ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Detection of the TCDD Binding-Fingerprint within the Ah Receptor Ligand Binding Domain by Structurally Driven Mutagenesis and Functional Analysis

View Author Information
Division of Mathematical Biology, National Institute for Medical Research, The Ridgeway, London NW7 1AA, U.K.
§ Department of Environmental Toxicology, Meyer Hall, University of California, Davis, California 95616
Dipartimento di Scienze dell'Ambiente e del Territorio, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 1, 20126 Milano, Italy
*To whom correspondence should be addressed. Phone: (530) 752-3879. Fax: (530) 752-3394. E-mail: [email protected]
Cite this: Biochemistry 2009, 48, 25, 5972–5983
Publication Date (Web):May 20, 2009
https://doi.org/10.1021/bi900259z
Copyright © 2009 American Chemical Society

    Article Views

    1517

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent, basic helix−loop−helix Per-Arnt-Sim (PAS)-containing transcription factor that can bind and be activated by structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Our previous three-dimensional homology model of the mouse AhR (mAhR) PAS B ligand binding domain allowed identification of the binding site and its experimental validation. We have extended this analysis by conducting comparative structural modeling studies of the ligand binding domains of six additional high-affinity mammalian AhRs. These results, coupled with site-directed mutagenesis and AhR functional analysis, have allowed detection of the “TCDD binding-fingerprint” of conserved residues within the ligand binding cavity necessary for high-affinity TCDD binding and TCDD-dependent AhR transformation DNA binding. The essential role of selected residues was further evaluated using molecular docking simulations of TCDD with both wild-type and mutant mAhRs. Taken together, our results dramatically improve our understanding of the molecular determinants of TCDD binding and provide a basis for future studies directed toward rationalizing the observed species differences in AhR sensitivity to TCDD and understanding the mechanistic basis for the dramatic diversity in AhR ligand structure.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Expression levels of in vitro synthesized wildtype and mutant AhRs. 35SLabeled wildtype (wt) and mutant AhRs (specific mutation indicated) were synthesized in vitro, denatured, and resolved by SDS−polyacrylamide gel electrophoresis and phosphoimager analysis of the dried gels as described in Materials and Methods (Figure 1). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 99 publications.

    1. Li Lin, Yongmin Liu, Li Chen, Yue Dai, Yufeng Xia. Discovery of Norisoboldine Analogue III11 as a Novel and Potent Aryl Hydrocarbon Receptor Agonist for the Treatment of Ulcerative Colitis. Journal of Medicinal Chemistry 2023, 66 (10) , 6869-6888. https://doi.org/10.1021/acs.jmedchem.3c00287
    2. Jana Flegel, Saad Shaaban, Zhi Jun Jia, Britta Schulte, Yilong Lian, Adrian Krzyzanowski, Malte Metz, Tabea Schneidewind, Fabian Wesseler, Anke Flegel, Alisa Reich, Alexandra Brause, Gang Xue, Minghao Zhang, Lara Dötsch, Isabelle D. Stender, Jan-Erik Hoffmann, Rebecca Scheel, Petra Janning, Fraydoon Rastinejad, Dennis Schade, Carsten Strohmann, Andrey P. Antonchick, Sonja Sievers, Pedro Moura-Alves, Slava Ziegler, Herbert Waldmann. The Highly Potent AhR Agonist Picoberin Modulates Hh-Dependent Osteoblast Differentiation. Journal of Medicinal Chemistry 2022, 65 (24) , 16268-16289. https://doi.org/10.1021/acs.jmedchem.2c00956
    3. Mele N. Avilla, Kristen M. C. Malecki, Mark E. Hahn, Rachel H. Wilson, Christopher A. Bradfield. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chemical Research in Toxicology 2020, 33 (4) , 860-879. https://doi.org/10.1021/acs.chemrestox.9b00476
    4. Yin Liu, Yongyi Wei, Songyan Zhang, Xiliang Yan, Hao Zhu, Li Xu, Bin Zhao, Heidi Qunhui Xie, Bing Yan. Regulation of Aryl Hydrocarbon Receptor Signaling Pathway and Dioxin Toxicity by Novel Agonists and Antagonists. Chemical Research in Toxicology 2020, 33 (2) , 614-624. https://doi.org/10.1021/acs.chemrestox.9b00431
    5. Ji-Hee Hwang, Kurunthachalam Kannan, Thomas J. Evans, Hisato Iwata, Eun-Young Kim. Assessment of Risks of Dioxins for Aryl Hydrocarbon Receptor-Mediated Effects in Polar Bear (Ursus maritimus) by in Vitro and in Silico Approaches. Environmental Science & Technology 2020, 54 (3) , 1770-1781. https://doi.org/10.1021/acs.est.9b05941
    6. Libe Aranguren-Abadía, Roger Lille-Langøy, Alexander K. Madsen, Sibel I. Karchner, Diana G. Franks, Fekadu Yadetie, Mark E. Hahn, Anders Goksøyr, Odd André Karlsen. Molecular and Functional Properties of the Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a. Environmental Science & Technology 2020, 54 (2) , 1033-1044. https://doi.org/10.1021/acs.est.9b05312
    7. Wanglong Zhang, Heidi Qunhui Xie, Yunping Li, Xianghui Zou, Li Xu, Dan Ma, Jiao Li, Yongchao Ma, Tao Jin, Mark E. Hahn, Bin Zhao. Characterization of the Aryl Hydrocarbon Receptor (AhR) Pathway in Anabas testudineus and Mechanistic Exploration of the Reduced Sensitivity of AhR2a. Environmental Science & Technology 2019, 53 (21) , 12803-12811. https://doi.org/10.1021/acs.est.9b04181
    8. Jennifer C. Brennan, Guochun He, Tomoaki Tsutsumi, Jing Zhao, Edward Wirth, Michael H. Fulton, and Michael S. Denison . Development of Species-Specific Ah Receptor-Responsive Third Generation CALUX Cell Lines with Enhanced Responsiveness and Improved Detection Limits. Environmental Science & Technology 2015, 49 (19) , 11903-11912. https://doi.org/10.1021/acs.est.5b02906
    9. Danica E. DeGroot, Diana G. Franks, Tatsuo Higa, Junichi Tanaka, Mark E. Hahn, and Michael S. Denison . Naturally Occurring Marine Brominated Indoles Are Aryl Hydrocarbon Receptor Ligands/Agonists. Chemical Research in Toxicology 2015, 28 (6) , 1176-1185. https://doi.org/10.1021/acs.chemrestox.5b00003
    10. Jenny Shoots, Domenico Fraccalvieri, Diana G. Franks, Michael S. Denison, Mark E. Hahn, Laura Bonati, and Wade H. Powell . An Aryl Hydrocarbon Receptor from the Salamander Ambystoma mexicanum Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Environmental Science & Technology 2015, 49 (11) , 6993-7001. https://doi.org/10.1021/acs.est.5b01299
    11. Jon A. Doering, Reza Farmahin, Steve Wiseman, Shawn C. Beitel, Sean W. Kennedy, John P. Giesy, and Markus Hecker . Differences in Activation of Aryl Hydrocarbon Receptors of White Sturgeon Relative to Lake Sturgeon Are Predicted by Identities of Key Amino Acids in the Ligand Binding Domain. Environmental Science & Technology 2015, 49 (7) , 4681-4689. https://doi.org/10.1021/acs.est.5b00085
    12. Masashi Hirano, Ji-Hee Hwang, Hae-Jeong Park, Su-Min Bak, Hisato Iwata, and Eun-Young Kim . In Silico Analysis of the Interaction of Avian Aryl Hydrocarbon Receptors and Dioxins to Decipher Isoform-, Ligand-, and Species-Specific Activations. Environmental Science & Technology 2015, 49 (6) , 3795-3804. https://doi.org/10.1021/es505733f
    13. Roberto Nuti, Marco Gargaro, Davide Matino, Daniela Dolciami, Ursula Grohmann, Paolo Puccetti, Francesca Fallarino, and Antonio Macchiarulo . Ligand Binding and Functional Selectivity of l-Tryptophan Metabolites at the Mouse Aryl Hydrocarbon Receptor (mAhR). Journal of Chemical Information and Modeling 2014, 54 (12) , 3373-3383. https://doi.org/10.1021/ci5005459
    14. Su-Min Bak, Midori Iida, Masashi Hirano, Hisato Iwata, and Eun-Young Kim . Potencies of Red Seabream AHR1- and AHR2-Mediated Transactivation by Dioxins: Implication of Both AHRs in Dioxin Toxicity. Environmental Science & Technology 2013, 47 (6) , 2877-2885. https://doi.org/10.1021/es304423w
    15. Camila Odio, Sarah A. Holzman, Michael S. Denison, Domenico Fraccalvieri, Laura Bonati, Diana G. Franks, Mark E. Hahn, and Wade H. Powell . Specific Ligand Binding Domain Residues Confer Low Dioxin Responsiveness to AHR1β of Xenopus laevis. Biochemistry 2013, 52 (10) , 1746-1754. https://doi.org/10.1021/bi301722k
    16. Domenico Fraccalvieri, Anatoly A. Soshilov, Sibel I. Karchner, Diana G. Franks, Alessandro Pandini, Laura Bonati, Mark E. Hahn, and Michael S. Denison . Comparative Analysis of Homology Models of the Ah Receptor Ligand Binding Domain: Verification of Structure–Function Predictions by Site-Directed Mutagenesis of a Nonfunctional Receptor. Biochemistry 2013, 52 (4) , 714-725. https://doi.org/10.1021/bi301457f
    17. Reza Farmahin, Dongmei Wu, Doug Crump, Jessica C. Hervé, Stephanie P. Jones, Mark E. Hahn, Sibel I. Karchner, John P. Giesy, Steven J. Bursian, Matthew J. Zwiernik, and Sean W. Kennedy . Sequence and In Vitro Function of Chicken, Ring-Necked Pheasant, and Japanese Quail AHR1 Predict In Vivo Sensitivity to Dioxins. Environmental Science & Technology 2012, 46 (5) , 2967-2975. https://doi.org/10.1021/es2043992
    18. Ilaria Motto, Annalisa Bordogna, Anatoly A. Soshilov, Michael S. Denison, and Laura Bonati . New Aryl Hydrocarbon Receptor Homology Model Targeted To Improve Docking Reliability. Journal of Chemical Information and Modeling 2011, 51 (11) , 2868-2881. https://doi.org/10.1021/ci2001617
    19. Laura Bonati, Stefano Motta, Lara Callea. The AhR Signaling Mechanism: A Structural Point of View. Journal of Molecular Biology 2024, 436 (3) , 168296. https://doi.org/10.1016/j.jmb.2023.168296
    20. Sarka Tumova, David Dolezel, Marek Jindra. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects – From Clock to Hormone Reception. Journal of Molecular Biology 2024, 436 (3) , 168332. https://doi.org/10.1016/j.jmb.2023.168332
    21. Martha Cecilia Rosales-Hernández, Martiniano Bello, Jazziel Velazquez Toledano, Barbara Citlali Escudero Feregrino, José Correa Basurto, Leticia Guadalupe Fragoso Morales, Mónica Adriana Torres-Ramos. Molecular dynamics simulations depict structural motions of the whole human aryl hydrocarbon receptor influencing its binding of ligands and HSP90. Journal of Biomolecular Structure and Dynamics 2023, 41 (22) , 13138-13153. https://doi.org/10.1080/07391102.2023.2171132
    22. Wanglong Zhang, Chen Zhang, Weilai Sha, Zhenhong Xue, Zhiguang Zhou, Yongchao Ma, Ning Ding, Peike Gao, Wenjing Tian, Liwen Zhang, Jiarun Wu, Bin Zhao, Renjun Wang. Functional characterization of common carp (Cyprinus carpio) AHRs: Subform-specific sensitivity to dioxin and interspecies differences. Science of The Total Environment 2023, 884 , 163809. https://doi.org/10.1016/j.scitotenv.2023.163809
    23. Jesús Calahorra, Salomé Araujo-Abad, José M. Granadino-Roldán, Ángela Naranjo, Esther Martínez-Lara, Eva Siles. Tyrosol: Repercussion of the Lack of a Hydroxyl-Group in the Response of MCF-7 Cells to Hypoxia. Journal of Medicinal Food 2023, 26 (7) , 511-520. https://doi.org/10.1089/jmf.2022.0096
    24. Zuoling Wen, Yuebin Zhang, Beirong Zhang, Yumo Hang, Li Xu, Yangsheng Chen, Qunhui Xie, Qun Zhao, Lihua Zhang, Guohui Li, Bin Zhao, Fei Sun, Yujia Zhai, Yun Zhu. Cryo-EM structure of the cytosolic AhR complex. Structure 2023, 31 (3) , 295-308.e4. https://doi.org/10.1016/j.str.2022.12.013
    25. Farag E.S. Mosa, Ayman O.S. El-Kadi, Khaled Barakat. In-depth analysis of the interactions of various aryl hydrocarbon receptor ligands from a computational perspective. Journal of Molecular Graphics and Modelling 2023, 118 , 108339. https://doi.org/10.1016/j.jmgm.2022.108339
    26. Christopher M. Schaupp, Carlie A. LaLone, Brett R. Blackwell, Gerald T. Ankley, Daniel L. Villeneuve. Leveraging ToxCast data and protein sequence conservation to complement aquatic life criteria derivation. Integrated Environmental Assessment and Management 2023, 19 (1) , 224-238. https://doi.org/10.1002/ieam.4617
    27. Amir Shadboorestan, Meriem Koual, Julien Dairou, Xavier Coumoul. The Role of the Kynurenine/AhR Pathway in Diseases Related to Metabolism and Cancer. International Journal of Tryptophan Research 2023, 16 https://doi.org/10.1177/11786469231185102
    28. Farag E.S. Mosa, Ayman O.S. El-Kadi, Khaled Barakat. Targeting the Aryl Hydrocarbon Receptor (AhR): A Review of the In-Silico Screening Approaches to Identify AhR Modulators. 2022https://doi.org/10.5772/intechopen.99228
    29. Samantha Faber, Tejas Lahoti, Ewan Taylor, Lauren Lewis, Jessica Sapiro, Vicencia Toledo Sales, Yvonne Dragan, Brandon Jeffy. Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022, 11 (10) , 1708. https://doi.org/10.3390/cells11101708
    30. Soo Ji Woo. Molecular characterization of the aryl hydrocarbon receptor 2 gene in black rockfish, Sebastes schlegelii , and its expression patterns upon exposure to benzo[a]pyrene, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin, and β‐naphthoflavone. Journal of Applied Toxicology 2022, 42 (4) , 638-650. https://doi.org/10.1002/jat.4245
    31. Emmanuel Vazquez-Rivera, Brenda L. Rojas, Jessica C. Parrott, Anna L. Shen, Yongna Xing, Patrick R. Carney, Christopher A. Bradfield. The aryl hydrocarbon receptor as a model PAS sensor. Toxicology Reports 2022, 9 , 1-11. https://doi.org/10.1016/j.toxrep.2021.11.017
    32. Mosè Casalegno, Guido Raos, Guido Sello. Identification of viable TCDD access pathways to human AhR PAS-B ligand binding domain. Journal of Molecular Graphics and Modelling 2021, 105 , 107886. https://doi.org/10.1016/j.jmgm.2021.107886
    33. Anne Stinn, Jens Furkert, Stefan H. E. Kaufmann, Pedro Moura-Alves, Michael Kolbe. Novel Method for Quantifying AhR-Ligand Binding Affinities Using Microscale Thermophoresis. Biosensors 2021, 11 (3) , 60. https://doi.org/10.3390/bios11030060
    34. Ziyue Kou, Wei Dai. Aryl hydrocarbon receptor: Its roles in physiology. Biochemical Pharmacology 2021, 185 , 114428. https://doi.org/10.1016/j.bcp.2021.114428
    35. Marek Jindra, Sarka Tumova, Matej Milacek, Lenka Bittova. A decade with the juvenile hormone receptor. 2021, 37-85. https://doi.org/10.1016/bs.aiip.2021.03.001
    36. Sarah A. Kazzaz, Sara Giani Tagliabue, Diana G. Franks, Michael S. Denison, Mark E. Hahn, Laura Bonati, Wade H. Powell. An aryl hydrocarbon receptor from the caecilian Gymnopis multiplicata suggests low dioxin affinity in the ancestor of all three amphibian orders. General and Comparative Endocrinology 2020, 299 , 113592. https://doi.org/10.1016/j.ygcen.2020.113592
    37. Jesús Calahorra, Esther Martínez-Lara, José M. Granadino-Roldán, Juan M. Martí, Ana Cañuelo, Santos Blanco, F. Javier Oliver, Eva Siles. Crosstalk between hydroxytyrosol, a major olive oil phenol, and HIF-1 in MCF-7 breast cancer cells. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-63417-6
    38. Samantha C. Faber, Sara Giani Tagliabue, Laura Bonati, Michael S. Denison. The Cellular and Molecular Determinants of Naphthoquinone-Dependent Activation of the Aryl Hydrocarbon Receptor. International Journal of Molecular Sciences 2020, 21 (11) , 4111. https://doi.org/10.3390/ijms21114111
    39. Aleksandr A. Artyukov, Elena A. Zelepuga, Larisa N. Bogdanovich, Natalia M. Lupach, Vyacheslav L. Novikov, Tatyana A. Rutckova, Emma P. Kozlovskaya. Marine Polyhydroxynaphthoquinone, Echinochrome A: Prevention of Atherosclerotic Inflammation and Probable Molecular Targets. Journal of Clinical Medicine 2020, 9 (5) , 1494. https://doi.org/10.3390/jcm9051494
    40. Jennifer R. Baker, Jennette A. Sakoff, Adam McCluskey. The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Medicinal Research Reviews 2020, 40 (3) , 972-1001. https://doi.org/10.1002/med.21645
    41. Anatoly A. Soshilov, Stefano Motta, Laura Bonati, Michael S. Denison. Transitional States in Ligand-Dependent Transformation of the Aryl Hydrocarbon Receptor into Its DNA-Binding Form. International Journal of Molecular Sciences 2020, 21 (7) , 2474. https://doi.org/10.3390/ijms21072474
    42. Jiaxuan Chen, Carolyn A. Haller, Finith E. Jernigan, Steffi K. Koerner, Daniel J. Wong, Yiqiang Wang, Jae Eun Cheong, Revanth Kosaraju, Julian Kwan, Diane D. Park, Beena Thomas, Swati Bhasin, Roberto C. De La Rosa, Alykhan M. Premji, Liying Liu, Eden Park, Alan C. Moss, Andrew Emili, Manoj Bhasin, Lijun Sun, Elliot L. Chaikof. Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Science Advances 2020, 6 (3) https://doi.org/10.1126/sciadv.aay8230
    43. Daniela Dolciami, Marco Ballarotto, Marco Gargaro, Luisa Carlota López-Cara, Francesca Fallarino, Antonio Macchiarulo. Targeting Aryl hydrocarbon receptor for next-generation immunotherapies: Selective modulators (SAhRMs) versus rapidly metabolized ligands (RMAhRLs). European Journal of Medicinal Chemistry 2020, 185 , 111842. https://doi.org/10.1016/j.ejmech.2019.111842
    44. Pedro Moura-Alves, Andreas Puyskens, Anne Stinn, Marion Klemm, Ute Guhlich-Bornhof, Anca Dorhoi, Jens Furkert, Annika Kreuchwig, Jonas Protze, Laura Lozza, Gang Pei, Philippe Saikali, Carolina Perdomo, Hans J. Mollenkopf, Robert Hurwitz, Frank Kirschhoefer, Gerald Brenner-Weiss, January Weiner, Hartmut Oschkinat, Michael Kolbe, Gerd Krause, Stefan H. E. Kaufmann. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection. Science 2019, 366 (6472) https://doi.org/10.1126/science.aaw1629
    45. Sara Giani Tagliabue, Samantha C. Faber, Stefano Motta, Michael S. Denison, Laura Bonati. Modeling the binding of diverse ligands within the Ah receptor ligand binding domain. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-47138-z
    46. Patrick Balaguer, Vanessa Delfosse, William Bourguet. Mechanisms of endocrine disruption through nuclear receptors and related pathways. Current Opinion in Endocrine and Metabolic Research 2019, 7 , 1-8. https://doi.org/10.1016/j.coemr.2019.04.008
    47. Eun-Young Kim, Naomi Inoue, Dong-Hee Koh, Hisato Iwata. The aryl hydrocarbon receptor 2 potentially mediates cytochrome P450 1A induction in the jungle crow (Corvus macrorhynchos). Ecotoxicology and Environmental Safety 2019, 171 , 99-111. https://doi.org/10.1016/j.ecoenv.2018.12.037
    48. Kumaraswamy Naidu Chitrala, Xiaoming Yang, Prakash Nagarkatti, Mitzi Nagarkatti. Comparative analysis of interactions between aryl hydrocarbon receptor ligand binding domain with its ligands: a computational study. BMC Structural Biology 2018, 18 (1) https://doi.org/10.1186/s12900-018-0095-2
    49. Selma Mahiout, Sara Giani Tagliabue, Atefeh Nasri, Iyekhoetin Matthew Omoruyi, Lars Pettersson, Laura Bonati, Raimo Pohjanvirta. In vitro toxicity and in silico docking analysis of two novel selective AH-receptor modulators. Toxicology in Vitro 2018, 52 , 178-188. https://doi.org/10.1016/j.tiv.2018.06.010
    50. Samantha Faber, Anatoly Soshilov, Sara Giani Tagliabue, Laura Bonati, Michael Denison. Comparative In Vitro and In Silico Analysis of the Selectivity of Indirubin as a Human Ah Receptor Agonist. International Journal of Molecular Sciences 2018, 19 (9) , 2692. https://doi.org/10.3390/ijms19092692
    51. Seung-Hyeon Seok, Zhi-Xiong Ma, John B. Feltenberger, Hongbo Chen, Hui Chen, Cameron Scarlett, Ziqing Lin, Kenneth A. Satyshur, Marissa Cortopassi, Colin R. Jefcoate, Ying Ge, Weiping Tang, Christopher A. Bradfield, Yongna Xing. Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR). Journal of Biological Chemistry 2018, 293 (6) , 1994-2005. https://doi.org/10.1074/jbc.RA117.000631
    52. Malin Larsson, Domenico Fraccalvieri, C. David Andersson, Laura Bonati, Anna Linusson, Patrik L. Andersson. Identification of potential aryl hydrocarbon receptor ligands by virtual screening of industrial chemicals. Environmental Science and Pollution Research 2018, 25 (3) , 2436-2449. https://doi.org/10.1007/s11356-017-0437-9
    53. Michael S. Denison, Samantha C. Faber. And now for something completely different: Diversity in ligand-dependent activation of Ah receptor responses. Current Opinion in Toxicology 2017, 2 , 124-131. https://doi.org/10.1016/j.cotox.2017.01.006
    54. Laura Bonati, Dario Corrada, Sara Giani Tagliabue, Stefano Motta. Molecular modeling of the AhR structure and interactions can shed light on ligand-dependent activation and transformation mechanisms. Current Opinion in Toxicology 2017, 2 , 42-49. https://doi.org/10.1016/j.cotox.2017.01.011
    55. Yating Cheng, Un-Ho Jin, Laurie A. Davidson, Robert S. Chapkin, Arul Jayaraman, Phanourios Tamamis, Asuka Orr, Clint Allred, Michael S. Denison, Anatoly Soshilov, Evelyn Weaver, Stephen Safe. Editor’s Highlight: Microbial-Derived 1,4-Dihydroxy-2-naphthoic Acid and Related Compounds as Aryl Hydrocarbon Receptor Agonists/Antagonists: Structure–Activity Relationships and Receptor Modeling. Toxicological Sciences 2017, 155 (2) , 458-473. https://doi.org/10.1093/toxsci/kfw230
    56. Walaa Faiad, Abdulsamie Hanano, Mohamed Maher Kabakibi, Abdul Qader Abbady. Immuno-detection of dioxins using a recombinant protein of aryl hydrocarbon receptor (AhR) fused with sfGFP. BMC Biotechnology 2016, 16 (1) https://doi.org/10.1186/s12896-016-0282-9
    57. In-Sung Kim, Ji-Hee Hwang, Masashi Hirano, Hisato Iwata, Eun-Young Kim. In vitro and in silico evaluation of transactivation potencies of avian AHR1 and AHR2 by endogenous ligands: Implications for the physiological role of avian AHR2. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2016, 187 , 1-9. https://doi.org/10.1016/j.cbpc.2016.03.011
    58. Dario Corrada, Anatoly A. Soshilov, Michael S. Denison, Laura Bonati, . Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation. PLOS Computational Biology 2016, 12 (6) , e1004981. https://doi.org/10.1371/journal.pcbi.1004981
    59. Karina Orlowska, Tomasz Molcan, Sylwia Swigonska, Agnieszka Sadowska, Monika Jablonska, Anna Nynca, Jan P. Jastrzebski, Renata E. Ciereszko. The tertiary structures of porcine AhR and ARNT proteins and molecular interactions within the TCDD/AhR/ARNT complex. Journal of Molecular Graphics and Modelling 2016, 67 , 119-126. https://doi.org/10.1016/j.jmgm.2016.05.012
    60. Yujuan Zheng, Jinghang Xie, Xin Huang, Jin Dong, Miki S. Park, William K. Chan. Binding studies using Pichia pastoris expressed human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins. Protein Expression and Purification 2016, 122 , 72-81. https://doi.org/10.1016/j.pep.2016.02.011
    61. Dániel Szöllősi, Áron Erdei, Gergely Gyimesi, Csaba Magyar, Tamás Hegedűs, . Access Path to the Ligand Binding Pocket May Play a Role in Xenobiotics Selection by AhR. PLOS ONE 2016, 11 (1) , e0146066. https://doi.org/10.1371/journal.pone.0146066
    62. Charlotte Esser. The Aryl Hydrocarbon Receptor in Immunity: Tools and Potential. 2016, 239-257. https://doi.org/10.1007/978-1-4939-3139-2_16
    63. Larissa Pernomian, Carlos H.T.P. da Silva. Current basis for discovery and development of aryl hydrocarbon receptor antagonists for experimental and therapeutic use in atherosclerosis. European Journal of Pharmacology 2015, 764 , 118-123. https://doi.org/10.1016/j.ejphar.2015.06.058
    64. Satoshi Miyagi, Kyoshiro Murata, Kazuya Sashino, Satoshi Sawamura, Saeko Uruno, Seiko Yoshimura, Eiichi Akahoshi, Mitsuko Ishihara-Sugano, Satoshi Itoh, Noriyuki Kurita. Binding affinity between AhR and exogenous/endogenous ligands: molecular simulations and biological experiment. Molecular Simulation 2015, 41 (7) , 555-563. https://doi.org/10.1080/08927022.2014.899696
    65. Arden Perkins, Jessica Phillips, Nancy Kerkvliet, Robert Tanguay, Gary Perdew, Siva Kolluri, William Bisson. A Structural Switch between Agonist and Antagonist Bound Conformations for a Ligand-Optimized Model of the Human Aryl Hydrocarbon Receptor Ligand Binding Domain. Biology 2014, 3 (4) , 645-669. https://doi.org/10.3390/biology3040645
    66. Meng Li, Pengcheng Liu, Jessica D. Wiley, Reyhaneh Ojani, David R. Bevan, Jianyong Li, Jinsong Zhu. A steroid receptor coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in regulating juvenile hormone response genes. Molecular and Cellular Endocrinology 2014, 394 (1-2) , 47-58. https://doi.org/10.1016/j.mce.2014.06.021
    67. Alban Bessede, Marco Gargaro, Maria T. Pallotta, Davide Matino, Giuseppe Servillo, Cinzia Brunacci, Silvio Bicciato, Emilia M. C. Mazza, Antonio Macchiarulo, Carmine Vacca, Rossana Iannitti, Luciana Tissi, Claudia Volpi, Maria L. Belladonna, Ciriana Orabona, Roberta Bianchi, Tobias V. Lanz, Michael Platten, Maria A. Della Fazia, Danilo Piobbico, Teresa Zelante, Hiroshi Funakoshi, Toshikazu Nakamura, David Gilot, Michael S. Denison, Gilles J. Guillemin, James B. DuHadaway, George C. Prendergast, Richard Metz, Michel Geffard, Louis Boon, Matteo Pirro, Alfonso Iorio, Bernard Veyret, Luigina Romani, Ursula Grohmann, Francesca Fallarino, Paolo Puccetti. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 2014, 511 (7508) , 184-190. https://doi.org/10.1038/nature13323
    68. Anatoly A. Soshilov, Michael S. Denison. Ligand Promiscuity of Aryl Hydrocarbon Receptor Agonists and Antagonists Revealed by Site-Directed Mutagenesis. Molecular and Cellular Biology 2014, 34 (9) , 1707-1719. https://doi.org/10.1128/MCB.01183-13
    69. Jintao Yuan, Yuepu Pu, Lihong Yin. Docking‐based three‐dimensional quantitative structure–activity relationship (3D‐QSAR) predicts binding affinities to aryl hydrocarbon receptor for polychlorinated dibenzodioxins, dibenzofurans, and biphenyls. Environmental Toxicology and Chemistry 2013, 32 (7) , 1453-1458. https://doi.org/10.1002/etc.2191
    70. Yonghua Wang, Qiuying Wang, Bing Wu, Yi Li, Guanghua Lu. Correlation between TCDD acute toxicity and aryl hydrocarbon receptor structure for different mammals. Ecotoxicology and Environmental Safety 2013, 89 , 84-88. https://doi.org/10.1016/j.ecoenv.2012.11.016
    71. Jason Matthews, Shaimaa Ahmed. AHR- and ER-Mediated Toxicology and Chemoprevention. 2013, 1-38. https://doi.org/10.1016/B978-0-444-62645-5.00001-8
    72. Reza Farmahin, Gillian E. Manning, Doug Crump, Dongmei Wu, Lukas J. Mundy, Stephanie P. Jones, Mark E. Hahn, Sibel I. Karchner, John P. Giesy, Steven J. Bursian, Matthew J. Zwiernik, Timothy B. Fredricks, Sean W. Kennedy. Amino Acid Sequence of the Ligand-Binding Domain of the Aryl Hydrocarbon Receptor 1 Predicts Sensitivity of Wild Birds to Effects of Dioxin-Like Compounds. Toxicological Sciences 2013, 131 (1) , 139-152. https://doi.org/10.1093/toxsci/kfs259
    73. Wenjing Tian, Heidi Xie, Hualing Fu, Xinhui Pei, Bin Zhao. Immunoanalysis Methods for the Detection of Dioxins and Related Chemicals. Sensors 2012, 12 (12) , 16710-16731. https://doi.org/10.3390/s121216710
    74. Yongna Xing, Manabu Nukaya, Kenneth A. Satyshur, Li Jiang, Vitali Stanevich, Elif Nihal Korkmaz, Lisa Burdette, Gregory D. Kennedy, Qiang Cui, Christopher A. Bradfield. Identification of the Ah-Receptor Structural Determinants for Ligand Preferences. Toxicological Sciences 2012, 129 (1) , 86-97. https://doi.org/10.1093/toxsci/kfs194
    75. Richard J. Wall, Guochun He, Michael S. Denison, Cenzo Congiu, Valentina Onnis, Alwyn Fernandes, David R. Bell, Martin Rose, J. Craig Rowlands, Gianfranco Balboni, Ian R. Mellor. Novel 2-amino-isoflavones exhibit aryl hydrocarbon receptor agonist or antagonist activity in a species/cell-specific context. Toxicology 2012, 297 (1-3) , 26-33. https://doi.org/10.1016/j.tox.2012.03.011
    76. Britton C. Goodale, Jane K. La Du, William H. Bisson, Derek B. Janszen, Katrina M. Waters, Robert L. Tanguay, . AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish. PLoS ONE 2012, 7 (1) , e29346. https://doi.org/10.1371/journal.pone.0029346
    77. Subba R. Palli, Hua Bai, John Wigginton. Insect Genomics. 2012, 1-29. https://doi.org/10.1016/B978-0-12-384747-8.10001-7
    78. Anne Marie Gannon, Martin R. Stämpfli, Warren G. Foster. Cigarette Smoke Exposure Leads to Follicle Loss via an Alternative Ovarian Cell Death Pathway in a Mouse Model. Toxicological Sciences 2012, 125 (1) , 274-284. https://doi.org/10.1093/toxsci/kfr279
    79. Eun-Young Choi, Hyosung Lee, R. W. Cameron Dingle, Kyung Bo Kim, Hollie I. Swanson. Development of Novel CH223191-Based Antagonists of the Aryl Hydrocarbon Receptor. Molecular Pharmacology 2012, 81 (1) , 3-11. https://doi.org/10.1124/mol.111.073643
    80. Satoshi Miyagi, Satoshi Sawamura, Eri Yoshikawa, Kenichi Dedachi, Satoshi Itoh, Mitsuko Ishihara-Sugano, Noriyuki Kurita. Ab initio fragment molecular orbital calculations on specific interactions between aryl hydrocarbon receptor and dioxin. International Journal of Quantum Chemistry 2012, 112 (1) , 289-299. https://doi.org/10.1002/qua.23212
    81. Jean-Philippe Charles, Thomas Iwema, V. Chandana Epa, Keiko Takaki, Jan Rynes, Marek Jindra. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proceedings of the National Academy of Sciences 2011, 108 (52) , 21128-21133. https://doi.org/10.1073/pnas.1116123109
    82. Thomas A. Gasiewicz, Ellen C. Henry. History of Research on the AHR. 2011, 1-32. https://doi.org/10.1002/9781118140574.ch1
    83. Danica DeGroot, Guochun He, Domenico Fraccalvieri, Laura Bonati, Allesandro Pandini, Michael S. Denison. AHR Ligands: Promiscuity in Binding and Diversity in Response. 2011, 63-79. https://doi.org/10.1002/9781118140574.ch4
    84. Mark E. Hahn, Sibel I. Karchner. Structural and Functional Diversification of AHRs during Metazoan Evolution. 2011, 387-403. https://doi.org/10.1002/9781118140574.ch27
    85. Michael S. Denison, Anatoly A. Soshilov, Guochun He, Danica E. DeGroot, Bin Zhao. Exactly the Same but Different: Promiscuity and Diversity in the Molecular Mechanisms of Action of the Aryl Hydrocarbon (Dioxin) Receptor. Toxicological Sciences 2011, 124 (1) , 1-22. https://doi.org/10.1093/toxsci/kfr218
    86. Anatoly Soshilov, Michael S. Denison. Ligand Displaces Heat Shock Protein 90 from Overlapping Binding Sites within the Aryl Hydrocarbon Receptor Ligand-binding Domain. Journal of Biological Chemistry 2011, 286 (40) , 35275-35282. https://doi.org/10.1074/jbc.M111.246439
    87. Maria Salzano, Anna Marabotti, Luciano Milanesi, Angelo Facchiano. Human aryl-hydrocarbon receptor and its interaction with dioxin and physiological ligands investigated by molecular modelling and docking simulations. Biochemical and Biophysical Research Communications 2011, 413 (2) , 176-181. https://doi.org/10.1016/j.bbrc.2011.08.039
    88. Melanie Powis, Trine Celius, Jason Matthews. Differential ligand-dependent activation and a role for Y322 in aryl hydrocarbon receptor-mediated regulation of gene expression. Biochemical and Biophysical Research Communications 2011, 410 (4) , 859-865. https://doi.org/10.1016/j.bbrc.2011.06.079
    89. Iain A. Murray, Colin A. Flaveny, Christopher R. Chiaro, Arun K. Sharma, Rachel S. Tanos, Jennifer C. Schroeder, Shantu G. Amin, William H. Bisson, Siva K. Kolluri, Gary H. Perdew. Suppression of Cytokine-Mediated Complement Factor Gene Expression through Selective Activation of the Ah Receptor with 3′,4′-Dimethoxy-α-naphthoflavone. Molecular Pharmacology 2011, 79 (3) , 508-519. https://doi.org/10.1124/mol.110.069369
    90. Trine Celius, Jason Matthews. Functional analysis of six human aryl hydrocarbon receptor variants in human breast cancer and mouse hepatoma cell lines. Toxicology 2010, 277 (1-3) , 59-65. https://doi.org/10.1016/j.tox.2010.08.015
    91. Ashutosh S. Jogalekar, Stephan Reiling, Roy J. Vaz. Identification of optimum computational protocols for modeling the aryl hydrocarbon receptor (AHR) and its interaction with ligands. Bioorganic & Medicinal Chemistry Letters 2010, 20 (22) , 6616-6619. https://doi.org/10.1016/j.bmcl.2010.09.019
    92. Bin Zhao, Danica E. DeGroot, Ai Hayashi, Guochun He, Michael S. Denison. CH223191 Is a Ligand-Selective Antagonist of the Ah (Dioxin) Receptor. Toxicological Sciences 2010, 117 (2) , 393-403. https://doi.org/10.1093/toxsci/kfq217
    93. Eri Yoshikawa, Satoshi Miyagi, Kenichi Dedachi, Mitsuko Ishihara-Sugano, Satoshi Itoh, Noriyuki Kurita. Specific interactions between aryl hydrocarbon receptor and dioxin congeners: Ab initio fragment molecular orbital calculations. Journal of Molecular Graphics and Modelling 2010, 29 (2) , 197-205. https://doi.org/10.1016/j.jmgm.2010.06.008
    94. Jesús Olivero-Verbel, María Cabarcas-Montalvo, Carlos Ortega-Zúñiga. Theoretical targets for TCDD: A bioinformatics approach. Chemosphere 2010, 80 (10) , 1160-1166. https://doi.org/10.1016/j.chemosphere.2010.06.020
    95. Fiona Whelan, Nan Hao, Sebastian G. B. Furness, Murray L. Whitelaw, Anne Chapman-Smith. Amino Acid Substitutions in the Aryl Hydrocarbon Receptor Ligand Binding Domain Reveal YH439 As an Atypical AhR Activator. Molecular Pharmacology 2010, 77 (6) , 1037-1046. https://doi.org/10.1124/mol.109.062927
    96. Fanny L. Casado, Kameshwar P. Singh, Thomas A. Gasiewicz. The aryl hydrocarbon receptor: Regulation of hematopoiesis and involvement in the progression of blood diseases. Blood Cells, Molecules, and Diseases 2010, 44 (4) , 199-206. https://doi.org/10.1016/j.bcmd.2010.01.005
    97. Jessica C. Hervé, Doug Crump, Stephanie P. Jones, Lukas J. Mundy, John P. Giesy, Matthew J. Zwiernik, Steven J. Bursian, Paul D. Jones, Steve B. Wiseman, Yi Wan, Sean W. Kennedy. Cytochrome P4501A Induction by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin and Two Chlorinated Dibenzofurans in Primary Hepatocyte Cultures of Three Avian Species. Toxicological Sciences 2010, 113 (2) , 380-391. https://doi.org/10.1093/toxsci/kfp270
    98. John J. Stegeman, Jared V. Goldstone, Mark E. Hahn. Perspectives on zebrafish as a model in environmental toxicology. 2010, 367-439. https://doi.org/10.1016/S1546-5098(10)02910-9
    99. P.I. Petkov, J.C. Rowlands, R. Budinsky, B. Zhao, M.S. Denison, O. Mekenyan. Mechanism-based common reactivity pattern (COREPA) modelling of aryl hydrocarbon receptor binding affinity. SAR and QSAR in Environmental Research 2010, 21 (1-2) , 187-214. https://doi.org/10.1080/10629360903570933

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect