ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Regulation of the Substrate Preference of p190RhoGAP by Protein Kinase C-Mediated Phosphorylation of a Phospholipid Binding Site

View Author Information
Department of Physiology, Semmelweis University, 1094 Budapest, Tűzoltó u. 37-47, Hungary
§ MGH Cancer Center and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129
*To whom correspondence should be addressed. Phone: 361 266 7426. Fax: 361 266 7480. E-mail: [email protected]
Cite this: Biochemistry 2009, 48, 36, 8615–8623
Publication Date (Web):August 12, 2009
https://doi.org/10.1021/bi900667y
Copyright © 2009 American Chemical Society

    Article Views

    692

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The Rho family GTPases are stringently regulated through the action of a large family of GTPase activating proteins (GAPs) that stimulate their relatively weak intrinsic GTP hydrolyzing activity. The p190RhoGAPs, which include the p190A and p190B proteins, are potent and widely expressed GAPs acting on both Rho and Rac GTPases. We have observed that several acidic phospholipids inhibit the RhoGAP activity and promote the RacGAP activity of p190 proteins. In liposome binding assays we have demonstrated that binding of p190A to phospholipids is controlled by electrostatic interactions. Using mapping techniques, we determined that a small polybasic peptide stretch within p190A is a common site for both the phospholipid binding and PKC phosphorylation. Moreover, PKC-mediated phosphorylation of two amino acids (serine-1221 and threonine-1226) within this region of p190A prevents the binding and substrate specificity regulation by phospholipids. Transfection of COS-7 cells with mutant forms of p190A either unable to bind to phospholipids or unable to become phosphorylated induced distinct morphological changes. Together, these findings reveal a novel GAP regulatory mechanism in which phosphorylation indirectly alters GTPase substrate preference by affecting the interaction with acidic phospholipids. Our observations provide a potential mechanism of Rac/Rho antagonism described in several cellular functions.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The primers used for different DNA constructs (Table S1) and figures showing the ineffectiveness of PKC in the presence of the inhibitor BIM (Figure S1) and in the absence of ATP (Figure S2) and data obtained with the phospho-mimicking mutants p190(1191)S1221D and p190(1191)T1226D (Figure S3). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 39 publications.

    1. Darren Chen Pei Wong, Catherine Qiurong Pan, Shi Yin Er, T. Thivakar, Tan Zi Yi Rachel, Sock Hong Seah, Pei Jou Chua, Tingting Jiang, Ti Weng Chew, Parthiv Kant Chaudhuri, Somsubhro Mukherjee, Agus Salim, Thike Aye Aye, Cheng Gee Koh, Chwee Teck Lim, Puay Hoon Tan, Boon Huat Bay, Anne J. Ridley, Boon Chuan Low, . The scaffold RhoGAP protein ARHGAP8/BPGAP1 synchronizes Rac and Rho signaling to facilitate cell migration. Molecular Biology of the Cell 2023, 34 (3) https://doi.org/10.1091/mbc.E21-03-0099
    2. Magdolna K. Levay, Kurt A. Krobert, Andreas Vogt, Atif Ahmad, Andreas Jungmann, Christiane Neuber, Sebastian Pasch, Arne Hansen, Oliver J. Müller, Susanne Lutz, Thomas Wieland. RGS3L allows for an M2 muscarinic receptor-mediated RhoA-dependent inotropy in cardiomyocytes. Basic Research in Cardiology 2022, 117 (1) https://doi.org/10.1007/s00395-022-00915-w
    3. Johnathon B. Schafer, Erin D. Lucas, Monika Dzieciatkowska, Tadg Forward, Beth A. Jirón Tamburini. Programmed death ligand 1 intracellular interactions with STAT3 and focal adhesion protein Paxillin facilitate lymphatic endothelial cell remodeling. Journal of Biological Chemistry 2022, 298 (12) , 102694. https://doi.org/10.1016/j.jbc.2022.102694
    4. Govind Kunduri, Usha Acharya, Jairaj K. Acharya. Lipid Polarization during Cytokinesis. Cells 2022, 11 (24) , 3977. https://doi.org/10.3390/cells11243977
    5. Éva Wisniewski, Domonkos Czárán, Fanni Kovács, Enikő Bahurek, Afrodité Németh, Péter Sasvári, Gergő Szanda, Aladár Pettkó‐Szandtner, Eva Klement, Erzsébet Ligeti, Roland Csépányi‐Kömi. A novel BRET ‐Based GAP assay reveals phosphorylation‐dependent regulation of the RAC ‐specific GTPase activating protein ARHGAP25. The FASEB Journal 2022, 36 (11) https://doi.org/10.1096/fj.202200689R
    6. Jennifer D. Black, Trisiani Affandi, Adrian R. Black, Mary E. Reyland. PKCα and PKCδ: Friends and Rivals. Journal of Biological Chemistry 2022, 298 (8) , 102194. https://doi.org/10.1016/j.jbc.2022.102194
    7. Gabriel Kreider-Letterman, Nicole M. Carr, Rafael Garcia-Mata. Fixing the GAP: The role of RhoGAPs in cancer. European Journal of Cell Biology 2022, 101 (2) , 151209. https://doi.org/10.1016/j.ejcb.2022.151209
    8. Nobutaka Takahashi, Keiichi Hatakeyama, Takeshi Nagashima, Keiichi Ohshima, Kenichi Urakami, Ken Yamaguchi, Yasuyuki Hirashima. Activation of oxidative phosphorylation in TP53-inactive endometrial carcinomas with a poor prognosis. International Journal of Gynecologic Cancer 2021, 31 (12) , 1557-1563. https://doi.org/10.1136/ijgc-2021-002983
    9. Fabien Binamé, Lucas D. Pham-Van, Dominique Bagnard. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cellular and Molecular Life Sciences 2021, 78 (13) , 5257-5273. https://doi.org/10.1007/s00018-021-03852-4
    10. Mariana Cooke, Martin J. Baker, Marcelo G. Kazanietz, Victoria Casado-Medrano. PKCε regulates Rho GTPases and actin cytoskeleton reorganization in non-small cell lung cancer cells. Small GTPases 2021, 12 (3) , 202-208. https://doi.org/10.1080/21541248.2019.1684785
    11. Adrian R. Black, Jennifer D. Black. The complexities of PKCα signaling in cancer. Advances in Biological Regulation 2021, 80 , 100769. https://doi.org/10.1016/j.jbior.2020.100769
    12. Nilufar Rahimova, Mariana Cooke, Suli Zhang, Martin J. Baker, Marcelo G. Kazanietz. The PKC universe keeps expanding: From cancer initiation to metastasis. Advances in Biological Regulation 2020, 78 , 100755. https://doi.org/10.1016/j.jbior.2020.100755
    13. Shane Comer, Zoltan Nagy, Alfonso Bolado, Alexander von Kriegsheim, Stepan Gambaryan, Ulrich Walter, Oliver Pagel, René P. Zahedi, Kerstin Jurk, Albert Smolenski. The RhoA regulators Myo9b and GEF‐H1 are targets of cyclic nucleotide‐dependent kinases in platelets. Journal of Thrombosis and Haemostasis 2020, 18 (11) , 3002-3012. https://doi.org/10.1111/jth.15028
    14. Hanyue Ouyang, Phi Luong, Morten Frödin, Steen H. Hansen. p190A RhoGAP induces CDH1 expression and cooperates with E-cadherin to activate LATS kinases and suppress tumor cell growth. Oncogene 2020, 39 (33) , 5570-5587. https://doi.org/10.1038/s41388-020-1385-2
    15. Victoria Casado-Medrano, Laura Barrio-Real, Anita Wang, Mariana Cooke, Cynthia Lopez-Haber, Marcelo G. Kazanietz. Distinctive requirement of PKCε in the control of Rho GTPases in epithelial and mesenchymally transformed lung cancer cells. Oncogene 2019, 38 (27) , 5396-5412. https://doi.org/10.1038/s41388-019-0796-4
