ACS Publications. Most Trusted. Most Cited. Most Read
Biologic Functions of the G12 Subfamily of Heterotrimeric G Proteins:  Growth, Migration, and Metastasis
My Activity
    Current Topics/Perspectives

    Biologic Functions of the G12 Subfamily of Heterotrimeric G Proteins:  Growth, Migration, and Metastasis
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and Department of Biology, University of North Carolina at Asheville, Asheville, North Carolina 28804
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2007, 46, 23, 6677–6687
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi700235f
    Published May 16, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The G12 subfamily of heterotrimeric G proteins has been the subject of intense scientific interest for more than 15 years. During this period, studies have revealed more than 20 potential G12-interacting proteins and numerous signaling axes emanating from the G12 proteins, Gα12 and Gα13. In addition, more recent studies have begun to illuminate the various and sundry functions that the G12 subfamily plays in biology. In this review, we summarize the diverse range of proteins that have been identified as Gα12 and/or Gα13 interactors and describe ongoing studies designed to dissect the biological roles of specific Gα−effector protein interactions. Further, we describe and discuss the expanding role of G12 proteins in the biology of cells, focusing on the distinct properties of this subfamily in regulating cell proliferation, cell migration, and metastatic invasion.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     We acknowledge support for this work from National Institutes of Health Grant CA100869 (to P.J.C. and T.E.M.) and the Duke University Medical School Alumni Scholarship (to P.K.).

     Duke University Medical Center.

    *

     To whom correspondence should be addressed:  Department of Biology, University of North Carolina at Asheville, Asheville, NC 28804. Phone:  (828) 232-5155. Fax:  (828) 251-6623. E-mail:  [email protected].

    §

     University of North Carolina at Asheville.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 111 publications.

    1. Stephany Suelen de Castro Sampaio, Maria Carolina Clares Ramalho, Caroline Santos de Souza, Beatriz de Almeida Rodrigues, Guilherme Ramos Sales de Mendonça, Mariana Lazarini. RHO subfamily of small GTPases in the development and function of hematopoietic cells. Journal of Cellular Physiology 2025, 240 (1) https://doi.org/10.1002/jcp.31469
    2. Di Wu, Patrick J. Casey. GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer. International Journal of Molecular Sciences 2024, 25 (13) , 7162. https://doi.org/10.3390/ijms25137162
    3. Yuanxu Cui, Hugo Auclair, Rong He, Qiang Zhang. GPCR-mediated regulation of beige adipocyte formation: implications for obesity and metabolic health. Gene 2024, 91 , 148421. https://doi.org/10.1016/j.gene.2024.148421
    4. Tatiana I. Slepak, Manuela Guyot, Winston Walters, Daniel G. Eichberg, Michael E. Ivan. Dual role of the adhesion G-protein coupled receptor ADRGE5/CD97 in glioblastoma invasion and proliferation. Journal of Biological Chemistry 2023, 299 (9) , 105105. https://doi.org/10.1016/j.jbc.2023.105105
    5. Xiaokang Ke, Qingping Zhang, Pengcheng Zhu, Huihua He, Jingping Yuan, Qilin Ao. GNA13 is a new marker for germinal center-derived B cell lymphomas. Nano TransMed 2023, 2 (2-3) , 100002. https://doi.org/10.1016/j.ntm.2023.100002
    6. Isabela Ramirez-Velez, Brian Belardi. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Advanced Drug Delivery Reviews 2023, 199 , 114905. https://doi.org/10.1016/j.addr.2023.114905
    7. Zichun Pan, Zhousan Zheng, Wen Ye, Cui Chen, Sheng Ye. Overexpression of GNA13 correlates with poor prognosis in esophageal squamous cell carcinoma after esophagectomy. The International Journal of Biological Markers 2022, 37 (3) , 289-295. https://doi.org/10.1177/03936155221106799
    8. Argelia Calvillo-Robledo, Rodolfo Daniel Cervantes-Villagrana, Paula Morales, Bruno A. Marichal-Cancino. The oncogenic lysophosphatidylinositol (LPI)/GPR55 signaling. Life Sciences 2022, 301 , 120596. https://doi.org/10.1016/j.lfs.2022.120596
    9. Ingrid Lua, Steven Balog, Kinji Asahina. TAZ/WWTR1 mediates liver mesothelial–mesenchymal transition induced by stiff extracellular environment, TGF‐β1, and lysophosphatidic acid. Journal of Cellular Physiology 2022, 237 (5) , 2561-2573. https://doi.org/10.1002/jcp.30750
    10. Mario A. Shields, Christina Spaulding, Anastasia E. Metropulos, Mahmoud G. Khalafalla, Thao N.D. Pham, Hidayatullah G. Munshi. Gα13 loss in Kras/Tp53 mouse model of pancreatic tumorigenesis promotes tumors susceptible to rapamycin. Cell Reports 2022, 38 (9) , 110441. https://doi.org/10.1016/j.celrep.2022.110441
    11. Suhail Ahmed Kabeer Rasheed, Lalitha Vaishnavi Subramanyan, Wei Kiang Lim, Udhaya Kumari Udayappan, Mei Wang, Patrick J. Casey. The emerging roles of Gα12/13 proteins on the hallmarks of cancer in solid tumors. Oncogene 2022, 41 (2) , 147-158. https://doi.org/10.1038/s41388-021-02069-w
    12. Barbara Bettegazzi, Serena Bellani, Stefano Cattaneo, Franca Codazzi, Fabio Grohovaz, Daniele Zacchetti. Gα13 Contributes to LPS-Induced Morphological Alterations and Affects Migration of Microglia. Molecular Neurobiology 2021, 58 (12) , 6397-6414. https://doi.org/10.1007/s12035-021-02553-0
    13. Preeti Kumari Chaudhary, Soochong Kim. An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021, 10 (12) , 3288. https://doi.org/10.3390/cells10123288
    14. Yukako Oda, Chisato Takahashi, Shota Harada, Shun Nakamura, Daxiao Sun, Kazumi Kiso, Yuko Urata, Hitoshi Miyachi, Yoshinori Fujiyoshi, Alf Honigmann, Seiichi Uchida, Yasushi Ishihama, Fumiko Toyoshima. Discovery of anti-inflammatory physiological peptides that promote tissue repair by reinforcing epithelial barrier formation. Science Advances 2021, 7 (47) https://doi.org/10.1126/sciadv.abj6895
    15. Shafali Gupta, Kinga Duszyc, Suzie Verma, Srikanth Budnar, Xuan Liang, Guillermo A. Gomez, Philippe Marcq, Ivar Noordstra, Alpha S. Yap. Enhanced RhoA signalling stabilizes E-cadherin in migrating epithelial monolayers. Journal of Cell Science 2021, 134 (17) https://doi.org/10.1242/jcs.258767
    16. Kinga Duszyc, Guillermo A. Gomez, Anne K. Lagendijk, Mei-Kwan Yau, Bageshri Naimish Nanavati, Briony L. Gliddon, Thomas E. Hall, Suzie Verma, Benjamin M. Hogan, Stuart M. Pitson, David P. Fairlie, Robert G. Parton, Alpha S. Yap. Mechanotransduction activates RhoA in the neighbors of apoptotic epithelial cells to engage apical extrusion. Current Biology 2021, 31 (6) , 1326-1336.e5. https://doi.org/10.1016/j.cub.2021.01.003
    17. Zhizhou Xia, Xiuli Zhang, Ping Liu, Ruihong Zhang, Zhangsen Huang, Donghe Li, Xinhua Xiao, Min Wu, Nannan Ning, Qianqian Zhang, Jianmin Zhang, Mingzhu Liu, Bo Jiao, Ruibao Ren. GNA13 regulates BCL2 expression and the sensitivity of GCB-DLBCL cells to BCL2 inhibitors in a palmitoylation-dependent manner. Cell Death & Disease 2021, 12 (1) https://doi.org/10.1038/s41419-020-03311-1
    18. Raise Ahmad, Julie E. Dalziel. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Frontiers in Pharmacology 2020, 11 https://doi.org/10.3389/fphar.2020.587664
    19. Rebecca C. Stecky, Courtney R. Quick, Todd L. Fleming, Makenzy L. Mull, Vanessa K. Vinson, Megan S. Whitley, E. Nicole Dover, Thomas E. Meigs. Divergent C-terminal motifs in Gα12 and Gα13 provide distinct mechanisms of effector binding and SRF activation. Cellular Signalling 2020, 72 , 109653. https://doi.org/10.1016/j.cellsig.2020.109653
    20. Elena Tutunea-Fatan, Jasper C. Lee, Bradley M. Denker, Lakshman Gunaratnam. Heterotrimeric Gα 12/13 proteins in kidney injury and disease. American Journal of Physiology-Renal Physiology 2020, 318 (3) , F660-F672. https://doi.org/10.1152/ajprenal.00453.2019
    21. Juan Gao, Ian Denys, Amir Shahien, Jane Sutphen, Daniel R Kapusta. Downregulation of Brain Gα12 Attenuates Angiotensin II-Dependent Hypertension. American Journal of Hypertension 2020, 33 (2) , 198-204. https://doi.org/10.1093/ajh/hpz176
    22. Wei Kiang Lim, Xiaoran Chai, Sujoy Ghosh, Debleena Ray, Mei Wang, Suhail Ahmed Kabeer Rasheed, Patrick J. Casey. Gα-13 induces CXC motif chemokine ligand 5 expression in prostate cancer cells by transactivating NF-κB. Journal of Biological Chemistry 2019, 294 (48) , 18192-18206. https://doi.org/10.1074/jbc.RA119.010018
    23. Viktoriya Syrovatkina, Xin‐Yun Huang. Signaling mechanisms and physiological functions of G‐protein Gα 13 in blood vessel formation, bone homeostasis, and cancer. Protein Science 2019, 28 (2) , 305-312. https://doi.org/10.1002/pro.3531
    24. Carla Danussi, Promita Bose, Prasanna T. Parthasarathy, Pedro C. Silberman, John S. Van Arnam, Mark Vitucci, Oliver Y. Tang, Adriana Heguy, Yuxiang Wang, Timothy A. Chan, Gregory J. Riggins, Erik P. Sulman, Frederick F. Lang, Chad J. Creighton, Benjamin Deneen, C. Ryan Miller, David J. Picketts, Kasthuri Kannan, Jason T. Huse. Atrx inactivation drives disease-defining phenotypes in glioma cells of origin through global epigenomic remodeling. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03476-6
    25. Shan Muhammad, Qingchao Tang, Liu Wei, Qian Zhang, Guiyu Wang, Bilal Muhammad, Kavanjit Kaur, Tatiana Kamchedalova, Zhao Gang, Zheng Jiang, Zheng Liu, Xishan Wang. miRNA‑30d serves a critical function in colorectal cancer initiation, progression and invasion via directly targeting the GNA13 gene. Experimental and Therapeutic Medicine 2018, 136 https://doi.org/10.3892/etm.2018.6902
    26. Carla Danussi, Jason T. Huse. Novel insights into the epigenetics of diffuse glioma. Molecular & Cellular Oncology 2018, 5 (5) , e1472055. https://doi.org/10.1080/23723556.2018.1472055
    27. Kyu Min Kim, Chang Yeob Han, Ji Young Kim, Sam Seok Cho, Yun Seok Kim, Ja Hyun Koo, Jung Min Lee, Sung Chul Lim, Keon Wook Kang, Jae-Sung Kim, Se Jin Hwang, Sung Hwan Ki, Sang Geon Kim. Gα12 overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells. Journal of Hepatology 2018, 68 (3) , 493-504. https://doi.org/10.1016/j.jhep.2017.10.011
    28. Suhail Ahmed Kabeer Rasheed, Hui Sun Leong, Manikandan Lakshmanan, Anandhkumar Raju, Dhivya Dadlani, Fui-Teen Chong, Nicholas B Shannon, Ravisankar Rajarethinam, Thakshayeni Skanthakumar, Ern Yu Tan, Jacqueline Siok Gek Hwang, Kok Hing Lim, Daniel Shao-Weng Tan, Paolo Ceppi, Mei Wang, Vinay Tergaonkar, Patrick J. Casey, N. Gopalakrishna Iyer. GNA13 expression promotes drug resistance and tumor-initiating phenotypes in squamous cell cancers. Oncogene 2018, 37 (10) , 1340-1353. https://doi.org/10.1038/s41388-017-0038-6
    29. Min‐Kyoung Song, Cheolkyu Park, Yong Deok Lee, Haemin Kim, Min Kyung Kim, Jun‐Oh Kwon, Ja Hyun Koo, Min Sung Joo, Sang Geon Kim, Hong‐Hee Kim. Gα12 regulates osteoclastogenesis by modulating NFAT c1 expression. Journal of Cellular and Molecular Medicine 2018, 22 (2) , 849-860. https://doi.org/10.1111/jcmm.13370
    30. Thomas E. Meigs, Alex Lyakhovich. G Protein Alpha 12 and 13. 2018, 1899-1914. https://doi.org/10.1007/978-3-319-67199-4_586
    31. Srikanth Budnar, Alpha S. Yap. Versatile Scaffold: Extrajunctional Roles for α-Catenin. Developmental Cell 2017, 43 (4) , 381-382. https://doi.org/10.1016/j.devcel.2017.11.004
    32. Alexander Wirth, Katrin Holst, Evgeni Ponimaskin. How serotonin receptors regulate morphogenic signalling in neurons. Progress in Neurobiology 2017, 151 , 35-56. https://doi.org/10.1016/j.pneurobio.2016.03.007
    33. Udhaya Udayappan, Patrick Casey. c-Jun Contributes to Transcriptional Control of GNA12 Expression in Prostate Cancer Cells. Molecules 2017, 22 (4) , 612. https://doi.org/10.3390/molecules22040612
    34. Keisuke Kataoka, Seishi Ogawa. Variegated RHOA mutations in human cancers. Experimental Hematology 2016, 44 (12) , 1123-1129. https://doi.org/10.1016/j.exphem.2016.09.002
    35. Cui Rong Teo, Patrick J. Casey, Suhail Ahmed Kabeer Rasheed. The GNA13-RhoA signaling axis suppresses expression of tumor protective Kallikreins. Cellular Signalling 2016, 28 (10) , 1479-1488. https://doi.org/10.1016/j.cellsig.2016.07.001
    36. Alan R. Parrish. The cytoskeleton as a novel target for treatment of renal fibrosis. Pharmacology & Therapeutics 2016, 166 , 1-8. https://doi.org/10.1016/j.pharmthera.2016.06.006
    37. Rachel Bar-Shavit, Myriam Maoz, Arun Kancharla, Jeetendra Nag, Daniel Agranovich, Sorina Grisaru-Granovsky, Beatrice Uziely. G Protein-Coupled Receptors in Cancer. International Journal of Molecular Sciences 2016, 17 (8) , 1320. https://doi.org/10.3390/ijms17081320
    38. M O'Hayre, A Inoue, I Kufareva, Z Wang, C M Mikelis, R A Drummond, S Avino, K Finkel, K W Kalim, G DiPasquale, F Guo, J Aoki, Y Zheng, M S Lionakis, A A Molinolo, J S Gutkind. Inactivating mutations in GNA13 and RHOA in Burkitt’s lymphoma and diffuse large B-cell lymphoma: a tumor suppressor function for the Gα13/RhoA axis in B cells. Oncogene 2016, 35 (29) , 3771-3780. https://doi.org/10.1038/onc.2015.442
    39. Jane A. Healy, Adrienne Nugent, Rachel E. Rempel, Andrea B. Moffitt, Nicholas S. Davis, Xiaoyu Jiang, Jennifer R. Shingleton, Jenny Zhang, Cassandra Love, Jyotishka Datta, Matthew E. McKinney, Tiffany J. Tzeng, Nina Wettschureck, Stefan Offermanns, Katelyn A. Walzer, Jen-Tsan Chi, Suhail A. K. Rasheed, Patrick J. Casey, Izidore S. Lossos, Sandeep S. Dave. GNA13 loss in germinal center B cells leads to impaired apoptosis and promotes lymphoma in vivo. Blood 2016, 127 (22) , 2723-2731. https://doi.org/10.1182/blood-2015-07-659938
    40. Bo Yuan, Jinquan Cui, Wuliang Wang, Kehong Deng. Gα12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis. Biochemical and Biophysical Research Communications 2016, 473 (4) , 1240-1246. https://doi.org/10.1016/j.bbrc.2016.04.048
    41. J K Björk, M Åkerfelt, J Joutsen, M C Puustinen, F Cheng, L Sistonen, M Nees. Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene 2016, 35 (14) , 1770-1784. https://doi.org/10.1038/onc.2015.241
    42. Jia-Xing Zhang, Miao Yun, Yi Xu, Jie-Wei Chen, Hui-Wen Weng, Zou-San Zheng, Cui Chen, Dan Xie, Sheng Ye. GNA13 as a prognostic factor and mediator of gastric cancer progression. Oncotarget 2016, 7 (4) , 4414-4427. https://doi.org/10.18632/oncotarget.6780
    43. Thomas E. Meigs, Alex Lyakhovich. G Protein Alpha 12 and 13. 2016, 1-15. https://doi.org/10.1007/978-1-4614-6438-9_586-1
    44. Christina R. Chow, Kazumi Ebine, Lawrence M. Knab, David J. Bentrem, Krishan Kumar, Hidayatullah G. Munshi. Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling. Journal of Biological Chemistry 2016, 291 (4) , 1605-1618. https://doi.org/10.1074/jbc.M115.669606
    45. Suhail Ahmed Kabeer Rasheed, Cui Rong Teo, Emmanuel Jean Beillard, P Mathijs Voorhoeve, Wei Zhou, Sujoy Ghosh, Patrick J Casey. MicroRNA-31 controls G protein alpha-13 (GNA13) expression and cell invasion in breast cancer cells. Molecular Cancer 2015, 14 (1) https://doi.org/10.1186/s12943-015-0337-x
    46. Yoon Mee Yang, Chan Gyu Lee, Ja Hyun Koo, Tae Hyun Kim, Jung Min Lee, Jihyun An, Kang Mo Kim, Sang Geon Kim. Gα12 overexpressed in hepatocellular carcinoma reduces microRNA-122 expression via HNF4α inactivation, which causes c-Met induction. Oncotarget 2015, 6 (22) , 19055-19069. https://doi.org/10.18632/oncotarget.3957
    47. Mingda Yan, Ji Hee Ha, Danny N. Dhanasekaran. Gα13 Stimulates the Tyrosine Phosphorylation of Ric-8A. Journal of Molecular Signaling 2015, 10 https://doi.org/10.5334/1750-2187-10-3
    48. Miriam Masià-Balagué, Ismael Izquierdo, Georgina Garrido, Arnau Cordomí, Laura Pérez-Benito, Nichol L.G. Miller, David D. Schlaepfer, Véronique Gigoux, Anna M. Aragay. Gastrin-stimulated Gα13 Activation of Rgnef Protein (ArhGEF28) in DLD-1 Colon Carcinoma Cells. Journal of Biological Chemistry 2015, 290 (24) , 15197-15209. https://doi.org/10.1074/jbc.M114.628164
    49. Y M Yang, W H Lee, C G Lee, J An, E-S Kim, S H Kim, S-K Lee, C H Lee, D N Dhanasekaran, A Moon, S Hwang, S J Lee, J-W Park, K M Kim, S G Kim. Gα12 gep oncogene deregulation of p53-responsive microRNAs promotes epithelial–mesenchymal transition of hepatocellular carcinoma. Oncogene 2015, 34 (22) , 2910-2921. https://doi.org/10.1038/onc.2014.218
    50. J. Hull, Meixian Wang. Molecular Cloning and Characterization of G Alpha Proteins from the Western Tarnished Plant Bug, Lygus hesperus. Insects 2015, 6 (1) , 54-76. https://doi.org/10.3390/insects6010054
    51. Benjamin J Ritchie, William C Smolski, Ellyn R Montgomery, Elizabeth S Fisher, Tina Y Choi, Calla M Olson, Lori A Foster, Thomas E Meigs. Determinants at the N- and C-termini of Gα12 required for activation of Rho-mediated signaling. Journal of Molecular Signaling 2014, 8 , 3. https://doi.org/10.1186/1750-2187-8-3
    52. Rubén A. Bartolomé, Marta Díaz-Martínez, Georgina P. Coló, Nohemí Arellano-Sánchez, Pedro Torres-Ayuso, Jan Willem Kleinovink, Isabel Mérida, Joaquin Teixidó. A Blk–p190RhoGAP signaling module downstream of activated Gα13 functionally opposes CXCL12-stimulated RhoA activation and cell invasion. Cellular Signalling 2014, 26 (11) , 2551-2561. https://doi.org/10.1016/j.cellsig.2014.07.008
    53. Daria Guseva, Alexander Wirth, Evgeni Ponimaskin. Cellular mechanisms of the 5-HT 7 receptor-mediated signaling. Frontiers in Behavioral Neuroscience 2014, 8 https://doi.org/10.3389/fnbeh.2014.00306
    54. Mahvash A. Goolam, James H. Ward, Vimesh A. Avlani, Katie Leach, Arthur Christopoulos, Arthur D. Conigrave. Roles of intraloops‐2 and ‐3 and the proximal C‐terminus in signalling pathway selection from the human calcium‐sensing receptor. FEBS Letters 2014, 588 (18) , 3340-3346. https://doi.org/10.1016/j.febslet.2014.07.022
    55. Kyu Min Kim, Sang Geon Kim. Autophagy and microRNA dysregulation in liver diseases. Archives of Pharmacal Research 2014, 37 (9) , 1097-1116. https://doi.org/10.1007/s12272-014-0439-9
    56. Hye Sun Jung, Yu-Ri Seo, Yoon Mee Yang, Ja Hyun Koo, Jihyun An, Seung Jin Lee, Kang Mo Kim, Sang Geon Kim. Gα12 gep oncogene inhibits FOXO1 in hepatocellular carcinoma as a consequence of miR-135b and miR-194 dysregulation. Cellular Signalling 2014, 26 (7) , 1456-1465. https://doi.org/10.1016/j.cellsig.2014.02.022
    57. Ellyn R. Montgomery, Brenda R.S. Temple, Kimberly A. Peters, Caitlin E. Tolbert, Brandon K. Booker, Joseph W. Martin, Tyler P. Hamilton, Alicia C. Tagliatela, William C. Smolski, Stephen L. Rogers, Alan M. Jones, Thomas E. Meigs. Gα12 Structural Determinants of Hsp90 Interaction Are Necessary for Serum Response Element–Mediated Transcriptional Activation. Molecular Pharmacology 2014, 85 (4) , 586-597. https://doi.org/10.1124/mol.113.088443
    58. Haixia Gong, Xiaopei Gao, Shaoting Feng, M. Rizwan Siddiqui, Alexander Garcia, Marcelo G. Bonini, Yulia Komarova, Stephen M. Vogel, Dolly Mehta, Asrar B. Malik. Evidence of a common mechanism of disassembly of adherens junctions through Gα13 targeting of VE-cadherin. Journal of Experimental Medicine 2014, 211 (3) , 579-591. https://doi.org/10.1084/jem.20131190
    59. Thomas R. H. Büch, Marius Grzelinski, Olaf Pinkenburg, Thomas Gudermann, Achim Aigner. Cell-type specific and non-redundant anti-proliferative effects of shRNA-mediated Galpha12- and Galpha13 knockdown in lung cancer cell lines. Advances in Bioscience and Biotechnology 2014, 05 (01) , 73-80. https://doi.org/10.4236/abb.2014.51011
    60. Christelle P El-Haibi, Praveen Sharma, Rajesh Singh, Pranav Gupta, Dennis D Taub, Shailesh Singh, James W Lillard, Jr. Differential G protein subunit expression by prostate cancer cells and their interaction with CXCR5. Molecular Cancer 2013, 12 (1) https://doi.org/10.1186/1476-4598-12-64
    61. Amanda P. Struckhoff, Manish K. Rana, Swapnil S. Kher, Matt E. Burow, Joseph L. Hagan, Luis Del Valle, Rebecca A. Worthylake. PDZ-RhoGEF is essential for CXCR4-driven breast tumor cell motility through spatial regulation of RhoA. Journal of Cell Science 2013, 126 (19) , 4514-4526. https://doi.org/10.1242/jcs.132381
    62. Arthur D. Conigrave, Donald T. Ward. Calcium-sensing receptor (CaSR): Pharmacological properties and signaling pathways. Best Practice & Research Clinical Endocrinology & Metabolism 2013, 27 (3) , 315-331. https://doi.org/10.1016/j.beem.2013.05.010
    63. Constantinos M. Mikelis, Todd R. Palmby, May Simaan, Wenling Li, Roman Szabo, Ruth Lyons, Daniel Martin, Hiroshi Yagi, Shigetomo Fukuhara, Hiroki Chikumi, Rebeca Galisteo, Yoh-suke Mukouyama, Thomas H. Bugge, J.Silvio Gutkind. PDZ-RhoGEF and LARG Are Essential for Embryonic Development and Provide a Link between Thrombin and LPA Receptors and Rho Activation. Journal of Biological Chemistry 2013, 288 (17) , 12232-12243. https://doi.org/10.1074/jbc.M112.428599
    64. Suhail Ahmed Kabeer Rasheed, Cui Rong Teo, Emmanuel Jean Beillard, P.Mathijs Voorhoeve, Patrick J. Casey. MicroRNA-182 and MicroRNA-200a Control G-protein Subunit α-13 (GNA13) Expression and Cell Invasion Synergistically in Prostate Cancer Cells. Journal of Biological Chemistry 2013, 288 (11) , 7986-7995. https://doi.org/10.1074/jbc.M112.437749
    65. Hui-Chen Lu, Jane E. Lauckner, John W. Huffman, Ken Mackie. GPR55 in the CNS. 2013, 55-69. https://doi.org/10.1007/978-1-4614-4669-9_3
    66. S. Offermanns. G12/G13 Family. 2013, 343-346. https://doi.org/10.1016/B978-0-12-378630-2.00318-2
    67. Yu Qin, Anindya Dey, Yehia Daaka. Protein S-Nitrosylation Measurement. 2013, 409-425. https://doi.org/10.1016/B978-0-12-407865-9.00019-4
    68. Julia Kargl, Nariman Balenga, Gerald P. Parzmair, Andrew J. Brown, Akos Heinemann, Maria Waldhoer. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55. Journal of Biological Chemistry 2012, 287 (53) , 44234-44248. https://doi.org/10.1074/jbc.M112.364109
    69. Yehia Daaka. S-nitrosylation-regulated GPCR signaling. Biochimica et Biophysica Acta (BBA) - General Subjects 2012, 1820 (6) , 743-751. https://doi.org/10.1016/j.bbagen.2011.03.007
    70. Wanfeng Yu, Sarah Beaudry, Hideyuki Negoro, Ilene Boucher, Mei Tran, Tianqing Kong, Bradley M. Denker. H 2 O 2 activates G protein, α 12 to disrupt the junctional complex and enhance ischemia reperfusion injury. Proceedings of the National Academy of Sciences 2012, 109 (17) , 6680-6685. https://doi.org/10.1073/pnas.1116800109
    71. E A Pukhlyakova, Yu M Efremov, D V Bagrov, N N Luchinskaya, D O Kiryukhin, L V Belousov, K V Shaitan. Atomic force microscopy as a tool to study Xenopus laevis embryo. Journal of Physics: Conference Series 2012, 345 , 012040. https://doi.org/10.1088/1742-6596/345/1/012040
    72. Enrique Rozengurt. Signaling Pathways Induced by G-protein-coupled Receptors. 2012, 75-96. https://doi.org/10.1016/B978-0-12-382026-6.00004-X
    73. Thomas E. Meigs, Alex Lyakhovich. G Protein Alpha 12. 2012, 689-698. https://doi.org/10.1007/978-1-4419-0461-4_586
    74. Juhi Juneja, Ian Cushman, Patrick J. Casey, . G12 Signaling through c-Jun NH2-Terminal Kinase Promotes Breast Cancer Cell Invasion. PLoS ONE 2011, 6 (11) , e26085. https://doi.org/10.1371/journal.pone.0026085
    75. Andrew E. Douglas, Jennifer A. Heim, Feng Shen, Luciana L. Almada, Natalia A. Riobo, Martin E. Fernández-Zapico, David R. Manning. The α Subunit of the G Protein G13 Regulates Activity of One or More Gli Transcription Factors Independently of Smoothened. Journal of Biological Chemistry 2011, 286 (35) , 30714-30722. https://doi.org/10.1074/jbc.M111.219279
    76. Ruth A. Ross. L-α-Lysophosphatidylinositol meets GPR55: a deadly relationship. Trends in Pharmacological Sciences 2011, 32 (5) , 265-269. https://doi.org/10.1016/j.tips.2011.01.005
    77. Vandana V. Ardawatia, Miriam Masià-Balagué, Beate F. Krakstad, Bente B. Johansson, Kelly M. Kreitzburg, Endy Spriet, Aurélia E. Lewis, Thomas E. Meigs, Anna M. Aragay. Gα12 binds to the N-terminal regulatory domain of p120ctn, and downregulates p120ctn tyrosine phosphorylation induced by Src family kinases via a RhoA independent mechanism. Experimental Cell Research 2011, 317 (3) , 293-306. https://doi.org/10.1016/j.yexcr.2010.10.017
    78. Ashok Kumar, Kimberly N. Kremer, Daniel Dominguez, Madhavi Tadi, Karen E. Hedin. Gα13 and Rho Mediate Endosomal Trafficking of CXCR4 into Rab11+ Vesicles upon Stromal Cell-Derived Factor-1 Stimulation. The Journal of Immunology 2011, 186 (2) , 951-958. https://doi.org/10.4049/jimmunol.1002019
    79. Jun Wang, Paula H. Stern. Osteoclastogenic activity and RANKL expression are inhibited in osteoblastic cells expressing constitutively active Gα 12 or constitutively active RhoA. Journal of Cellular Biochemistry 2010, 111 (6) , 1531-1536. https://doi.org/10.1002/jcb.22883
    80. Eun-Sook Kim, Jae-Boon Jeong, Seonhoe Kim, Kyung-Min Lee, Eunyoung Ko, Dong-Young Noh, Ki-Tae Hwang, Ji Hee Ha, Chang Ho Lee, Sang Geon Kim, Aree Moon. The G12 family proteins upregulate matrix metalloproteinase-2 via p53 leading to human breast cell invasion. Breast Cancer Research and Treatment 2010, 124 (1) , 49-61. https://doi.org/10.1007/s10549-009-0697-2
    81. Stefan Offermanns. G protein functions identified using genetic mouse models. 2010, 125-144. https://doi.org/10.1017/CBO9780511760334.008
    82. Y. M. Yang, S. Lee, C. W. Nam, J. H. Ha, M. Jayaraman, D. N. Dhanasekaran, C. H. Lee, M.-K. Kwak, S. G. Kim. G 12/13 inhibition enhances the anticancer effect of bortezomib through PSMB5 downregulation. Carcinogenesis 2010, 31 (7) , 1230-1237. https://doi.org/10.1093/carcin/bgq097
    83. Tianqing Kong, Daosong Xu, Mei Tran, Bradley M. Denker. Regulation of integrin expression by Gα12. Cell Adhesion & Migration 2010, 4 (3) , 372-376. https://doi.org/10.4161/cam.4.3.11639
    84. Lesley A Ford, Anke J Roelofs, Sharon Anavi‐Goffer, Luisa Mowat, Daniel G Simpson, Andrew J Irving, Michael J Rogers, Ann M Rajnicek, Ruth A Ross. A role for L‐α‐lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. British Journal of Pharmacology 2010, 160 (3) , 762-771. https://doi.org/10.1111/j.1476-5381.2010.00743.x
    85. Wanfeng Yu, Tianqing Kong, Sarah Beaudry, Mei Tran, Hideyuki Negoro, Vijay Yanamadala, Bradley M. Denker. Polycystin-1 Protein Level Determines Activity of the Gα12/JNK Apoptosis Pathway. Journal of Biological Chemistry 2010, 285 (14) , 10243-10251. https://doi.org/10.1074/jbc.M109.070821
    86. Marius Grzelinski, Olaf Pinkenburg, Thomas Büch, Maike Gold, Stefanie Stohr, Hermann Kalwa, Thomas Gudermann, Achim Aigner. Critical Role of Gα12 and Gα13 for Human Small Cell Lung Cancer Cell Proliferation In vitro and Tumor Growth In vivo. Clinical Cancer Research 2010, 16 (5) , 1402-1415. https://doi.org/10.1158/1078-0432.CCR-09-1873
    87. Jim Cardelli, Omar Skalli. Divide and Invade: The Dynamic Cytoskeleton of Glioblastoma Cells. 2010, 167-183. https://doi.org/10.1007/978-1-4419-0410-2_8
    88. Fabiola M. Ribeiro, Stephen S. G. Ferguson. Small GTPases and Their Role in Regulating G Protein-Coupled Receptor Signal Transduction. 2010, 43-61. https://doi.org/10.1007/978-3-642-02112-1_3
    89. JoAnn Trejo. Dysregulation of G Protein-Coupled Receptor Signaling in Cancer. 2010, 83-98. https://doi.org/10.1007/978-3-642-02112-1_5
    90. Martin J Aryee, José A Gutiérrez-Pabello, Igor Kramnik, Tapabrata Maiti, John Quackenbush. An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation). BMC Bioinformatics 2009, 10 (1) https://doi.org/10.1186/1471-2105-10-409
    91. Florence Schaffner, Wolfram Ruf. Tissue Factor and PAR2 Signaling in the Tumor Microenvironment. Arteriosclerosis, Thrombosis, and Vascular Biology 2009, 29 (12) , 1999-2004. https://doi.org/10.1161/ATVBAHA.108.177428
    92. Tianqing Kong, Daosong Xu, Wanfeng Yu, Ayumi Takakura, Ilene Boucher, Mei Tran, Jordan A. Kreidberg, Jagesh Shah, Jing Zhou, Bradley M. Denker, . Gα12 Inhibits α2β1 Integrin–mediated Madin-Darby Canine Kidney Cell Attachment and Migration on Collagen-I and Blocks Tubulogenesis. Molecular Biology of the Cell 2009, 20 (21) , 4596-4610. https://doi.org/10.1091/mbc.e09-03-0220
    93. Jillian H. Hurst, Shelley B. Hooks. Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochemical Pharmacology 2009, 78 (10) , 1289-1297. https://doi.org/10.1016/j.bcp.2009.06.028
    94. María Monterrubio, Mario Mellado, Ana C. Carrera, José Miguel Rodríguez-Frade. PI3Kγ activation by CXCL12 regulates tumor cell adhesion and invasion. Biochemical and Biophysical Research Communications 2009, 388 (2) , 199-204. https://doi.org/10.1016/j.bbrc.2009.07.153
    95. Sandra Siehler. Regulation of RhoGEF proteins by G 12/13 ‐coupled receptors. British Journal of Pharmacology 2009, 158 (1) , 41-49. https://doi.org/10.1111/j.1476-5381.2009.00121.x
    96. Juhi Juneja, Patrick J Casey. Role of G12 proteins in oncogenesis and metastasis. British Journal of Pharmacology 2009, 158 (1) , 32-40. https://doi.org/10.1111/j.1476-5381.2009.00180.x
    97. Shu-Chen Liu, Yee-Min Jen, Shih Sheng Jiang, Junn-Liang Chang, Chao A. Hsiung, Chih-Hung Wang, Jyh-Lyh Juang. Gα12-Mediated Pathway Promotes Invasiveness of Nasopharyngeal Carcinoma by Modulating Actin Cytoskeleton Reorganization. Cancer Research 2009, 69 (15) , 6122-6130. https://doi.org/10.1158/0008-5472.CAN-08-3435
    98. Rino Donato, Stephen A. Wood, Ian Saunders, Batjargal Gundsambuu, Kai Yan Mak, Catherine A. Abbott, Barry C. Powell. Regulation of epithelial apical junctions and barrier function by Gα13. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2009, 1793 (7) , 1228-1235. https://doi.org/10.1016/j.bbamcr.2009.04.008
    99. Raja Bhattacharyya, Jayashree Banerjee, Kamel Khalili, Philip B. Wedegaertner. Differences in Gα12- and Gα13-mediated plasma membrane recruitment of p115-RhoGEF. Cellular Signalling 2009, 21 (6) , 996-1006. https://doi.org/10.1016/j.cellsig.2009.02.010
    100. S J Lee, J W Yang, I J Cho, W D Kim, M K Cho, C H Lee, S G Kim. The gep oncogenes, Gα12 and Gα13, upregulate the transforming growth factor-β1 gene. Oncogene 2009, 28 (9) , 1230-1240. https://doi.org/10.1038/onc.2008.488
    Load all citations

    Biochemistry

    Cite this: Biochemistry 2007, 46, 23, 6677–6687
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi700235f
    Published May 16, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    1775

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.