on the kinetic and “in vitro” motility properties of the porcine ventricular heavy meromyosin (PV-HMM). Omecamtiv Mecarbil increases the equilibrium constant of the hydrolysis step (M-ATP ⇄ M-ADP-Pi) from 2.4 to 6 as determined by quench flow, but the maximal rates of both the hydrolysis step and tryptophan fluorescence increase are unchanged by the drug. OM also increases the amplitude of the fast phase of phosphate dissociation (AM-ADP-Pi → AM-ADP + Pi) that is associated with force production in muscle by 4-fold. These results suggest a mechanism in which hydrolysis of M-ATP to M-ADP-Pi occurs both before and after the recovery stroke, but rapid acceleration of phosphate dissociation by actin occurs only on post-recovery stroke A-M-ADP-Pi. One of the more dramatic effects of OM on PV-HMM is a 14-fold decrease in the unloaded shortening velocity measured by the in vitro motility assay. The increase in flux through phosphate dissociation and the unchanged rate of ADP dissociation (AM-ADP → AM + ADP) by the drug produce a higher duty ratio motor in which a larger fraction of myosin heads are strongly bound to actin filaments. The increased internal load produced by a larger fraction of strongly attached crossbridges explains the reduced rate of in vitro motility velocity in the presence of OM and predicts that the drug will produce slower and stronger contraction of cardiac muscle.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Dependence of steady-state ATP hydrolysis upon pCa and OM concentration, characteristic space–time curves for PV-HMM-powered motility of actin filaments, and modeling of the coupled hydrolysis mechanism to determine the steady-state concentrations of intermediates MADP-Pi, MADP-Pi, MATP, and MATP. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 86 publications.

    1. Ananya Chakraborti, Jil C. Tardiff, Steven D. Schwartz. Insights into the Mechanism of the Cardiac Drug Omecamtiv Mecarbil─A Computational Study. The Journal of Physical Chemistry B 2022, 126 (48) , 10069-10082. https://doi.org/10.1021/acs.jpcb.2c06679
    2. Shaima Hashem, William George Davies, Arianna Fornili. Heart Failure Drug Modifies the Intrinsic Dynamics of the Pre-Power Stroke State of Cardiac Myosin. Journal of Chemical Information and Modeling 2020, 60 (12) , 6438-6446. https://doi.org/10.1021/acs.jcim.0c00953
    3. Julien Robert-Paganin, Olena Pylypenko, Carlos Kikuti, H. Lee Sweeney, Anne Houdusse. Force Generation by Myosin Motors: A Structural Perspective. Chemical Reviews 2020, 120 (1) , 5-35. https://doi.org/10.1021/acs.chemrev.9b00264
    4. Yihua Wang, Katalin Ajtai, Katarzyna Kazmierczak, Danuta Szczesna-Cordary, and Thomas P. Burghardt . N-Terminus of Cardiac Myosin Essential Light Chain Modulates Myosin Step-Size. Biochemistry 2016, 55 (1) , 186-198. https://doi.org/10.1021/acs.biochem.5b00817
    5. A. Balakin, R. Lisin, D. Kuznetsov, A. Kochurova, E. Mukhlynina, D. Shchepkin, G. Kopylova, Yu. Protsenko. Effects of Omecamtiv Mecarbil on the Tension–Length Loop and Work in Right Ventricular Trabeculae from Rats with Pulmonary Heart Failure. Journal of Evolutionary Biochemistry and Physiology 2023, 59 (4) , 1182-1194. https://doi.org/10.1134/S0022093023040130