    16. Héraud, Pinault, Lagrée, Moreau. p190RhoGAPs, the ARHGAP35- and ARHGAP5-Encoded Proteins, in Health and Disease. Cells 2019, 8 (4) , 351. https://doi.org/10.3390/cells8040351
    17. Aurélien Bidaud-Meynard, Fabien Binamé, Valérie Lagrée, Violaine Moreau. Regulation of Rho GTPase activity at the leading edge of migrating cells by p190RhoGAP. Small GTPases 2019, 10 (2) , 99-110. https://doi.org/10.1080/21541248.2017.1280584
    18. Roland Csépányi‐Kömi, Máté Pásztor, Balázs Bartos, Erzsébet Ligeti. The neglected terminators: Rho family GAP s in neutrophils. European Journal of Clinical Investigation 2018, 48 (S2) https://doi.org/10.1111/eci.12993
    19. Elisabeth M. Storck, Cagakan Özbalci, Ulrike S. Eggert. Lipid Cell Biology: A Focus on Lipids in Cell Division. Annual Review of Biochemistry 2018, 87 (1) , 839-869. https://doi.org/10.1146/annurev-biochem-062917-012448
    20. Denis Martinez, Béatrice Langlois d'Estaintot, Thierry Granier, James Tolchard, Cécile Courrèges, Valérie Prouzet-Mauléon, Michel Hugues, Bernard Gallois, François Doignon, Benoît Odaert. Structural evidence of a phosphoinositide-binding site in the Rgd1-RhoGAP domain. Biochemical Journal 2017, 474 (19) , 3307-3319. https://doi.org/10.1042/BCJ20170331
    21. Prasanna Parasuraman, Peter Mulligan, James A. Walker, Bihua Li, Myriam Boukhali, Wilhelm Haas, Andre Bernards. Interaction of p190A RhoGAP with eIF3A and Other Translation Preinitiation Factors Suggests a Role in Protein Biosynthesis. Journal of Biological Chemistry 2017, 292 (7) , 2679-2689. https://doi.org/10.1074/jbc.M116.769216
    22. Araceli Hernandez-Flores, Ma de Jesus Almaraz-Barrera, Daniela Lozano-Amado, Jose Correa-Basurto, Arturo Rojo-Dominguez, Eva Luna-Rivera, Michael Schnoor, Nancy Guillen, Rosaura Hernandez-Rivas, Miguel Vargas. A new nucleocytoplasmic RhoGAP protein contributes to control the pathogenicity of Entamoeba histolytica by regulating EhRacC and EhRacD activity. Cellular Microbiology 2016, 18 (11) , 1653-1672. https://doi.org/10.1111/cmi.12603
    23. Fabien Binamé, Aurélien Bidaud-Meynard, Laure Magnan, Léo Piquet, Bertille Montibus, Anne Chabadel, Frédéric Saltel, Valérie Lagrée, Violaine Moreau. Cancer-associated mutations in the protrusion-targeting region of p190RhoGAP impact tumor cell migration. Journal of Cell Biology 2016, 214 (7) , 859-873. https://doi.org/10.1083/jcb.201601063
    24. Hongyu Bao, Fudong Li, Chongyuan Wang, Na Wang, Yiyang Jiang, Yajun Tang, Jihui Wu, Yunyu Shi. Structural Basis for the Specific Recognition of RhoA by the Dual GTPase-activating Protein ARAP3. Journal of Biological Chemistry 2016, 291 (32) , 16709-16719. https://doi.org/10.1074/jbc.M116.736140
    25. Katherine Stewart, Yaned Gaitan, Maxwell E. R. Shafer, Lamine Aoudjit, Di Hu, Richa Sharma, Mathieu Tremblay, Hidetaka Ishii, Michael Marcotte, Daniela Stanga, You Chi Tang, Sami Kamel Boualia, Alana H. T. Nguyen, Tomoko Takano, Nathalie Lamarche-Vane, Silvia Vidal, Maxime Bouchard, . A Point Mutation in p190A RhoGAP Affects Ciliogenesis and Leads to Glomerulocystic Kidney Defects. PLOS Genetics 2016, 12 (2) , e1005785. https://doi.org/10.1371/journal.pgen.1005785
    26. Hooi Ching Lim, John R. Couchman. Syndecan-2 regulation of morphology in breast carcinoma cells is dependent on RhoGTPases. Biochimica et Biophysica Acta (BBA) - General Subjects 2014, 1840 (8) , 2482-2490. https://doi.org/10.1016/j.bbagen.2014.01.018
    27. Ákos M. Lőrincz, Gábor Szarvas, Susan M.E. Smith, Erzsébet Ligeti. Role of Rac GTPase activating proteins in regulation of NADPH oxidase in human neutrophils. Free Radical Biology and Medicine 2014, 68 , 65-71. https://doi.org/10.1016/j.freeradbiomed.2013.12.001
    28. Gervaise Loirand, Vincent Sauzeau, Pierre Pacaud. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiological Reviews 2013, 93 (4) , 1659-1720. https://doi.org/10.1152/physrev.00021.2012
    29. Magdolna Lévay, Balázs Bartos, Erzsébet Ligeti. p190RhoGAP has cellular RacGAP activity regulated by a polybasic region. Cellular Signalling 2013, 25 (6) , 1388-1394. https://doi.org/10.1016/j.cellsig.2013.03.004
    30. Prasanta K. Hota, Matthias Buck. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cellular and Molecular Life Sciences 2012, 69 (22) , 3765-3805. https://doi.org/10.1007/s00018-012-1019-0
    31. Jeong-Hun Kang, Riki Toita, Chan Woo Kim, Yoshiki Katayama. Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnology Advances 2012, 30 (6) , 1662-1672. https://doi.org/10.1016/j.biotechadv.2012.07.004
    32. Roland Csépányi-Kömi, Magdolna Lévay, Erzsébet Ligeti. Rho/RacGAPs. Small GTPases 2012, 3 (3) , 178-182. https://doi.org/10.4161/sgtp.20040
    33. Fereshteh Karimzadeh, Martin Primeau, Driss Mountassif, Isabelle Rouiller, Nathalie Lamarche-Vane. A Stretch of Polybasic Residues Mediates Cdc42 GTPase-activating Protein (CdGAP) Binding to Phosphatidylinositol 3,4,5-Trisphosphate and Regulates Its GAP Activity. Journal of Biological Chemistry 2012, 287 (23) , 19610-19621. https://doi.org/10.1074/jbc.M112.344606
    34. Roland Csépányi-Kömi, Magdolna Lévay, Erzsébet Ligeti. Small G proteins and their regulators in cellular signalling. Molecular and Cellular Endocrinology 2012, 353 (1-2) , 10-20. https://doi.org/10.1016/j.mce.2011.11.005
    35. E. Ligeti, R. Csépányi‐Kömi, L. Hunyady. Physiological mechanisms of signal termination in biological systems. Acta Physiologica 2012, 204 (4) , 469-478. https://doi.org/10.1111/j.1748-1716.2012.02414.x
    36. Roland Csépányi-Kömi, Gábor Sirokmány, Miklós Geiszt, Erzsébet Ligeti. ARHGAP25, a novel Rac GTPase-activating protein, regulates phagocytosis in human neutrophilic granulocytes. Blood 2012, 119 (2) , 573-582. https://doi.org/10.1182/blood-2010-12-324053
    37. Erzsébet Ligeti, Stefan Welti, Klaus Scheffzek. Inhibition and Termination of Physiological Responses by GTPase Activating Proteins. Physiological Reviews 2012, 92 (1) , 237-272. https://doi.org/10.1152/physrev.00045.2010
    38. Tamás Németh, Krisztina Futosi, Csilla Hably, Madeleine R. Brouns, Sascha M. Jakob, Miklós Kovács, Zsuzsanna Kertész, Barbara Walzog, Jeffrey Settleman, Attila Mócsai. Neutrophil Functions and Autoimmune Arthritis in the Absence of p190RhoGAP: Generation and Analysis of a Novel Null Mutation in Mice. The Journal of Immunology 2010, 185 (5) , 3064-3075. https://doi.org/10.4049/jimmunol.0904163
    39. K. L. Grinnell, B. Casserly, E. O. Harrington. Role of protein tyrosine phosphatase SHP2 in barrier function of pulmonary endothelium. American Journal of Physiology-Lung Cellular and Molecular Physiology 2010, 298 (3) , L361-L370. https://doi.org/10.1152/ajplung.00374.2009

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect