ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Dissociation of the Subunits of the Calcium-Independent Receptor of α-Latrotoxin as a Result of Two-Step Proteolysis

View Author Information
Department of Pharmacology, New York University School of Medicine, New York, New York 10016, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia 117997, and Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016
†Supported by Public Health Service Grants R01NS35098 from the NINDS and R03 TW007210 from the FIC, Molecular and Cellular Biology Program and Basic Sciences to Medicine Program of the Russian Academy of Sciences, and RFBR Grant 06-04-49706-a (to A.G.P.) and by NIH Shared Instrumentation Grant 1 S10 RR14662-01 (to T.A.N.).
* To whom correspondence should be addressed: e-mail, [email protected]; phone, +7(495)335-4177; fax, +7(495)335-7103.
‡Department of Pharmacology, New York University School of Medicine.
§Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry.
∥Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine.
Cite this: Biochemistry 2009, 48, 14, 3230–3238
Publication Date (Web):January 22, 2009
https://doi.org/10.1021/bi802163p
Copyright © 2009 American Chemical Society

    Article Views

    500

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)

    Abstract

    Abstract Image

    CIRL (the calcium-independent receptor of α-latrotoxin), a neuronal cell surface receptor implicated in the regulation of exocytosis, is a member of the GPS family of chimeric cell adhesion/G protein-coupled receptors. The predominant form of CIRL is a membrane-bound complex of two subunits, p120 and p85. Extracellularly oriented p120 contains hydrophilic cell adhesion domains, whereas p85 is a heptahelical membrane protein. Both subunits are encoded by the same gene and represent products of intracellular proteolytic processing of the CIRL precursor. In this study, we demonstrate that a soluble form of CIRL also exists in vitro and in vivo. It results from the further cleavage of CIRL by a second protease. The site of the second cleavage is located in the short N-terminal extracellular tail of p85, between the GPS domain and the first transmembrane segment of CIRL. Thus, the soluble form of CIRL represents a complex of p120 noncovalently bound to a 15 amino acid residue N-terminal peptide fragment of p85. We have previously shown that mutations of CIRL in the GPS domain inhibit intracellular proteolytic processing and also result in the absence of the receptors from the cell surface. Our current data suggest that although CIRL trafficking to the cell membrane is impaired by mutations in the GPS region, it is not blocked completely. However, at the cell surface, the noncleaved mutants are preferentially targeted by the second protease that sheds the extracellular subunit. Therefore, the two-step proteolytic processing may represent a regulatory mechanism that controls cell surface expression of membrane-bound and soluble forms of CIRL.

    Cited By

    This article is cited by 33 publications.