    6. Arnold Péter Ráduly, Attila Tóth, Fruzsina Sárkány, Balázs Horváth, Norbert Szentandrássy, Péter P. Nánási, Zoltán Csanádi, István Édes, Zoltán Papp, Attila Borbély. Omecamtiv mecarbil augments cardiomyocyte contractile activity both at resting and systolic Ca 2+ levels. ESC Heart Failure 2023, 10 (2) , 1326-1335. https://doi.org/10.1002/ehf2.14300
    7. Matthew H. Doran, Michael J. Rynkiewicz, David Rassici, Skylar M.L. Bodt, Meaghan E. Barry, Esther Bullitt, Christopher M. Yengo, Jeffrey R. Moore, William Lehman. Conformational changes linked to ADP release from human cardiac myosin bound to actin-tropomyosin. Journal of General Physiology 2023, 155 (3) https://doi.org/10.1085/jgp.202213267
    8. Olga E. Karpicheva, Stanislava V. Avrova, Andrey L. Bogdanov, Vladimir V. Sirenko, Charles S. Redwood, Yurii S. Borovikov. Molecular Mechanisms of Deregulation of Muscle Contractility Caused by the R168H Mutation in TPM3 and Its Attenuation by Therapeutic Agents. International Journal of Molecular Sciences 2023, 24 (6) , 5829. https://doi.org/10.3390/ijms24065829
    9. Wen Ma, Shengjun You, Michael Regnier, J. Andrew McCammon. Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation. Proceedings of the National Academy of Sciences 2023, 120 (9) https://doi.org/10.1073/pnas.2215836120
    10. Samantha K. Barrick, Ankit Garg, Lina Greenberg, Shanshan Zhang, Chieh-Yu Lin, Nathan O. Stitziel, Michael J. Greenberg. Functional assays reveal the pathogenic mechanism of a de novo tropomyosin variant identified in patient with dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology 2023, 121 https://doi.org/10.1016/j.yjmcc.2023.01.014
    11. Bachar El Oumeiri, Laurence Dewachter, Philippe Van de Borne, Géraldine Hubesch, Christian Melot, Pascale Jespers, Constantin Stefanidis, Kathleen Mc Entee, Frédéric Vanden Eynden. Altered Left Ventricular Rat Gene Expression Induced by the Myosin Activator Omecamtiv Mecarbil. Genes 2023, 14 (1) , 122. https://doi.org/10.3390/genes14010122
    12. Anna Katarina Antonovic, Julien Ochala, Arianna Fornili. Comparative study of binding pocket structure and dynamics in cardiac and skeletal myosin. Biophysical Journal 2023, 122 (1) , 54-62. https://doi.org/10.1016/j.bpj.2022.11.2942
    13. Alf Månsson, Dilson E. Rassier. Insights into Muscle Contraction Derived from the Effects of Small-Molecular Actomyosin-Modulating Compounds. International Journal of Molecular Sciences 2022, 23 (20) , 12084. https://doi.org/10.3390/ijms232012084
    14. Masataka Kawana, James A. Spudich, Kathleen M. Ruppel. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies. Frontiers in Physiology 2022, 13 https://doi.org/10.3389/fphys.2022.975076
    15. Tomohiro Nakanishi, Kotaro Oyama, Hiroyuki Tanaka, Fuyu Kobirumaki-Shimozawa, Shuya Ishii, Takako Terui, Shin’ichi Ishiwata, Norio Fukuda. Effects of omecamtiv mecarbil on the contractile properties of skinned porcine left atrial and ventricular muscles. Frontiers in Physiology 2022, 13 https://doi.org/10.3389/fphys.2022.947206
    16. Sarah J. Lehman, Claudia Crocini, Leslie A. Leinwand. Targeting the sarcomere in inherited cardiomyopathies. Nature Reviews Cardiology 2022, 19 (6) , 353-363. https://doi.org/10.1038/s41569-022-00682-0
    17. Anja M. Touma, Wanjian Tang, David V. Rasicci, Duha Vang, Ashim Rai, Samantha B. Previs, David M. Warshaw, Christopher M. Yengo, Sivaraj Sivaramakrishnan. Nanosurfer assay dissects β-cardiac myosin and cardiac myosin-binding protein C interactions. Biophysical Journal 2022, 121 (12) , 2449-2460. https://doi.org/10.1016/j.bpj.2022.05.013
    18. Sharlene M. Day, Jil C. Tardiff, E. Michael Ostap. Myosin modulators: emerging approaches for the treatment of cardiomyopathies and heart failure. Journal of Clinical Investigation 2022, 132 (5) https://doi.org/10.1172/JCI148557
    19. Ashit Trivedi, Winnie Sohn, Cheng‐Pang Hsu, Pegah Jafarinasabian, Hanze Zhang, Shauna Hutton, Stephen Flach, Siddique Abbasi, Sandeep Dutta, Edward Lee. Pharmacokinetic Drug‐Drug Interaction Study of Omecamtiv Mecarbil With Amiodarone and Digoxin in Healthy Subjects. Clinical Pharmacology in Drug Development 2022, 11 (3) , 388-396. https://doi.org/10.1002/cpdd.1028
    20. Jaimit Parikh, Timothy Rumbell, Xenia Butova, Tatiana Myachina, Jorge Corral Acero, Svyatoslav Khamzin, Olga Solovyova, James Kozloski, Anastasia Khokhlova, Viatcheslav Gurev. Generative adversarial networks for construction of virtual populations of mechanistic models: simulations to study Omecamtiv Mecarbil action. Journal of Pharmacokinetics and Pharmacodynamics 2022, 49 (1) , 51-64. https://doi.org/10.1007/s10928-021-09787-4
    21. Oleg Lookin, Daniil Kuznetsov, Yuri Protsenko. Omecamtiv mecarbil attenuates length–tension relationship in healthy rat myocardium and preserves it in monocrotaline‐induced pulmonary heart failure. Clinical and Experimental Pharmacology and Physiology 2022, 49 (1) , 84-93. https://doi.org/10.1111/1440-1681.13584
    22. Samantha K. Barrick, Michael J. Greenberg. Cardiac myosin contraction and mechanotransduction in health and disease. Journal of Biological Chemistry 2021, 112 , 101297. https://doi.org/10.1016/j.jbc.2021.101297
    23. Bachar El Oumeiri, Philippe Borne, Géraldine Hubesch, Antoine Herpain, Filippo Annoni, Pascale Jespers, Constantin Stefanidis, Kathleen Mc Entee, Frédéric Vanden Eynden. The myosin activator omecamtiv mecarbil improves wall stress in a rat model of chronic aortic regurgitation. Physiological Reports 2021, 9 (16) https://doi.org/10.14814/phy2.14988
    24. Irene Pertici, Manuel H. Taft, Johannes N. Greve, Roman Fedorov, Marco Caremani, Dietmar J. Manstein. Allosteric modulation of cardiac myosin mechanics and kinetics by the conjugated omega‐7,9 trans‐fat rumenic acid. The Journal of Physiology 2021, 599 (15) , 3639-3661. https://doi.org/10.1113/JP281563
    25. Koji Sakata, Sho Matsuyama, Nagomi Kurebayashi, Kengo Hayamizu, Takashi Murayama, Kunihide Nakamura, Kazuo Kitamura, Sachio Morimoto, Ryu Takeya. Differential effects of the formin inhibitor SMIFH2 on contractility and Ca 2+ handling in frog and mouse cardiomyocytes. Genes to Cells 2021, 26 (8) , 583-595. https://doi.org/10.1111/gtc.12873
    26. Ranganath Mamidi, Joshua B. Holmes, Chang Yoon Doh, Katherine L. Dominic, Nikhil Madugula, Julian E. Stelzer. cMyBPC phosphorylation modulates the effect of omecamtiv mecarbil on myocardial force generation. Journal of General Physiology 2021, 153 (7) https://doi.org/10.1085/jgp.202012816
    27. Wanjian Tang, Jinghua Ge, William C. Unrath, Rohini Desetty, Christopher M. Yengo. Cardiomyopathy mutations impact the actin-activated power stroke of human cardiac myosin. Biophysical Journal 2021, 120 (11) , 2222-2236. https://doi.org/10.1016/j.bpj.2021.04.007
    28. . Omecamtiv Mecarbil in Systolic Heart Failure. New England Journal of Medicine 2021, 1966-1968. https://doi.org/10.1056/NEJMc2102893
    29. Alexander Dashwood, Elizabeth Cheesman, Yee Weng Wong, Haris Haqqani, Nicole Beard, Karen Hay, Melanie Spratt, Wandy Chan, Peter Molenaar. Effects of omecamtiv mecarbil on failing human ventricular trabeculae and interaction with (−)‐noradrenaline. Pharmacology Research & Perspectives 2021, 9 (3) https://doi.org/10.1002/prp2.760
    30. Michael J. Greenberg, Jil C. Tardiff. Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. Journal of General Physiology 2021, 153 (3) https://doi.org/10.1085/jgp.202012662
    31. Aaron Snoberger, Bipasha Barua, Jennifer L Atherton, Henry Shuman, Eva Forgacs, Yale E Goldman, Donald A Winkelmann, E Michael Ostap. Myosin with hypertrophic cardiac mutation R712L has a decreased working stroke which is rescued by omecamtiv mecarbil. eLife 2021, 10 https://doi.org/10.7554/eLife.63691
    32. Osha Roopnarine, David D. Thomas. Mechanistic analysis of actin-binding compounds that affect the kinetics of cardiac myosin–actin interaction. Journal of Biological Chemistry 2021, 296 , 100471. https://doi.org/10.1016/j.jbc.2021.100471
    33. Arroj Ali, Ramy Abdelmaseih, Ravi Thakker, Mohammed Faluk, SyedMustajab Hasan. Cardiac myosin activation in the treatment of congestive heart failure: New therapeutic options and review of literature. Heart Views 2021, 22 (4) , 275. https://doi.org/10.4103/HEARTVIEWS.HEARTVIEWS_39_21
    34. Khulud Alsulami, Steven Marston. Small Molecules Acting on Myofilaments as Treatments for Heart and Skeletal Muscle Diseases. International Journal of Molecular Sciences 2020, 21 (24) , 9599. https://doi.org/10.3390/ijms21249599
    35. Serena Governali, Marco Caremani, Cristina Gallart, Irene Pertici, Ger Stienen, Gabriella Piazzesi, Coen Ottenheijm, Vincenzo Lombardi, Marco Linari. Orthophosphate increases the efficiency of slow muscle-myosin isoform in the presence of omecamtiv mecarbil. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17143-2
    36. A. van der Pol, M. F. Hoes, R. A. de Boer, P. van der Meer. Cardiac foetal reprogramming: a tool to exploit novel treatment targets for the failing heart. Journal of Internal Medicine 2020, 288 (5) , 491-506. https://doi.org/10.1111/joim.13094
    37. Daniil V. Shchepkin, Salavat R. Nabiev, Larisa V. Nikitina, Anastasia M. Kochurova, Valentina Y. Berg, Sergey Y. Bershitsky, Galina V. Kopylova. Myosin from the ventricle is more sensitive to omecamtiv mecarbil than myosin from the atrium. Biochemical and Biophysical Research Communications 2020, 528 (4) , 658-663. https://doi.org/10.1016/j.bbrc.2020.05.108
    38. Darshan V. Trivedi, Suman Nag, Annamma Spudich, Kathleen M. Ruppel, James A. Spudich. The Myosin Family of Mechanoenzymes: From Mechanisms to Therapeutic Approaches. Annual Review of Biochemistry 2020, 89 (1) , 667-693. https://doi.org/10.1146/annurev-biochem-011520-105234
    39. Joshua B. Holmes, Chang Yoon Doh, Ranganath Mamidi, Jiayang Li, Julian E. Stelzer. Strategies for targeting the cardiac sarcomere: avenues for novel drug discovery. Expert Opinion on Drug Discovery 2020, 15 (4) , 457-469. https://doi.org/10.1080/17460441.2020.1722637
    40. Dietmar J. Manstein, Matthias Preller. Small Molecule Effectors of Myosin Function. 2020, 61-84. https://doi.org/10.1007/978-3-030-38062-5_5
    41. Osamu Tsukamoto. Direct Sarcomere Modulators Are Promising New Treatments for Cardiomyopathies. International Journal of Molecular Sciences 2020, 21 (1) , 226. https://doi.org/10.3390/ijms21010226
    42. Christoph Maack, Thomas Eschenhagen, Nazha Hamdani, Frank R Heinzel, Alexander R Lyon, Dietmar J Manstein, Joseph Metzger, Zoltán Papp, Carlo G Tocchetti, M Birhan Yilmaz, Stefan D Anker, Jean-Luc Balligand, Johann Bauersachs, Dirk Brutsaert, Lucie Carrier, Stefan Chlopicki, John G Cleland, Rudolf A de Boer, Alexander Dietl, Rodolphe Fischmeister, Veli-Pekka Harjola, Stephane Heymans, Denise Hilfiker-Kleiner, Johannes Holzmeister, Gilles de Keulenaer, Giuseppe Limongelli, Wolfgang A Linke, Lars H Lund, Josep Masip, Marco Metra, Christian Mueller, Burkert Pieske, Piotr Ponikowski, Arsen Ristić, Frank Ruschitzka, Petar M Seferović, Hadi Skouri, Wolfram H Zimmermann, Alexandre Mebazaa. Treatments targeting inotropy. European Heart Journal 2019, 40 (44) , 3626-3644. https://doi.org/10.1093/eurheartj/ehy600
    43. Johan Lindqvist, Eun-Jeong Lee, Esmat Karimi, Justin Kolb, Henk Granzier, . Omecamtiv mecarbil lowers the contractile deficit in a mouse model of nebulin-based nemaline myopathy. PLOS ONE 2019, 14 (11) , e0224467. https://doi.org/10.1371/journal.pone.0224467
    44. Wanjian Tang, William C. Unrath, Rohini Desetty, Christopher M. Yengo. Dilated cardiomyopathy mutation in the converter domain of human cardiac myosin alters motor activity and response to omecamtiv mecarbil. Journal of Biological Chemistry 2019, 294 (46) , 17314-17325. https://doi.org/10.1074/jbc.RA119.010217
    45. Michael S Woody, Donald A Winkelmann, Marco Capitanio, E Michael Ostap, Yale E Goldman. Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. eLife 2019, 8 https://doi.org/10.7554/eLife.49266
    46. Steven Marston. Small molecule studies: the fourth wave of muscle research. Journal of Muscle Research and Cell Motility 2019, 40 (2) , 69-76. https://doi.org/10.1007/s10974-019-09526-w
    47. Thinh T. Kieu, Peter O. Awinda, Bertrand C.W. Tanner. Omecamtiv Mecarbil Slows Myosin Kinetics in Skinned Rat Myocardium at Physiological Temperature. Biophysical Journal 2019, 116 (11) , 2149-2160. https://doi.org/10.1016/j.bpj.2019.04.020
    48. James A. Spudich. Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Pflügers Archiv - European Journal of Physiology 2019, 471 (5) , 701-717. https://doi.org/10.1007/s00424-019-02259-2
    49. Mitchell A. Psotka, Stephen S. Gottlieb, Gary S. Francis, Larry A. Allen, John R. Teerlink, Kirkwood F. Adams, Giuseppe M.C. Rosano, Patrizio Lancellotti. Cardiac Calcitropes, Myotropes, and Mitotropes. Journal of the American College of Cardiology 2019, 73 (18) , 2345-2353. https://doi.org/10.1016/j.jacc.2019.02.051
    50. Martin Stroethoff, Friederike Behmenburg, Simon Meierkord, Sebastian Bunte, Felix Mayer, Alexander Mathes, André Heinen, Markus Hollmann, Ragnar Huhn. Cardioprotective Properties of Omecamtiv Mecarbil against Ischemia and Reperfusion Injury. Journal of Clinical Medicine 2019, 8 (3) , 375. https://doi.org/10.3390/jcm8030375
    51. Ranganath Mamidi, Jiayang Li, Chang Yoon Doh, Joshua B. Holmes, Julian E. Stelzer. Lost in translation: Interpreting cardiac muscle mechanics data in clinical practice. Archives of Biochemistry and Biophysics 2019, 662 , 213-218. https://doi.org/10.1016/j.abb.2018.12.021
    52. Laura K. Gunther, John A. Rohde, Wanjian Tang, Shane D. Walton, William C. Unrath, Darshan V. Trivedi, Joseph M. Muretta, David D. Thomas, Christopher M. Yengo. Converter domain mutations in myosin alter structural kinetics and motor function. Journal of Biological Chemistry 2019, 294 (5) , 1554-1567. https://doi.org/10.1074/jbc.RA118.006128
    53. . 直接的サルコメア制御剤による心筋症治療の展望. Journal of JCS Cardiologists 2019, 50-56. https://doi.org/10.1253/jjcsc.28.0_50
    54. Michael S. Woody, Michael J. Greenberg, Bipasha Barua, Donald A. Winkelmann, Yale E. Goldman, E. Michael Ostap. Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06193-2
    55. Michael J. Greenberg, Neil J. Daily, Ann Wang, Michael K. Conway, Tetsuro Wakatsuki. Genetic and Tissue Engineering Approaches to Modeling the Mechanics of Human Heart Failure for Drug Discovery. Frontiers in Cardiovascular Medicine 2018, 5 https://doi.org/10.3389/fcvm.2018.00120
    56. William A Kronert, Kaylyn M Bell, Meera C Viswanathan, Girish C Melkani, Adriana S Trujillo, Alice Huang, Anju Melkani, Anthony Cammarato, Douglas M Swank, Sanford I Bernstein. Prolonged cross-bridge binding triggers muscle dysfunction in a Drosophila model of myosin-based hypertrophic cardiomyopathy. eLife 2018, 7 https://doi.org/10.7554/eLife.38064
    57. John A. Rohde, Osha Roopnarine, David D. Thomas, Joseph M. Muretta. Mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin. Proceedings of the National Academy of Sciences 2018, 115 (32) https://doi.org/10.1073/pnas.1720342115
    58. Péter Nánási, István Komáromi, János Almássy. Perspectives of a myosin motor activator agent with increased selectivity. Canadian Journal of Physiology and Pharmacology 2018, 96 (7) , 676-680. https://doi.org/10.1139/cjpp-2017-0741
    59. Chao Liu, Masataka Kawana, Dan Song, Kathleen M. Ruppel, James A. Spudich. Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level. Nature Structural & Molecular Biology 2018, 25 (6) , 505-514. https://doi.org/10.1038/s41594-018-0069-x
    60. Thomas P. Burghardt, Katalin Ajtai. Neural/Bayes network predictor for inheritable cardiac disease pathogenicity and phenotype. Journal of Molecular and Cellular Cardiology 2018, 119 , 19-27. https://doi.org/10.1016/j.yjmcc.2018.04.006
    61. Ailian Xiong, Jessica Haithcock, Yingying Liu, Lauren Eusner, Matthew McConnell, Howard D. White, Betty Belknap, Eva Forgacs. The shaker-1 mouse myosin VIIa deafness mutation results in a severely reduced rate of the ATP hydrolysis step. Journal of Biological Chemistry 2018, 293 (3) , 819-829. https://doi.org/10.1074/jbc.M117.810119
    62. Thomas Kampourakis, Xuemeng Zhang, Yin‐Biao Sun, Malcolm Irving. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament. The Journal of Physiology 2018, 596 (1) , 31-46. https://doi.org/10.1113/JP275050
    63. Balázs Horváth, Norbert Szentandrássy, Roland Veress, János Almássy, János Magyar, Tamás Bányász, Attila Tóth, Zoltán Papp, Péter P. Nánási. Frequency-dependent effects of omecamtiv mecarbil on cell shortening of isolated canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology 2017, 390 (12) , 1239-1246. https://doi.org/10.1007/s00210-017-1422-z
    64. Vicente J. Planelles-Herrero, James J. Hartman, Julien Robert-Paganin, Fady I. Malik, Anne Houdusse. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-00176-5
    65. Shaima Hashem, Matteo Tiberti, Arianna Fornili, . Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil. PLOS Computational Biology 2017, 13 (11) , e1005826. https://doi.org/10.1371/journal.pcbi.1005826
    66. Ranganath Mamidi, Jiayang Li, Kenneth S. Gresham, Sujeet Verma, Chang Yoon Doh, Amy Li, Sean Lal, Cristobal G. dos Remedios, Julian E. Stelzer. Dose-Dependent Effects of the Myosin Activator Omecamtiv Mecarbil on Cross-Bridge Behavior and Force Generation in Failing Human Myocardium. Circulation: Heart Failure 2017, 10 (10) https://doi.org/10.1161/CIRCHEARTFAILURE.117.004257
    67. Sampath K. Gollapudi, Sherif M. Reda, Murali Chandra. Omecamtiv Mecarbil Abolishes Length-Mediated Increase in Guinea Pig Cardiac Myofiber Ca2+ Sensitivity. Biophysical Journal 2017, 113 (4) , 880-888. https://doi.org/10.1016/j.bpj.2017.07.002
    68. Péter Nánási, Marta Gaburjakova, Jana Gaburjakova, János Almássy. Omecamtiv mecarbil activates ryanodine receptors from canine cardiac but not skeletal muscle. European Journal of Pharmacology 2017, 809 , 73-79. https://doi.org/10.1016/j.ejphar.2017.05.027
    69. John A. Rohde, David D. Thomas, Joseph M. Muretta. Heart failure drug changes the mechanoenzymology of the cardiac myosin powerstroke. Proceedings of the National Academy of Sciences 2017, 114 (10) https://doi.org/10.1073/pnas.1611698114
    70. Srbolujub M. Mijailovich, Djordje Nedic, Marina Svicevic, Boban Stojanovic, Jonathan Walklate, Zoltan Ujfalusi, Michael A. Geeves. Modeling the Actin.myosin ATPase Cross-Bridge Cycle for Skeletal and Cardiac Muscle Myosin Isoforms. Biophysical Journal 2017, 112 (5) , 984-996. https://doi.org/10.1016/j.bpj.2017.01.021
    71. Anja M. Swenson, Wanjian Tang, Cheavar A. Blair, Christopher M. Fetrow, William C. Unrath, Michael J. Previs, Kenneth S. Campbell, Christopher M. Yengo. Omecamtiv Mecarbil Enhances the Duty Ratio of Human β-Cardiac Myosin Resulting in Increased Calcium Sensitivity and Slowed Force Development in Cardiac Muscle. Journal of Biological Chemistry 2017, 292 (9) , 3768-3778. https://doi.org/10.1074/jbc.M116.748780
    72. Wanjian Tang, Cheavar A. Blair, Shane D. Walton, András Málnási-Csizmadia, Kenneth S. Campbell, Christopher M. Yengo. Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels. Frontiers in Physiology 2017, 7 https://doi.org/10.3389/fphys.2016.00659
    73. Mitchell A. Psotka, John R. Teerlink. Direct Myosin Activation by Omecamtiv Mecarbil for Heart Failure with Reduced Ejection Fraction. 2017, 465-490. https://doi.org/10.1007/164_2017_13
    74. W. Michael Seganish, J.J. Lynch, S. Sorota. Treatments for Heart Failure. 2017, 628-662. https://doi.org/10.1016/B978-0-12-409547-2.12434-5
    75. M. Preller, D.J. Manstein. Myosin Motors: Structural Aspects and Functionality☆. 2017https://doi.org/10.1016/B978-0-12-809633-8.08058-4
    76. Anne Houdusse, H. Lee Sweeney. How Myosin Generates Force on Actin Filaments. Trends in Biochemical Sciences 2016, 41 (12) , 989-997. https://doi.org/10.1016/j.tibs.2016.09.006
    77. Serena Sirigu, James J. Hartman, Vicente José Planelles-Herrero, Virginie Ropars, Sheila Clancy, Xi Wang, Grace Chuang, Xiangping Qian, Pu-Ping Lu, Edward Barrett, Karin Rudolph, Christopher Royer, Bradley P. Morgan, Enrico A. Stura, Fady I. Malik, Anne M. Houdusse. Highly selective inhibition of myosin motors provides the basis of potential therapeutic application. Proceedings of the National Academy of Sciences 2016, 113 (47) https://doi.org/10.1073/pnas.1609342113
    78. Julien Ochala, Yin-Biao Sun. Novel myosin-based therapies for congenital cardiac and skeletal myopathies. Journal of Medical Genetics 2016, 53 (10) , 651-654. https://doi.org/10.1136/jmedgenet-2016-103881
    79. Péter Nánási, Krisztina Váczi, Zoltán Papp. The myosin activator omecamtiv mecarbil: a promising new inotropic agent. Canadian Journal of Physiology and Pharmacology 2016, 94 (10) , 1033-1039. https://doi.org/10.1139/cjpp-2015-0573
    80. John R. Teerlink, G. Michael Felker, John J.V. McMurray, Piotr Ponikowski, Marco Metra, Gerasimos S. Filippatos, Justin A. Ezekowitz, Kenneth Dickstein, John G.F. Cleland, Jae B. Kim, Lei Lei, Beat Knusel, Andrew A. Wolff, Fady I. Malik, Scott M. Wasserman. Acute Treatment With Omecamtiv Mecarbil to Increase Contractility in Acute Heart Failure. Journal of the American College of Cardiology 2016, 67 (12) , 1444-1455. https://doi.org/10.1016/j.jacc.2016.01.031
    81. Licette CY Liu, Bernard Dorhout, Peter van der Meer, John R Teerlink, Adriaan A Voors. Omecamtiv mecarbil: a new cardiac myosin activator for the treatment of heart failure. Expert Opinion on Investigational Drugs 2016, 25 (1) , 117-127. https://doi.org/10.1517/13543784.2016.1123248
    82. Donald A. Winkelmann, Eva Forgacs, Matthew T. Miller, Ann M. Stock. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms8974
    83. Joseph M. Muretta, John A. Rohde, Daniel O. Johnsrud, Sinziana Cornea, David D. Thomas. Direct real-time detection of the structural and biochemical events in the myosin power stroke. Proceedings of the National Academy of Sciences 2015, 112 (46) , 14272-14277. https://doi.org/10.1073/pnas.1514859112
    84. John R. Teerlink, Fady I. Malik, David A. Kass. Letter by Teerlink et al Regarding Article, “Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity”. Circulation: Heart Failure 2015, 8 (6) , 1141-1141. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002492
    85. L Nagy, Á Kovács, B Bódi, E T Pásztor, G Á Fülöp, A Tóth, I Édes, Z Papp. The novel cardiac myosin activator omecamtiv mecarbil increases the calcium sensitivity of force production in isolated cardiomyocytes and skeletal muscle fibres of the rat. British Journal of Pharmacology 2015, 172 (18) , 4506-4518. https://doi.org/10.1111/bph.13235
    86. Tural Aksel, Elizabeth Choe Yu, Shirley Sutton, Kathleen M. Ruppel, James A. Spudich. Ensemble Force Changes that Result from Human Cardiac Myosin Mutations and a Small-Molecule Effector. Cell Reports 2015, 11 (6) , 910-920. https://doi.org/10.1016/j.celrep.2015.04.006

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect