ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Protein Arginine Methyltransferase 1:  Positively Charged Residues in Substrate Peptides Distal to the Site of Methylation Are Important for Substrate Binding and Catalysis

View Author Information
Department of Chemistry & Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322
Cite this: Biochemistry 2007, 46, 46, 13370–13381
Publication Date (Web):October 26, 2007
https://doi.org/10.1021/bi701558t
Copyright © 2007 American Chemical Society

    Article Views

    1553

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Protein arginine methyltransferases (PRMTs) are a group of eukaryotic enzymes that catalyze the methylation of Arg residues in a variety of proteins (e.g., histones H3 and H4), and their activities influence a wide range of cellular processes, including cell growth, RNA splicing, differentiation, and transcriptional regulation. Dysregulation of these enzymes has been linked to heart disease and cancer, suggesting this enzyme family as a novel therapeutic target. To aid the development of PRMT inhibitors, we characterized the substrate specificity of both the rat and human PRMT1 orthologues using histone based peptide substrates. N- and C-terminal truncations to identify a minimal peptide substrate indicate that long-range interactions between enzyme and substrate are important for high rates of substrate capture. The importance of these long-range interactions to substrate capture were confirmed by “mutagenesis” experiments on a minimal peptide substrate. Inhibition studies on S-adenosyl-homocysteine, thioadenosine, methylthioadenosine, homocysteine, and sinefungin suggest that potent and selective bisubstrate analogue inhibitor(s) for PRMT1 can be developed by linking a histone based peptide substrate to homocysteine or sinefungin. Additionally, we present evidence that PRMT1 utilizes a partially processive mechanism to dimethylate its substrates.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported in part by the start up funds from the University of South Carolina Research Foundation (P.R.T.) and from a new investigator grant from the American Heart Association. T.C.O. is supported by an NSF GK-12 fellowship, O.O. is supported by an NIH-PREP fellowship (GM066526), and X.Z. and X.C. are supported by an NIH grant (GM068680).

     University of South Carolina.

    §

     These authors contributed equally to this work.

     Emory University School of Medicine.

    *

     To whom correspondence should be addressed:  Department of Chemistry & Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208. Tel:  (803)-777-6414. Fax:  (803)-777-9521. E-mail:  [email protected].

    Cited By

    This article is cited by 110 publications.

    1. Meryl Mendoza, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia I. Zurita-Lopez. Arginine Methylation of the PGC-1α C-Terminus Is Temperature-Dependent. Biochemistry 2023, 62 (1) , 22-34. https://doi.org/10.1021/acs.biochem.2c00363
    2. Yifan Dai, Liang-Yuan Chiu, Yinuo Chen, Shiyi Qin, Xiaowei Wu, Chung Chiun Liu. Neutral Charged Immunosensor Platform for Protein-based Biomarker Analysis with Enhanced Sensitivity. ACS Sensors 2019, 4 (1) , 161-169. https://doi.org/10.1021/acssensors.8b01126
    3. Yuanxiang Wang, Wenhao Hu, Yanqiu Yuan. Protein Arginine Methyltransferase 5 (PRMT5) as an Anticancer Target and Its Inhibitor Discovery. Journal of Medicinal Chemistry 2018, 61 (21) , 9429-9441. https://doi.org/10.1021/acs.jmedchem.8b00598
    4. Joshua J. Hamey, Ryan J. Separovich, Marc R. Wilkins. MT-MAMS: Protein Methyltransferase Motif Analysis by Mass Spectrometry. Journal of Proteome Research 2018, 17 (10) , 3485-3491. https://doi.org/10.1021/acs.jproteome.8b00396
    5. Melody D. Fulton, Jing Zhang, Maomao He, Meng-Chiao Ho, and Y. George Zheng . Intricate Effects of α-Amino and Lysine Modifications on Arginine Methylation of the N-Terminal Tail of Histone H4. Biochemistry 2017, 56 (28) , 3539-3548. https://doi.org/10.1021/acs.biochem.7b00450
    6. Kathleen W. Clancy, Anna-Maria Russell, Venkataraman Subramanian, Hannah Nguyen, Yuewei Qian, Robert M. Campbell, and Paul R. Thompson . Citrullination/Methylation Crosstalk on Histone H3 Regulates ER-Target Gene Transcription. ACS Chemical Biology 2017, 12 (6) , 1691-1702. https://doi.org/10.1021/acschembio.7b00241
    7. Suzanne L. Jacques, Katrina P. Aquino, Jodi Gureasko, P. Ann Boriack-Sjodin, Margaret Porter Scott, Robert A. Copeland, and Thomas V. Riera . CARM1 Preferentially Methylates H3R17 over H3R26 through a Random Kinetic Mechanism. Biochemistry 2016, 55 (11) , 1635-1644. https://doi.org/10.1021/acs.biochem.5b01071
    8. Jakob Fuhrmann and Paul R. Thompson . Protein Arginine Methylation and Citrullination in Epigenetic Regulation. ACS Chemical Biology 2016, 11 (3) , 654-668. https://doi.org/10.1021/acschembio.5b00942
    9. Wei-Chao Lee, Wen-Ling Lin, Tsutomu Matsui, Eric S.-W. Chen, Tong-You Wade Wei, Wen-Hsuan Lin, Hao Hu, Yujun George Zheng, Ming-Daw Tsai, and Meng-Chiao Ho . Protein Arginine Methyltransferase 8: Tetrameric Structure and Protein Substrate Specificity. Biochemistry 2015, 54 (51) , 7514-7523. https://doi.org/10.1021/acs.biochem.5b00995
    10. Hao C. Nguyen, Min Wang, Andrew Salsburg, and Bryan Knuckley . Development of a Plate-Based Screening Assay to Investigate the Substrate Specificity of the PRMT Family of Enzymes. ACS Combinatorial Science 2015, 17 (9) , 500-505. https://doi.org/10.1021/acscombsci.5b00070
    11. Jakob Fuhrmann, Kathleen W. Clancy, and Paul R. Thompson . Chemical Biology of Protein Arginine Modifications in Epigenetic Regulation. Chemical Reviews 2015, 115 (11) , 5413-5461. https://doi.org/10.1021/acs.chemrev.5b00003
    12. Min Wang, Jakob Fuhrmann, and Paul R. Thompson . Protein Arginine Methyltransferase 5 Catalyzes Substrate Dimethylation in a Distributive Fashion. Biochemistry 2014, 53 (50) , 7884-7892. https://doi.org/10.1021/bi501279g
    13. Heather L. Rust, Venkataraman Subramanian, Graham M. West, Douglas D. Young, Peter G. Schultz, and Paul R. Thompson . Using Unnatural Amino Acid Mutagenesis To Probe the Regulation of PRMT1. ACS Chemical Biology 2014, 9 (3) , 649-655. https://doi.org/10.1021/cb400859z
    14. Min Wang, Rui-Ming Xu, and Paul R. Thompson . Substrate Specificity, Processivity, and Kinetic Mechanism of Protein Arginine Methyltransferase 5. Biochemistry 2013, 52 (32) , 5430-5440. https://doi.org/10.1021/bi4005123
    15. Shanying Gui, Whitney L. Wooderchak-Donahue, Tianzhu Zang, Dong Chen, Michael P. Daly, Zhaohui Sunny Zhou, and Joan M. Hevel . Substrate-Induced Control of Product Formation by Protein Arginine Methyltransferase 1. Biochemistry 2013, 52 (1) , 199-209. https://doi.org/10.1021/bi301283t
    16. Myles B. C. Dillon, Daniel A. Bachovchin, Steven J. Brown, M. G. Finn, Hugh Rosen, Benjamin F. Cravatt, and Kerri A. Mowen . Novel Inhibitors for PRMT1 Discovered by High-Throughput Screening Using Activity-Based Fluorescence Polarization. ACS Chemical Biology 2012, 7 (7) , 1198-1204. https://doi.org/10.1021/cb300024c
    17. Knut Kölbel, Christian Ihling, Uwe Kühn, Ines Neundorf, Silke Otto, Jan Stichel, Dina Robaa, Annette G. Beck-Sickinger, Andrea Sinz, and Elmar Wahle . Peptide Backbone Conformation Affects the Substrate Preference of Protein Arginine Methyltransferase I. Biochemistry 2012, 51 (27) , 5463-5475. https://doi.org/10.1021/bi300373b
    18. Minkui Luo . Current Chemical Biology Approaches to Interrogate Protein Methyltransferases. ACS Chemical Biology 2012, 7 (3) , 443-463. https://doi.org/10.1021/cb200519y
    19. Obiamaka Obianyo, Corey P. Causey, Justin E. Jones, and Paul R. Thompson . Activity-Based Protein Profiling of Protein Arginine Methyltransferase 1. ACS Chemical Biology 2011, 6 (10) , 1127-1135. https://doi.org/10.1021/cb2001473
    20. Heather L. Rust and Paul R. Thompson . Kinase Consensus Sequences: A Breeding Ground for Crosstalk. ACS Chemical Biology 2011, 6 (9) , 881-892. https://doi.org/10.1021/cb200171d
    21. Rui Wang, Weihong Zheng, Haiqiang Yu, Haiteng Deng, and Minkui Luo . Labeling Substrates of Protein Arginine Methyltransferase with Engineered Enzymes and Matched S-Adenosyl-l-methionine Analogues. Journal of the American Chemical Society 2011, 133 (20) , 7648-7651. https://doi.org/10.1021/ja2006719
    22. Heather L. Rust, Cecilia I. Zurita-Lopez, Steven Clarke, and Paul R. Thompson . Mechanistic Studies on Transcriptional Coactivator Protein Arginine Methyltransferase 1. Biochemistry 2011, 50 (16) , 3332-3345. https://doi.org/10.1021/bi102022e
    23. Bryan Knuckley, Corey P. Causey, Justin E. Jones, Monica Bhatia, Christina J. Dreyton, Tanesha C. Osborne, Hidenari Takahara and Paul R. Thompson . Substrate Specificity and Kinetic Studies of PADs 1, 3, and 4 Identify Potent and Selective Inhibitors of Protein Arginine Deiminase 3. Biochemistry 2010, 49 (23) , 4852-4863. https://doi.org/10.1021/bi100363t
    24. Riccardo Sgarra, Elisa Maurizio, Salvina Zammitti, Alessandra Lo Sardo, Vincenzo Giancotti and Guidalberto Manfioletti. Macroscopic Differences in HMGA Oncoproteins Post-Translational Modifications: C-Terminal Phosphorylation of HMGA2 Affects Its DNA Binding Properties. Journal of Proteome Research 2009, 8 (6) , 2978-2989. https://doi.org/10.1021/pr900087r
    25. Obiamaka Obianyo, Tanesha C. Osborne and Paul R. Thompson . Kinetic Mechanism of Protein Arginine Methyltransferase 1. Biochemistry 2008, 47 (39) , 10420-10427. https://doi.org/10.1021/bi800904m
    26. Whitney L. Wooderchak, Tianzhu Zang, Zhaohui Sunny Zhou, Marcela Acuña, Stanley M. Tahara, and Joan M. Hevel . Substrate Profiling of PRMT1 Reveals Amino Acid Sequences That Extend Beyond the “RGG” Paradigm. Biochemistry 2008, 47 (36) , 9456-9466. https://doi.org/10.1021/bi800984s
    27. Mollie A. Brekker, Tala Sartawi, Tina M. Sawatzky, Corey P. Causey, Fatima Khwaja Rehman, Bryan Knuckley. A peptoid-based inhibitor of protein arginine methyltransferase 1 (PRMT1) induces apoptosis and autophagy in cancer cells. Journal of Biological Chemistry 2022, 298 (8) , 102205. https://doi.org/10.1016/j.jbc.2022.102205
    28. Hao Wu, Yichao Zhang, Shuo Liu, Dongwu Liu, Ao Li, Hongkuan Deng, Xiuzhen Zhang, Weiwei Wu, Baohua Liu, Qiuxiang Pang. Protein Arginine Methyltransferase 1 and its Dynamic Regulation Associated with Cellular Processes and Diseases. Protein & Peptide Letters 2022, 29 (3) , 218-230. https://doi.org/10.2174/0929866529666220124120208
    29. Melody D. Fulton, Tran Dang, Tyler Brown, Y. George Zheng. Effects of substrate modifications on the arginine dimethylation activities of PRMT1 and PRMT5. Epigenetics 2022, 17 (1) , 1-18. https://doi.org/10.1080/15592294.2020.1864170
    30. Charlène Thiebaut, Louisane Eve, Coralie Poulard, Muriel Le Romancer. Structure, Activity, and Function of PRMT1. Life 2021, 11 (11) , 1147. https://doi.org/10.3390/life11111147
    31. Owen M. Price, Abhishek Thakur, Ariana Ortolano, Arianna Towne, Caroline Velez, Orlando Acevedo, Joan M. Hevel. Naturally occurring cancer-associated mutations disrupt oligomerization and activity of protein arginine methyltransferase 1 (PRMT1). Journal of Biological Chemistry 2021, 297 (5) , 101336. https://doi.org/10.1016/j.jbc.2021.101336
    32. Melody D. Fulton, Mengtong Cao, Meng-Chiao Ho, Xinyang Zhao, Y. George Zheng. The macromolecular complexes of histones affect protein arginine methyltransferase activities. Journal of Biological Chemistry 2021, 297 (4) , 101123. https://doi.org/10.1016/j.jbc.2021.101123
    33. Joshua J. Hamey, Sinja Rakow, Caroline Bouchard, Johanna M. Senst, Peter Kolb, Uta‐Maria Bauer, Marc R. Wilkins, Gene Hart‐Smith. Systematic investigation of PRMT6 substrate recognition reveals broad specificity with a preference for an RG motif or basic and bulky residues. The FEBS Journal 2021, 288 (19) , 5668-5691. https://doi.org/10.1111/febs.15837
    34. Maxim I. Maron, Stephanie M. Lehman, Sitaram Gayatri, Joseph D. DeAngelo, Subray Hegde, Benjamin M. Lorton, Yan Sun, Dina L. Bai, Simone Sidoli, Varun Gupta, Matthew R. Marunde, James R. Bone, Zu-Wen Sun, Mark T. Bedford, Jeffrey Shabanowitz, Hongshan Chen, Donald F. Hunt, David Shechter. Independent transcriptomic and proteomic regulation by type I and II protein arginine methyltransferases. iScience 2021, 24 (9) , 102971. https://doi.org/10.1016/j.isci.2021.102971
    35. Heather S Loring, Victoria L Czech, Janneke D Icso, Lauren O'Connor, Sangram S Parelkar, Alexandra B Byrne, Paul R Thompson. A phase transition enhances the catalytic activity of SARM1, an NAD+ glycohydrolase involved in neurodegeneration. eLife 2021, 10 https://doi.org/10.7554/eLife.66694
    36. Ayad A. Al-Hamashi, Krystal Diaz, Rong Huang. Non-Histone Arginine Methylation by Protein Arginine Methyltransferases. Current Protein & Peptide Science 2020, 21 (7) , 699-712. https://doi.org/10.2174/1389203721666200507091952
    37. Owen M. Price, Joan M. Hevel. Toward Understanding Molecular Recognition between PRMTs and their Substrates. Current Protein & Peptide Science 2020, 21 (7) , 713-724. https://doi.org/10.2174/1389203721666200124143145
    38. Sarah A. Mann, Megan K. DeMart, Braidy May, Corey P. Causey, Bryan Knuckley. Histone H4-based peptoids are inhibitors of protein arginine methyltransferase 1 (PRMT1). Biochemical Journal 2020, 477 (16) , 2971-2980. https://doi.org/10.1042/BCJ20200534
    39. Yurui Zhang, Matthijs J. van Haren, Nathaniel I. Martin. Peptidic transition state analogues as PRMT inhibitors. Methods 2020, 175 , 24-29. https://doi.org/10.1016/j.ymeth.2019.08.003
    40. Joan M. Hevel, Owen M. Price. Rapid and direct measurement of methyltransferase activity in about 30 min. Methods 2020, 175 , 3-9. https://doi.org/10.1016/j.ymeth.2019.10.002
    41. Jennifer I. Brown, Brent D.G. Page, Adam Frankel. The application of differential scanning fluorimetry in exploring bisubstrate binding to protein arginine N-methyltransferase 1. Methods 2020, 175 , 10-23. https://doi.org/10.1016/j.ymeth.2019.11.004
    42. Alice Shi Ming Li, Fengling Li, Mohammad S. Eram, Albina Bolotokova, Carlo C. dela Seña, Masoud Vedadi. Chemical probes for protein arginine methyltransferases. Methods 2020, 175 , 30-43. https://doi.org/10.1016/j.ymeth.2019.11.017
    43. Sun, Wang, Yang, Zhu, Wu, Ma, Xu, Hong, Wang. The Development of Tetrazole Derivatives as Protein Arginine Methyltransferase I (PRMT I) Inhibitors. International Journal of Molecular Sciences 2019, 20 (15) , 3840. https://doi.org/10.3390/ijms20153840
    44. Sarah J. Hymbaugh, Lindsay M. Pecor, Christopher M. Tracy, Lindsay R. Comstock. Protein Arginine Methyltransferase 1‐Dependent Labeling and Isolation of Histone H4 through N ‐Mustard Analogues of S ‐Adenosyl‐ l ‐methionine. ChemBioChem 2019, 20 (3) , 379-384. https://doi.org/10.1002/cbic.201800477
    45. Sarah A. Mann, Andrew Salsburg, Corey P. Causey, Bryan Knuckley. The development and characterization of a chemical probe targeting PRMT1 over PRMT5. Bioorganic & Medicinal Chemistry 2019, 27 (1) , 224-229. https://doi.org/10.1016/j.bmc.2018.12.001
    46. Sebastian Kwiatkowski, Agnieszka K Seliga, Didier Vertommen, Marianna Terreri, Takao Ishikawa, Iwona Grabowska, Marcel Tiebe, Aurelio A Teleman, Adam K Jagielski, Maria Veiga-da-Cunha, Jakub Drozak. SETD3 protein is the actin-specific histidine N-methyltransferase. eLife 2018, 7 https://doi.org/10.7554/eLife.37921
    47. Melody D. Fulton, Tyler Brown, Y. George Zheng. Mechanisms and Inhibitors of Histone Arginine Methylation. The Chemical Record 2018, 18 (12) , 1792-1807. https://doi.org/10.1002/tcr.201800082
    48. Jonathan Woodsmith, Victoria Casado-Medrano, Nouhad Benlasfer, Rebecca L Eccles, Saskia Hutten, Christian L Heine, Verena Thormann, Claudia Abou-Ajram, Oliver Rocks, Dorothee Dormann, Ulrich Stelzl. Interaction modulation through arrays of clustered methyl-arginine protein modifications. Life Science Alliance 2018, 1 (5) , e201800178. https://doi.org/10.26508/lsa.201800178
    49. Emily Smith, Wei Zhou, Polina Shindiapina, Said Sif, Chenglong Li, Robert A. Baiocchi. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opinion on Therapeutic Targets 2018, 22 (6) , 527-545. https://doi.org/10.1080/14728222.2018.1474203
    50. Kim K. C. Li, Bess L. Chau, Kevin A.W. Lee. Differential interaction of PRMT1 with RGG‐boxes of the FET family proteins EWS and TAF15. Protein Science 2018, 27 (3) , 633-642. https://doi.org/10.1002/pro.3354
    51. Jennifer I. Brown, Timo Koopmans, Jolinde van Strien, Nathaniel I. Martin, Adam Frankel. Kinetic Analysis of PRMT1 Reveals Multifactorial Processivity and a Sequential Ordered Mechanism. ChemBioChem 2018, 19 (1) , 85-99. https://doi.org/10.1002/cbic.201700521
    52. Kanishk Jain, Cyrus Y. Jin, Steven G. Clarke. Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases. Proceedings of the National Academy of Sciences 2017, 114 (38) , 10101-10106. https://doi.org/10.1073/pnas.1706978114
    53. Pawan Kumar, Joseph Joy, Ashutosh Pandey, Dinesh Gupta, . PRmePRed: A protein arginine methylation prediction tool. PLOS ONE 2017, 12 (8) , e0183318. https://doi.org/10.1371/journal.pone.0183318
    54. Qing Gou, ShuJiao He, ZeJian Zhou. Protein arginine N-methyltransferase 1 promotes the proliferation and metastasis of hepatocellular carcinoma cells. Tumor Biology 2017, 39 (2) , 101042831769141. https://doi.org/10.1177/1010428317691419
    55. Fermin I. Milagro, J. Alfredo Martinez. Dietary and Metabolic Compounds Affecting Covalent Histone Modifications. 2017, 307-322. https://doi.org/10.1016/B978-0-12-805388-1.00020-1
    56. Hao Hu, Cheng Luo, Y. George Zheng. Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1. Journal of Biological Chemistry 2016, 291 (52) , 26722-26738. https://doi.org/10.1074/jbc.M116.757625
    57. Hong Wu, Weihong Zheng, Mohammad S. Eram, Mynol Vhuiyan, Aiping Dong, Hong Zeng, Hao He, Peter Brown, Adam Frankel, Masoud Vedadi, Minkui Luo, Jinrong Min. Structural basis of arginine asymmetrical dimethylation by PRMT6. Biochemical Journal 2016, 473 (19) , 3049-3063. https://doi.org/10.1042/BCJ20160537
    58. Sakiko Fujii, Keisuke Takanashi, Keiko Kitajo, Atsushi Yamaguchi. Treatment with a Global Methyltransferase Inhibitor Induces the Intranuclear Aggregation of ALS-Linked FUS Mutant In Vitro. Neurochemical Research 2016, 41 (4) , 826-835. https://doi.org/10.1007/s11064-015-1758-z
    59. Yalemi Morales, Tamar Cáceres, Kyle May, Joan M. Hevel. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Archives of Biochemistry and Biophysics 2016, 590 , 138-152. https://doi.org/10.1016/j.abb.2015.11.030
    60. Bingshou Li, Lin Liu, Xiaoming Li, Lingtong Wu. miR-503 suppresses metastasis of hepatocellular carcinoma cell by targeting PRMT1. Biochemical and Biophysical Research Communications 2015, 464 (4) , 982-987. https://doi.org/10.1016/j.bbrc.2015.06.169
    61. Sarah J. Hymbaugh Bergman, Lindsay R. Comstock. N-mustard analogs of S-adenosyl-l-methionine as biochemical probes of protein arginine methylation. Bioorganic & Medicinal Chemistry 2015, 23 (15) , 5050-5055. https://doi.org/10.1016/j.bmc.2015.05.001
    62. Luc Bonnefond, Johann Stojko, Justine Mailliot, Nathalie Troffer-Charlier, Vincent Cura, Jean-Marie Wurtz, Sarah Cianférani, Jean Cavarelli. Functional insights from high resolution structures of mouse protein arginine methyltransferase 6. Journal of Structural Biology 2015, 191 (2) , 175-183. https://doi.org/10.1016/j.jsb.2015.06.017
    63. Jakub Drozak, Maria Piecuch, Olga Poleszak, Piotr Kozlowski, Lukasz Chrobok, Hans J. Baelde, Emile de Heer. UPF0586 Protein C9orf41 Homolog Is Anserine-producing Methyltransferase. Journal of Biological Chemistry 2015, 290 (28) , 17190-17205. https://doi.org/10.1074/jbc.M115.640037
    64. Nicole Stopa, Jocelyn E. Krebs, David Shechter. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cellular and Molecular Life Sciences 2015, 72 (11) , 2041-2059. https://doi.org/10.1007/s00018-015-1847-9
    65. Yalemi Morales, Damon V. Nitzel, Owen M. Price, Shanying Gui, Jun Li, Jun Qu, Joan M. Hevel. Redox Control of Protein Arginine Methyltransferase 1 (PRMT1) Activity. Journal of Biological Chemistry 2015, 290 (24) , 14915-14926. https://doi.org/10.1074/jbc.M115.651380
    66. Stacie L. Richardson, Pahul Hanjra, Gang Zhang, Brianna D. Mackie, Darrell L. Peterson, Rong Huang. A direct, ratiometric, and quantitative MALDI–MS assay for protein methyltransferases and acetyltransferases. Analytical Biochemistry 2015, 478 , 59-64. https://doi.org/10.1016/j.ab.2015.03.007
    67. You Feng, Andrea Hadjikyriacou, Steven G. Clarke. Substrate Specificity of Human Protein Arginine Methyltransferase 7 (PRMT7). Journal of Biological Chemistry 2014, 289 (47) , 32604-32616. https://doi.org/10.1074/jbc.M114.609271
    68. Vincent Cura, Nathalie Troffer-Charlier, Jean-Marie Wurtz, Luc Bonnefond, Jean Cavarelli. Structural insight into arginine methylation by the mouse protein arginine methyltransferase 7: a zinc finger freezes the mimic of the dimeric state into a single active site. Acta Crystallographica Section D Biological Crystallography 2014, 70 (9) , 2401-2412. https://doi.org/10.1107/S1399004714014278
    69. Atsushi Kurotani, Alexander A. Tokmakov, Yutaka Kuroda, Yasuo Fukami, Kazuo Shinozaki, Tetsuya Sakurai. Correlations between predicted protein disorder and post-translational modifications in plants. Bioinformatics 2014, 30 (8) , 1095-1103. https://doi.org/10.1093/bioinformatics/btt762
    70. Shanying Gui, Symon Gathiaka, Jun Li, Jun Qu, Orlando Acevedo, Joan M. Hevel. A Remodeled Protein Arginine Methyltransferase 1 (PRMT1) Generates Symmetric Dimethylarginine. Journal of Biological Chemistry 2014, 289 (13) , 9320-9327. https://doi.org/10.1074/jbc.M113.535278
    71. Daniel J. Slade, Venkataraman Subramanian, Jakob Fuhrmann, Paul R. Thompson, . Chemical and biological methods to detect post-translational modifications of arginine. Biopolymers 2014, 101 (2) , 133-143. https://doi.org/10.1002/bip.22256
    72. Satoshi Goda, Takayuki Isagawa, Yoko Chikaoka, Takeshi Kawamura, Hiroyuki Aburatani. Control of Histone H3 Lysine 9 (H3K9) Methylation State via Cooperative Two-step Demethylation by Jumonji Domain Containing 1A (JMJD1A) Homodimer. Journal of Biological Chemistry 2013, 288 (52) , 36948-36956. https://doi.org/10.1074/jbc.M113.492595
    73. Mynol Vhuiyan, Dylan Thomas, Farhad Hossen, Adam Frankel. Targeting protein arginine N -methyltransferases with peptide-based inhibitors: opportunities and challenges. Future Medicinal Chemistry 2013, 5 (18) , 2199-2206. https://doi.org/10.4155/fmc.13.184
    74. You Feng, Ranjan Maity, Julian P. Whitelegge, Andrea Hadjikyriacou, Ziwei Li, Cecilia Zurita-Lopez, Qais Al-Hadid, Amander T. Clark, Mark T. Bedford, Jean-Yves Masson, Steven G. Clarke. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions. Journal of Biological Chemistry 2013, 288 (52) , 37010-37025. https://doi.org/10.1074/jbc.M113.525345
    75. Ruihan Zhang, Xin Li, Zhongjie Liang, Kongkai Zhu, Junyan Lu, Xiangqian Kong, Sisheng Ouyang, Lin Li, Yujun George Zheng, Cheng Luo, . Theoretical Insights into Catalytic Mechanism of Protein Arginine Methyltransferase 1. PLoS ONE 2013, 8 (8) , e72424. https://doi.org/10.1371/journal.pone.0072424
    76. Clare C Davies, Atanu Chakraborty, Markus E Diefenbacher, Mark Skehel, Axel Behrens. Arginine methylation of the c-Jun coactivator RACO-1 is required for c-Jun/AP-1 activation. The EMBO Journal 2013, 32 (11) , 1556-1567. https://doi.org/10.1038/emboj.2013.98
    77. Ruben Esse, Monica S. Rocha, Madalena Barroso, Cristina Florindo, Tom Teerlink, Robert M. Kok, Yvo M. Smulders, Isabel Rivera, Paula Leandro, Pieter Koolwijk, Rita Castro, Henk J. Blom, Isabel Tavares de Almeida, . Protein Arginine Methylation Is More Prone to Inhibition by S-Adenosylhomocysteine than DNA Methylation in Vascular Endothelial Cells. PLoS ONE 2013, 8 (2) , e55483. https://doi.org/10.1371/journal.pone.0055483
    78. Alessandra Lo Sardo, Sandro Altamura, Silvia Pegoraro, Elisa Maurizio, Riccardo Sgarra, Guidalberto Manfioletti, . Identification and Characterization of New Molecular Partners for the Protein Arginine Methyltransferase 6 (PRMT6). PLoS ONE 2013, 8 (1) , e53750. https://doi.org/10.1371/journal.pone.0053750
    79. Hou-yu Wang, Si Li, Yun-yun Tang, Jing-yu Dong, Liu-yin Fan, Cheng-xi Cao. Determination of free acidic and alkaline residues of protein via moving reaction boundary titration in microdevice electrophoresis. The Analyst 2013, 138 (12) , 3544. https://doi.org/10.1039/c3an36494a
    80. Yu-Jie Hu, Saïd Sif, Anthony N. Imbalzano. Prmt7 is dispensable in tissue culture models for adipogenic differentiation. F1000Research 2013, 2 , 279. https://doi.org/10.12688/f1000research.2-279.v1
    81. G. Grimble. Sulphur amino acids and immune functions. 2013, 544-569. https://doi.org/10.1533/9780857095749.3.544
    82. Boksik Cha, Eek-Hoon Jho. Protein arginine methyltransferases (PRMTs) as therapeutic targets. Expert Opinion on Therapeutic Targets 2012, 16 (7) , 651-664. https://doi.org/10.1517/14728222.2012.688030
    83. Gerard Hobley, Jennifer C. McKelvie, Jenny E. Harmer, Jason Howe, Petra C.F. Oyston, Peter L. Roach. Development of rationally designed DNA N6 adenine methyltransferase inhibitors. Bioorganic & Medicinal Chemistry Letters 2012, 22 (9) , 3079-3082. https://doi.org/10.1016/j.bmcl.2012.03.072
    84. Obiamaka Obianyo, Paul R. Thompson. Kinetic Mechanism of Protein Arginine Methyltransferase 6 (PRMT6). Journal of Biological Chemistry 2012, 287 (8) , 6062-6071. https://doi.org/10.1074/jbc.M111.333609
    85. Yuan Cheng, Monica Frazier, Falong Lu, Xiaofeng Cao, Matthew R. Redinbo. Crystal Structure of the Plant Epigenetic Protein Arginine Methyltransferase 10. Journal of Molecular Biology 2011, 414 (1) , 106-122. https://doi.org/10.1016/j.jmb.2011.09.040
    86. John C. Fisk, Laurie K. Read. Protein Arginine Methylation in Parasitic Protozoa. Eukaryotic Cell 2011, 10 (8) , 1013-1022. https://doi.org/10.1128/EC.05103-11
    87. Peter 't Hart, Ted M. Lakowski, Dylan Thomas, Adam Frankel, Nathaniel I. Martin. Peptidic Partial Bisubstrates as Inhibitors of the Protein Arginine N ‐Methyltransferases. ChemBioChem 2011, 12 (9) , 1427-1432. https://doi.org/10.1002/cbic.201100074
    88. You Feng, Juxian Wang, Sabrina Asher, Linh Hoang, Carlo Guardiani, Ivaylo Ivanov, Y. George Zheng. Histone H4 Acetylation Differentially Modulates Arginine Methylation by an in Cis Mechanism. Journal of Biological Chemistry 2011, 286 (23) , 20323-20334. https://doi.org/10.1074/jbc.M110.207258
    89. F.I. Milagro, J. Campión, J.A. Martinez. Dietary and Metabolic Compounds Affecting Chromatin Dynamics/Remodeling. 2011, 295-311. https://doi.org/10.1016/B978-0-12-375709-8.00018-6
    90. Kevin L. Bicker, Obiamaka Obianyo, Heather L. Rust, Paul R. Thompson. A combinatorial approach to characterize the substrate specificity of proteinargininemethyltransferase 1. Mol. BioSyst. 2011, 7 (1) , 48-51. https://doi.org/10.1039/C0MB00015A
    91. Dylan Thomas, Ted M. Lakowski, Magnolia L. Pak, Jenny J. Kim, Adam Frankel. Förster resonance energy transfer measurements of cofactor‐dependent effects on protein arginine N ‐methyltransferase homodimerization. Protein Science 2010, 19 (11) , 2141-2151. https://doi.org/10.1002/pro.492
    92. Obiamaka Obianyo, Corey P. Causey, Tanesha C. Osborne, Justin E. Jones, Young‐Ho Lee, Michael R. Stallcup, Paul R. Thompson. A Chloroacetamidine‐Based Inactivator of Protein Arginine Methyltransferase 1: Design, Synthesis, and In Vitro and In Vivo Evaluation. ChemBioChem 2010, 11 (9) , 1219-1223. https://doi.org/10.1002/cbic.201000209
    93. Kevin Bonham, Saskia Hemmers, Yeon‐Hee Lim, Dawn M. Hill, M. G. Finn, Kerri A. Mowen. Effects of a novel arginine methyltransferase inhibitor on T‐helper cell cytokine production. The FEBS Journal 2010, 277 (9) , 2096-2108. https://doi.org/10.1111/j.1742-4658.2010.07623.x
    94. Mickaël Bouvet, Claire Debarnot, Isabelle Imbert, Barbara Selisko, Eric J. Snijder, Bruno Canard, Etienne Decroly, . In Vitro Reconstitution of SARS-Coronavirus mRNA Cap Methylation. PLoS Pathogens 2010, 6 (4) , e1000863. https://doi.org/10.1371/journal.ppat.1000863
    95. James Dowden, Wei Hong, Richard V. Parry, Richard A. Pike, Stephen G. Ward. Toward the development of potent and selective bisubstrate inhibitors of protein arginine methyltransferases. Bioorganic & Medicinal Chemistry Letters 2010, 20 (7) , 2103-2105. https://doi.org/10.1016/j.bmcl.2010.02.069
    96. B. Selisko, F. F. Peyrane, B. Canard, K. Alvarez, E. Decroly. Biochemical characterization of the (nucleoside-2'O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides 7MeGpppACn and GpppACn. Journal of General Virology 2010, 91 (1) , 112-121. https://doi.org/10.1099/vir.0.015511-0
    97. Thomas B. Nicholson, Taiping Chen, Stéphane Richard. The physiological and pathophysiological role of PRMT1-mediated protein arginine methylation. Pharmacological Research 2009, 60 (6) , 466-474. https://doi.org/10.1016/j.phrs.2009.07.006
    98. Ted M. Lakowski, Adam Frankel. Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4. Biochemical Journal 2009, 421 (2) , 253-261. https://doi.org/10.1042/BJ20090268
    99. Qi Fan, Jun Miao, Long Cui, Liwang Cui. Characterization of PRMT1 from Plasmodium falciparum. Biochemical Journal 2009, 421 (1) , 107-118. https://doi.org/10.1042/BJ20090185
    100. Julien Vaubourgeix, Fabienne Bardou, Fanny Boissier, Sylviane Julien, Patricia Constant, Olivier Ploux, Mamadou Daffé, Annaïk Quémard, Lionel Mourey. S-Adenosyl-N-decyl-aminoethyl, a Potent Bisubstrate Inhibitor of Mycobacterium tuberculosis Mycolic Acid Methyltransferases. Journal of Biological Chemistry 2009, 284 (29) , 19321-19330. https://doi.org/10.1074/jbc.M809599200
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect