ACS Publications. Most Trusted. Most Cited. Most Read
X-ray Structure of Cerulean GFP:  A Tryptophan-Based Chromophore Useful for Fluorescence Lifetime Imaging,
My Activity
    Accelerated Publication

    X-ray Structure of Cerulean GFP:  A Tryptophan-Based Chromophore Useful for Fluorescence Lifetime Imaging,
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennesee 37232
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2007, 46, 35, 9865–9873
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi602664c
    Published August 8, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The crystal structure of the cyan-fluorescent Cerulean green fluorescent protein (GFP), a variant of enhanced cyan fluorescent protein (ECFP), has been determined to 2.0 Å. Cerulean bears an internal fluorophore composed of an indole moiety derived from Y66W, conjugated to the GFP-like imidazolinone ring via a methylene bridge. Cerulean undergoes highly efficient fluorescence resonance energy transfer (FRET) to yellow acceptor molecules and exhibits significantly reduced excited-state heterogeneity. This feature was rationally engineered in ECFP by substituting His148 with an aspartic acid [Rizzo et al. (2004) Nat. Biotechnol. 22, 445], rendering Cerulean useful for fluorescence lifetime imaging microscopy (FLIM). The X-ray structure is consistent with a single conformation of the chromophore and surrounding residues and may therefore provide a structural rationale for the previously described monoexponential fluorescence decay. Unexpectedly, the carboxyl group of H148D is found in a buried position, directly contacting the indole nitrogen of the chromophore via a bifurcated hydrogen bond. Compared to the similarly constructed ECFP chromophore, the indole group of Cerulean is rotated around the methylene bridge to adopt a cis-coplanar conformation with respect to the imidazolinone ring, resulting in a close edge-to-edge contact of the two ring systems. The double-humped absorbance spectrum persists in single-crystal absorbance measurements, casting doubt on the idea that ground state conformational heterogeneity forms the basis of the two overlapping transitions. At low pH, a blue shift in absorbance of 10−15 nm suggests a pH-induced structural transition that proceeds with a time constant of 47 (±2) min and is reversible. Possible interpretations in terms of chromophore isomerization are presented.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     This work was supported by a grant from the National Science Foundation (NSF Grant MCB-0615938) to R.M.W., and a grant from the National Institutes of Health (NIH HL62969) to W.R.M.

     Coordinates and structure factors for Cerulean GFP have been deposited in the Protein Data Bank (entry ID 2Q57).

    #

     Arizona State University.

    §

     Current address:  Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland 5232.

     University of Arizona.

     Current address:  Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201.

     Vanderbilt University.

    *

     Corresponding author. Phone:  480-965-8188; fax 480-965-2747; e-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 45 publications.

    1. Guillaume Gotthard, David von Stetten, Damien Clavel, Marjolaine Noirclerc-Savoye, and Antoine Royant . Chromophore Isomer Stabilization Is Critical to the Efficient Fluorescence of Cyan Fluorescent Proteins. Biochemistry 2017, 56 (49) , 6418-6422. https://doi.org/10.1021/acs.biochem.7b01088
    2. Sébastien Peter, Sven zur Oven-Krockhaus, Manikandan Veerabagu, Virtudes Mira Rodado, Kenneth W. Berendzen, Alfred J. Meixner, Klaus Harter, and Frank E. Schleifenbaum . Chimeric Autofluorescent Proteins as Photophysical Model System for Multicolor Bimolecular Fluorescence Complementation. The Journal of Physical Chemistry B 2017, 121 (11) , 2407-2419. https://doi.org/10.1021/acs.jpcb.6b11623
    3. S. Hesam Shahravan, Isaac T. S. Li, Kevin Truong, and Jumi A. Shin . FRep: A Fluorescent Protein-Based Bioprobe for in Vivo Detection of Protein–DNA Interactions. Analytical Chemistry 2011, 83 (24) , 9643-9650. https://doi.org/10.1021/ac2024602
    4. Mickaël Lelimousin, Marjolaine Noirclerc-Savoye, Christelle Lazareno-Saez, Bernhard Paetzold, Sophie Le Vot, Richard Chazal, Pauline Macheboeuf, Martin J. Field, Dominique Bourgeois and Antoine Royant . Intrinsic Dynamics in ECFP and Cerulean Control Fluorescence Quantum Yield. Biochemistry 2009, 48 (42) , 10038-10046. https://doi.org/10.1021/bi901093w
    5. Aude Villoing, Myriam Ridhoir, Bertrand Cinquin, Marie Erard, Luis Alvarez, Germain Vallverdu, Pascal Pernot, Régis Grailhe, Fabienne Mérola and Hélène Pasquier . Complex Fluorescence of the Cyan Fluorescent Protein: Comparisons with the H148D Variant and Consequences for Quantitative Cell Imaging. Biochemistry 2008, 47 (47) , 12483-12492. https://doi.org/10.1021/bi801400d
    6. Hassane S. Mchaourab, Sanjay Mishra, Hanane A. Koteiche and Sepan H. Amadi. Role of Sequence Bias in the Topology of the Multidrug Transporter EmrE. Biochemistry 2008, 47 (31) , 7980-7982. https://doi.org/10.1021/bi800628d
    7. Justin Trujillo, Aliyah S. Khan, Dhruba P. Adhikari, Michael R. Stoneman, Jenu V. Chacko, Kevin W. Eliceiri, Valerica Raicu. Implementation of FRET Spectrometry Using Temporally Resolved Fluorescence: A Feasibility Study. International Journal of Molecular Sciences 2024, 25 (9) , 4706. https://doi.org/10.3390/ijms25094706
    8. Eleanor K. Ashworth, Jordan Dezalay, Christopher R. M. Ryan, Christian Ieritano, W. Scott Hopkins, Isabelle Chambrier, Andrew N. Cammidge, Mark H. Stockett, Jennifer A. Noble, James N. Bull. Protomers of the green and cyan fluorescent protein chromophores investigated using action spectroscopy. Physical Chemistry Chemical Physics 2023, 25 (30) , 20405-20413. https://doi.org/10.1039/D3CP02661B
    9. Landon Zarowny, Damien Clavel, Ryan Johannson, Kévin Duarte, Hadrien Depernet, Jérôme Dupuy, Heather Baker, Alex Brown, Antoine Royant, Robert E Campbell, . Cyan fluorescent proteins derived from mNeonGreen. Protein Engineering, Design and Selection 2022, 35 https://doi.org/10.1093/protein/gzac004
    10. A. M. Bogdanov, D. A. Gorbachev, E. R. Zaitseva, A. Yu. Smirnov, N. S. Baleeva, M. S. Baranov. Lability of Stationary and Time-Resolved Optical Properties of the Conformationally Locked CFP Chromophore Derivative. Russian Journal of Bioorganic Chemistry 2021, 47 (3) , 784-787. https://doi.org/10.1134/S1068162021030043
    11. Trisha Diba Farha, Samyoung Kim, Kohsuke Hama, Mieko Imayasu, Yuichi Hiratsuka, Atsushi Miyawaki, Hidekazu Tsutsui. Interface-specific mode of protonation–deprotonation reactions underlies the cathodic modulation of fluorescence protein emission. Applied Physics Express 2020, 13 (12) , 127001. https://doi.org/10.35848/1882-0786/abcbee
    12. N. V. Pletneva, E. A. Goryacheva, I. V. Artemyev, S. F. Arkhipova, V. Z. Pletnev. Structure of Chromophores in GFP-Like Proteins: X-Ray Data. Russian Journal of Bioorganic Chemistry 2019, 45 (3) , 187-194. https://doi.org/10.1134/S106816201903004X
    13. N. V. Pletneva, R. G. Efremov, E. A. Goryacheva, I. V. Artemyev, S. F. Arkhipova, V. Z. Pletnev. Crystal Structure of the pH-Dependent Green Fluorescent Protein WasCFP with a Tryptophan-Based Chromophore at an Extremely Low pH of 2.0. Russian Journal of Bioorganic Chemistry 2018, 44 (6) , 640-644. https://doi.org/10.1134/S1068162018060079
    14. Rui Liu, Xiao‐Jian Hu, Yu Ding. Rational design of a pH ‐insensitive cyan fluorescent protein CyPet2 based on the CyPet crystal structure. FEBS Letters 2017, 591 (12) , 1761-1769. https://doi.org/10.1002/1873-3468.12678
    15. V. Z. Pletnev, N. V. Pletneva, R. G. Efremov, E. A. Goryacheva, I. V. Artemyev, S. F. Arkhipova, K. S. Sarkisyan, A. S. Mishin, K. A. Lukyanov, S. V. Pletnev. Three-dimensional structure of a pH-dependent fluorescent protein WasCFP with a tryptophan based deprotonated chromophore. Russian Journal of Bioorganic Chemistry 2016, 42 (6) , 612-618. https://doi.org/10.1134/S1068162016050149
    16. Sang-wook Park, Sunghyun Kang, Tae-Sung Yoon. Crystal structure of the cyan fluorescent protein Cerulean-S175G. Acta Crystallographica Section F Structural Biology Communications 2016, 72 (7) , 516-522. https://doi.org/10.1107/S2053230X16008311
    17. Gregor Jung. Fluorescent Proteins: The Show Must Go On!. 2016, 55-90. https://doi.org/10.1002/9781119179320.ch4
    18. Fabienne Mérola, Marie Erard, Asma Fredj, Hélène Pasquier. Engineering fluorescent proteins towards ultimate performances: lessons from the newly developed cyan variants. Methods and Applications in Fluorescence 2016, 4 (1) , 012001. https://doi.org/10.1088/2050-6120/4/1/012001
    19. Nadya V. Pletneva, Vladimir Z. Pletnev, Karen S. Sarkisyan, Dmitry A. Gorbachev, Evgeny S. Egorov, Alexander S. Mishin, Konstantin A. Lukyanov, Zbigniew Dauter, Sergei Pletnev, . Crystal Structure of Phototoxic Orange Fluorescent Proteins with a Tryptophan-Based Chromophore. PLOS ONE 2015, 10 (12) , e0145740. https://doi.org/10.1371/journal.pone.0145740
    20. Vladimir Z. Pletnev, Nadya V. Pletneva, Karen S. Sarkisyan, Alexander S. Mishin, Konstantin A. Lukyanov, Ekaterina A. Goryacheva, Rustam H. Ziganshin, Zbigniew Dauter, Sergei Pletnev. Structure of the green fluorescent protein NowGFP with an anionic tryptophan-based chromophore. Acta Crystallographica Section D Biological Crystallography 2015, 71 (8) , 1699-1707. https://doi.org/10.1107/S1399004715010159
    21. Steven S. Vogel, B. Wieb van der Meer, Paul S. Blank. Estimating the distance separating fluorescent protein FRET pairs. Methods 2014, 66 (2) , 131-138. https://doi.org/10.1016/j.ymeth.2013.06.021
    22. Fabienne Mérola, Asma Fredj, Dahdjim‐Benoît Betolngar, Cornelia Ziegler, Marie Erard, Hélène Pasquier. Newly engineered cyan fluorescent proteins with enhanced performances for live cell FRET imaging. Biotechnology Journal 2014, 9 (2) , 180-191. https://doi.org/10.1002/biot.201300198
    23. Jiao Zhang, Xin Wang, Wenjing Cui, Wenwen Wang, Huamei Zhang, Lu Liu, Zicheng Zhang, Zheng Li, Guoguang Ying, Ning Zhang, Binghui Li. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nature Communications 2013, 4 (1) https://doi.org/10.1038/ncomms3157
    24. Jennifer L. Watkins, Hanseong Kim, Michele L. Markwardt, Liqing Chen, Raimund Fromme, Mark A. Rizzo, Rebekka M. Wachter. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein. Acta Crystallographica Section D Biological Crystallography 2013, 69 (5) , 767-773. https://doi.org/10.1107/S0907444913001546
    25. Marie Erard, Asma Fredj, Hélène Pasquier, Dahdjim-Benoît Beltolngar, Yasmina Bousmah, Valérie Derrien, Pierre Vincent, Fabienne Merola. Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. Mol. BioSyst. 2013, 9 (2) , 258-267. https://doi.org/10.1039/C2MB25303H
    26. Steven S. Vogel, Tuan A. Nguyen, B. Wieb van der Meer, Paul S. Blank, . The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors. PLoS ONE 2012, 7 (11) , e49593. https://doi.org/10.1371/journal.pone.0049593
    27. Asma Fredj, Hélène Pasquier, Isabelle Demachy, Gabriella Jonasson, Bernard Levy, Valérie Derrien, Yasmina Bousmah, Gallia Manoussaris, Frank Wien, Jacqueline Ridard, Marie Erard, Fabienne Merola, . The Single T65S Mutation Generates Brighter Cyan Fluorescent Proteins with Increased Photostability and pH Insensitivity. PLoS ONE 2012, 7 (11) , e49149. https://doi.org/10.1371/journal.pone.0049149
    28. Stefano Bettati, Elisa Pasqualetto, Graziano Lolli, Barbara Campanini, Roberto Battistutta. Structure and single crystal spectroscopy of Green Fluorescent Proteins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814 (6) , 824-833. https://doi.org/10.1016/j.bbapap.2010.10.002
    29. Alan R. Katritzky, Megumi Yoshioka-Tarver, Bahaa El-Dien M. El-Gendy, C. Dennis Hall. Synthesis and photochemistry of pH-sensitive GFP chromophore analogs. Tetrahedron Letters 2011, 52 (17) , 2224-2227. https://doi.org/10.1016/j.tetlet.2010.12.082
    30. Michele L. Markwardt, Gert-Jan Kremers, Catherine A. Kraft, Krishanu Ray, Paula J. C. Cranfill, Korey A. Wilson, Richard N. Day, Rebekka M. Wachter, Michael W. Davidson, Megan A. Rizzo, . An Improved Cerulean Fluorescent Protein with Enhanced Brightness and Reduced Reversible Photoswitching. PLoS ONE 2011, 6 (3) , e17896. https://doi.org/10.1371/journal.pone.0017896
    31. Gregor Jung, Andreas Brockhinke, Thomas Gensch, Benjamin Hötzer, Stefanie Schwedler, Seena Koyadan Veettil. Fluorescence Lifetime of Fluorescent Proteins. 2011, 69-97. https://doi.org/10.1007/4243_2011_14
    32. Michael Georg Hoesl, Lars Merkel, Nediljko Budisa. Synthetic Biology of Autofluorescent Proteins. 2011, 99-130. https://doi.org/10.1007/4243_2011_23
    33. Jan Willem Borst, Marieke Willemse, Rik Slijkhuis, Gerard van der Krogt, Sergey P. Laptenok, Kees Jalink, Be Wieringa, Jack A. M. Fransen, . ATP Changes the Fluorescence Lifetime of Cyan Fluorescent Protein via an Interaction with His148. PLoS ONE 2010, 5 (11) , e13862. https://doi.org/10.1371/journal.pone.0013862
    34. Yutaka Kodama, Chang-Deng Hu. An Improved Bimolecular Fluorescence Complementation Assay with a High Signal-To-Noise Ratio. BioTechniques 2010, 49 (5) , 793-805. https://doi.org/10.2144/000113519
    35. Germain Vallverdu, Isabelle Demachy, Fabienne Mérola, Hélène Pasquier, Jacqueline Ridard, Bernard Lévy. Relation between pH, structure, and absorption spectrum of Cerulean: A study by molecular dynamics and TD DFT calculations. Proteins: Structure, Function, and Bioinformatics 2010, 78 (4) , 1040-1054. https://doi.org/10.1002/prot.22628
    36. Fabienne Merola, Bernard Levy, Isabelle Demachy, Helene Pasquier. Photophysics and Spectroscopy of Fluorophores in the Green Fluorescent Protein Family. 2010, 347-383. https://doi.org/10.1007/978-3-642-04702-2_11
    37. Victor L. Davidson. Protein-Derived Cofactors. 2010, 675-710. https://doi.org/10.1016/B978-008045382-8.00143-X
    38. Philipp Gorlovoy, Sergey Larionov, Thao Thi Hien Pham, Harald Neumann. Accumulation of tau induced in neurites by microglial proinflammatory mediators. The FASEB Journal 2009, 23 (8) , 2502-2513. https://doi.org/10.1096/fj.08-123877
    39. Evgeny Kobrinsky, Parwiz Abrahimi, Son Q. Duong, Sam Thomas, Jo Beth Harry, Chirag Patel, Qi Zong Lao, Nikolai M. Soldatov, . Effect of Cavβ Subunits on Structural Organization of Cav1.2 Calcium Channels. PLoS ONE 2009, 4 (5) , e5587. https://doi.org/10.1371/journal.pone.0005587
    40. Pabak Sarkar, Srinagesh V. Koushik, Steven S. Vogel, Ignacy Gryczynski, Zygmunt Gryczynski. Photophysical properties of Cerulean and Venus fluorescent proteins. Journal of Biomedical Optics 2009, 14 (3) , 034047. https://doi.org/10.1117/1.3156842
    41. Iuliia Vitko, Aleksandr Shcheglovitov, Joel P. Baumgart, Imilla I. Arias-Olguín, Janet Murbartián, Juan Manuel Arias, Edward Perez-Reyes, . Orientation of the Calcium Channel β Relative to the α12.2 Subunit Is Critical for Its Regulation of Channel Activity. PLoS ONE 2008, 3 (10) , e3560. https://doi.org/10.1371/journal.pone.0003560
    42. Gabrielle D. Malo, Meitian Wang, Di Wu, Allison L. Stelling, Peter J. Tonge, Rebekka M. Wachter. Crystal Structure and Raman Studies of dsFP483, a Cyan Fluorescent Protein from Discosoma striata. Journal of Molecular Biology 2008, 378 (4) , 871-886. https://doi.org/10.1016/j.jmb.2008.02.069
    43. V. Krishnan Ramanujan, Brian A. Herman. Nonlinear scaling analysis of glucose metabolism in normal and cancer cells. Journal of Biomedical Optics 2008, 13 (3) , 031219. https://doi.org/10.1117/1.2928154
    44. Birgit Hoffmann, Thomas Zimmer, Nikolaj Klöcker, Laimonas Kelbauskas, Karsten König, Klaus Benndorf, Christoph Biskup. Prolonged irradiation of enhanced cyan fluorescent protein or Cerulean can invalidate Förster resonance energy transfer measurements. Journal of Biomedical Optics 2008, 13 (3) , 031205. https://doi.org/10.1117/1.2937829
    45. Nathan C. Shaner, George H. Patterson, Michael W. Davidson. Advances in fluorescent protein technology. Journal of Cell Science 2007, 120 (24) , 4247-4260. https://doi.org/10.1242/jcs.005801

    Biochemistry

    Cite this: Biochemistry 2007, 46, 35, 9865–9873
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi602664c
    Published August 8, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    1878

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.