    1. Abanoub A. Gad, Nariman Balenga. The Emerging Role of Adhesion GPCRs in Cancer. ACS Pharmacology & Translational Science 2020, 3 (1) , 29-42. https://doi.org/10.1021/acsptsci.9b00093
    2. Florian Seufert, Yin Kwan Chung, Peter W. Hildebrand, Tobias Langenhan. 7TM domain structures of adhesion GPCRs: what's new and what's missing?. Trends in Biochemical Sciences 2023, 48 (8) , 726-739. https://doi.org/10.1016/j.tibs.2023.05.007
    3. Nicole Scholz, Anne-Kristin Dahse, Marguerite Kemkemer, Anne Bormann, Genevieve M. Auger, Fernando Vieira Contreras, Lucia F. Ernst, Hauke Staake, Marek B. Körner, Max Buhlan, Amelie Meyer-Mölck, Yin Kwan Chung, Beatriz Blanco-Redondo, Franziska Klose, Mohamed Ali Jarboui, Dmitrij Ljaschenko, Marina Bigl, Tobias Langenhan. Molecular sensing of mechano- and ligand-dependent adhesion GPCR dissociation. Nature 2023, 615 (7954) , 945-953. https://doi.org/10.1038/s41586-023-05802-5
    4. Oleg V. Batishchev, Natalia V. Kuzmina, Andrey A. Mozhaev, Alexander S. Goryashchenko, Ekaterina D. Mileshina, Alexander N. Orsa, Eduard V. Bocharov, Igor E. Deyev, Alexander G. Petrenko. Activity-dependent conformational transitions of the insulin receptor–related receptor. Journal of Biological Chemistry 2021, 296 , 100534. https://doi.org/10.1016/j.jbc.2021.100534
    5. Eleonora V. Shtykova, Maxim V. Petoukhov, Andrey A. Mozhaev, Igor E. Deyev, Liubov A. Dadinova, Nikita A. Loshkarev, Alexander S. Goryashchenko, Eduard V. Bocharov, Cy M. Jeffries, Dmitri I. Svergun, Oleg V. Batishchev, Alexander G. Petrenko. The dimeric ectodomain of the alkali-sensing insulin receptor–related receptor (ectoIRR) has a droplike shape. Journal of Biological Chemistry 2019, 294 (47) , 17790-17798. https://doi.org/10.1074/jbc.RA119.010390
    6. A. A. Mozhaev, O. V. Serova, A. N. Orsa, A. A. Boyko, A. S. Goryashchenko, I. E. Deyev, A. G. Petrenko. The Hybrid Protein of the Alkaline Sensor IRR and the Fluorescent Protein GFP Retains the Functional Activity of the Receptor. Russian Journal of Bioorganic Chemistry 2019, 45 (2) , 179-182. https://doi.org/10.1134/S1068162019020080
    7. A. A. Mozhaev, A. N. Orsa, I. E. Deyev, V. I. Shvets, A. G. Petrenko. Optimization of Heterologous Expression of Insulin Receptor-Related Receptor Ectodomain. Doklady Biochemistry and Biophysics 2019, 485 (1) , 101-103. https://doi.org/10.1134/S1607672919020017
    8. Oxana Serova, Natalia Chachina, Elena Gantsova, Nadezhda Popova, Alexander Petrenko, Igor Deyev. Autophosphorylation of Orphan Receptor ERBB2 Can Be Induced by Extracellular Treatment with Mildly Alkaline Media. International Journal of Molecular Sciences 2019, 20 (6) , 1515. https://doi.org/10.3390/ijms20061515
    9. Oxana V. Serova, Alexander N. Orsa, Natalia A. Chachina, Alexander G. Petrenko, Igor E. Deyev. с-Met receptor can be activated by extracellular alkaline medium. Journal of Receptors and Signal Transduction 2019, 39 (1) , 67-72. https://doi.org/10.1080/10799893.2019.1620775
    10. Christiane Kirchhoff, Heike Cappallo-Obermann. ADGRG2. 2018, 200-207. https://doi.org/10.1007/978-3-319-67199-4_101510
    11. Christiane Kirchhoff, Ben Davies. Adhesion GPCRs. 2018, 207-223. https://doi.org/10.1007/978-3-319-67199-4_526
    12. A. A. Mozhaev, T. N. Erokhina, O. V. Serova, I. E. Deyev, A. G. Petrenko. Production and immunochemical characterization of monoclonal antibody to IRR ectodomain. Russian Journal of Bioorganic Chemistry 2017, 43 (6) , 653-657. https://doi.org/10.1134/S1068162017060097
    13. А.А. Можаев, Т.Н. Ерохина, О.В. Серова, И.Е. Деев, А.Г. Петренко. ПОЛУЧЕНИЕ И ИММУНОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА МОНОКЛОНАЛЬНОГО АНТИТЕЛА К ЭКТОДОМЕНУ РЕЦЕПТОРА, ПОДОБНОГО РЕЦЕПТОРУ ИНСУЛИНА (IRR), "Биоорганическая химия". Биоорганическая химия 2017, (6) , 631-636. https://doi.org/10.7868/S0132342317060057
    14. Ayush Kishore, Ryan H. Purcell, Zahra Nassiri-Toosi, Randy A. Hall. Stalk-dependent and Stalk-independent Signaling by the Adhesion G Protein-coupled Receptors GPR56 (ADGRG1) and BAI1 (ADGRB1). Journal of Biological Chemistry 2016, 291 (7) , 3385-3394. https://doi.org/10.1074/jbc.M115.689349
    15. Jörg Hamann, Alexander G. Petrenko. Introduction: History of the Adhesion GPCR Field. 2016, 1-11. https://doi.org/10.1007/978-3-319-41523-9_1
    16. Gabriela Aust, Dan Zhu, Erwin G. Van Meir, Lei Xu. Adhesion GPCRs in Tumorigenesis. 2016, 369-396. https://doi.org/10.1007/978-3-319-41523-9_17
    17. Matthias Nieberler, Robert J. Kittel, Alexander G. Petrenko, Hsi-Hsien Lin, Tobias Langenhan. Control of Adhesion GPCR Function Through Proteolytic Processing. 2016, 83-109. https://doi.org/10.1007/978-3-319-41523-9_5
    18. Ayush Kishore, Randy A. Hall. Versatile Signaling Activity of Adhesion GPCRs. 2016, 127-146. https://doi.org/10.1007/978-3-319-41523-9_7
    19. Christiane Kirchhoff, Heike Cappallo-Obermann. ADGRG2. 2016, 1-8. https://doi.org/10.1007/978-1-4614-6438-9_101510-1
    20. O. V. Serova, N. V. Radionov, D. M. Shayahmetova, I. E. Deyev, A. G. Petrenko. Structural and functional analyses of the sixth site of neurexin alternative splicing. Doklady Biochemistry and Biophysics 2015, 463 (1) , 239-242. https://doi.org/10.1134/S1607672915040110
    21. Jörg Hamann, Gabriela Aust, Demet Araç, Felix B. Engel, Caroline Formstone, Robert Fredriksson, Randy A. Hall, Breanne L. Harty, Christiane Kirchhoff, Barbara Knapp, Arunkumar Krishnan, Ines Liebscher, Hsi-Hsien Lin, David C. Martinelli, Kelly R. Monk, Miriam C. Peeters, Xianhua Piao, Simone Prömel, Torsten Schöneberg, Thue W. Schwartz, Kathleen Singer, Martin Stacey, Yuri A. Ushkaryov, Mario Vallon, Uwe Wolfrum, Mathew W. Wright, Lei Xu, Tobias Langenhan, Helgi B. Schiöth, . International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors. Pharmacological Reviews 2015, 67 (2) , 338-367. https://doi.org/10.1124/pr.114.009647
    22. Tobias Langenhan, Gabriela Aust, Jörg Hamann. Sticky Signaling—Adhesion Class G Protein–Coupled Receptors Take the Stage. Science Signaling 2013, 6 (276) https://doi.org/10.1126/scisignal.2003825
    23. Sebastian Hogl, Frauke van Bebber, Bastian Dislich, Peer‐Hendrik Kuhn, Christian Haass, Bettina Schmid, Stefan F. Lichtenthaler. Label‐free quantitative analysis of the membrane proteome of B ace1 protease knock‐out zebrafish brains. PROTEOMICS 2013, 13 (9) , 1519-1527. https://doi.org/10.1002/pmic.201200582
    24. Simone Prömel, Marie Frickenhaus, Samantha Hughes, Lamia Mestek, David Staunton, Alison Woollard, Ioannis Vakonakis, Torsten Schöneberg, Ralf Schnabel, Andreas P. Russ, Tobias Langenhan. The GPS Motif Is a Molecular Switch for Bimodal Activities of Adhesion Class G Protein-Coupled Receptors. Cell Reports 2012, 2 (2) , 321-331. https://doi.org/10.1016/j.celrep.2012.06.015
    25. Christiane Kirchhoff, Ben Davies. Adhesion GPCRs. 2012, 67-81. https://doi.org/10.1007/978-1-4419-0461-4_526
    26. Jens Bohnekamp, Torsten Schöneberg. Cell Adhesion Receptor GPR133 Couples to Gs Protein. Journal of Biological Chemistry 2011, 286 (49) , 41912-41916. https://doi.org/10.1074/jbc.C111.265934
    27. Nadezhda V. Popova, Igor E. Deyev, Alexander G. Petrenko. Association of adaptor protein TRIP8b with clathrin. Journal of Neurochemistry 2011, 118 (6) , 988-998. https://doi.org/10.1111/j.1471-4159.2011.07384.x
    28. Sarah M. Cork, Erwin G. Van Meir. Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development. Journal of Molecular Medicine 2011, 89 (8) , 743-752. https://doi.org/10.1007/s00109-011-0759-x
    29. Marc F. Bolliger, David C. Martinelli, Thomas C. Südhof. The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. Proceedings of the National Academy of Sciences 2011, 108 (6) , 2534-2539. https://doi.org/10.1073/pnas.1019577108
    30. Ariel F. Martinez, Maximilian Muenke, Mauricio Arcos‐Burgos. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein‐coupled receptors, are implicated in psychiatric disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 2011, 156 (1) , 1-10. https://doi.org/10.1002/ajmg.b.31137
    31. Oxana V. Serova, Nadezhda V. Popova, Alexander G. Petrenko, Igor E. Deyev. Association of the subunits of the calcium-independent receptor of α-latrotoxin. Biochemical and Biophysical Research Communications 2010, 402 (4) , 658-662. https://doi.org/10.1016/j.bbrc.2010.10.078
    32. Igor E. Deyev, Alexander G. Petrenko. Regulation of CIRL-1 proteolysis and trafficking. Biochimie 2010, 92 (4) , 418-422. https://doi.org/10.1016/j.biochi.2010.01.015
    33. John-Paul Silva, Yuri A. Ushkaryov. The Latrophilins, “Split-Personality” Receptors. 2010, 59-75. https://doi.org/10.1007/978-1-4419-7913-1_5

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect