ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Occidiofungin, a Unique Antifungal Glycopeptide Produced by a Strain of Burkholderia contaminans

View Author Information
Mississippi State University, Department of Entomology and Department of Plant Pathology, Mississippi State, Mississippi 39762
§ University of Alabama at Birmingham, Department of Microbiology, Birmingham, Alabama 35294
Mississippi State University, College of Veterinary Medicine, Department of Pathobiology and Population Medicine, Mississippi State, Mississippi 39762
Mississippi State University, Department of Biological Sciences, Mississippi State, Mississippi 39762
University of Alabama at Birmingham, Comprehensive Cancer Center Mass Spectrometry Shared Facility, Birmingham, Alabama 35294
# University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison (NMRFAM), Madison, Wisconsin 53706
*To whom correspondence should be addressed. E-mail: [email protected]. Fax: (662) 325-7939. Phone: (662) 325-1244.
Cite this: Biochemistry 2009, 48, 35, 8312–8321
Publication Date (Web):July 29, 2009
https://doi.org/10.1021/bi900814c
Copyright © 2009 American Chemical Society

    Article Views

    2080

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Bacterial strain Burkholderia contaminans MS14 was isolated from soil that suppressed brown patch disease of lawn grass. An antifungal compound was purified from the liquid culture of this bacterium. In this study, complete covalent structures of two purified closely related antifungal compounds were determined by the experiments of TOCSY, NOESY, ROESY, 13C HSQC 2D NMR, and ESI-MS and GC. The analysis of monoisotopic masses of the purified preparation indicated the presence of two related compounds with masses determined to be 1199.543 and 1215.518 Da; the difference corresponds to the mass of an oxygen atom. GC analysis identified a xylose sugar attached to the antifungal compound. NMR experiments revealed that the compound is cyclic and composed of eight amino acids, two of which are β-hydroxy derivatives of Tyr and Asn, and one being a novel amino acid. The novel amino acid serves as the scaffold for the attachment of the xylose and a short acyl chain. The spectrum and concentration of antifungal activity were determined using a microtiter plate assay. The antifungal compound demonstrated potent antifungal activities against a broad panel of fungal plant and animal pathogens, as well as two Pythium spp. Microscopic observations showed that the antifungal compound disrupts normal membrane morphology. The cells fill with large inclusion bodies and the membrane becomes irregularly shaped and swollen following the exposure to subinhibitory concentrations of the antifungal compound. Our data support the identification of a novel fungicide and the compound has been named occidiofungin, meaning fungal killer.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Figure S1 showing the ROEs from the beta protons to the delta protons of the amino group for Asn1, BHN2, and Asn7, Figure S2 showing the HNi to HNi+1 NOEs, and Figure S3 showing the complete assignment of the 13C-HSQC data set. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 92 publications.

    1. Mélanie Gonzales, Pauline Jacquet, Floriane Gaucher, Éric Chabrière, Laure Plener, David Daudé. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. Journal of Natural Products 2024, 87 (4) , 1268-1284. https://doi.org/10.1021/acs.jnatprod.3c00672
    2. Nopakorn Hansanant, Kevin Cao, Abraham Tenorio, Thushinari Joseph, Min Ju, Noah McNally, Evangel Kummari, McKinley Williams, Andrew Cothrell, Andrew R. Buhrow, Ronald Shin, Ravi Orugunty, Leif Smith. Previously Uncharacterized Variants, OCF-E–OCF-J, of the Antifungal Occidiofungin Produced by Burkholderia contaminans MS14. Journal of Natural Products 2024, 87 (2) , 186-194. https://doi.org/10.1021/acs.jnatprod.3c00777
    3. Toma Kadowaki, Rin Kainuma, Seiya Kato, Hiroyuki Konno. Synthesis and Configuration Confirmation of the ATHOD Fatty Amino Acid Residue in the Burkholdines. Journal of Natural Products 2022, 85 (8) , 2052-2061. https://doi.org/10.1021/acs.jnatprod.2c00469
    4. Sara Freitas, Raquel Castelo-Branco, Arlette Wenzel-Storjohann, Vitor M. Vasconcelos, Deniz Tasdemir, Pedro N. Leão. Structure and Biosynthesis of Desmamides A–C, Lipoglycopeptides from the Endophytic Cyanobacterium Desmonostoc muscorum LEGE 12446. Journal of Natural Products 2022, 85 (7) , 1704-1714. https://doi.org/10.1021/acs.jnatprod.2c00162
    5. Sylvia Kunakom, Alessandra S. Eustáquio. Burkholderia as a Source of Natural Products. Journal of Natural Products 2019, 82 (7) , 2018-2037. https://doi.org/10.1021/acs.jnatprod.8b01068
    6. Dayna Emrick, Akshaya Ravichandran, Jiten Gosai, Shien Lu, Donna M. Gordon, and Leif Smith . The Antifungal Occidiofungin Triggers an Apoptotic Mechanism of Cell Death in Yeast. Journal of Natural Products 2013, 76 (5) , 829-838. https://doi.org/10.1021/np300678e
    7. Akshaya Ravichandran, Ganyu Gu, Jerome Escano, Shi-En Lu, and Leif Smith . The Presence of Two Cyclase Thioesterases Expands the Conformational Freedom of the Cyclic Peptide Occidiofungin. Journal of Natural Products 2013, 76 (2) , 150-156. https://doi.org/10.1021/np3005503
    8. Zhenjian Lin, Joseph O. Falkinham, III, Kamilia A. Tawfik, Peter Jeffs, Brian Bray, George Dubay, James E. Cox, and Eric W. Schmidt . Burkholdines from Burkholderia ambifaria: Antifungal Agents and Possible Virulence Factors. Journal of Natural Products 2012, 75 (9) , 1518-1523. https://doi.org/10.1021/np300108u
    9. Kamilia A. Tawfik, Peter Jeffs, Brian Bray, George Dubay, Joseph O. Falkinham, III, Mostafa Mesbah, Diaa Youssef, Sherief Khalifa and Eric W. Schmidt . Burkholdines 1097 and 1229, Potent Antifungal Peptides from Burkholderia ambifaria 2.2N. Organic Letters 2010, 12 (4) , 664-666. https://doi.org/10.1021/ol9029269
    10. Jianzhao Qi, Shi-jie Kang, Ling Zhao, Jin‑ming Gao, Chengwei Liu. Natural and engineered xylosyl products from microbial source. Natural Products and Bioprospecting 2024, 14 (1) https://doi.org/10.1007/s13659-024-00435-1
    11. Sarah E. McGrath-Blaser, Natalie McGathey, Allison Pardon, Arik M. Hartmann, Ana V. Longo. Invasibility of a North American soil ecosystem to amphibian-killing fungal pathogens. Proceedings of the Royal Society B: Biological Sciences 2024, 291 (2021) https://doi.org/10.1098/rspb.2023.2658
    12. Jiayuan Jia, Shi-En Lu. Comparative Genome Analyses Provide Insight into the Antimicrobial Activity of Endophytic Burkholderia. Microorganisms 2024, 12 (1) , 100. https://doi.org/10.3390/microorganisms12010100
    13. Rabina Kumpakha, Donna M. Gordon, . Occidiofungin inhibition of Candida biofilm formation on silicone elastomer surface. Microbiology Spectrum 2023, 11 (6) https://doi.org/10.1128/spectrum.02460-23
    14. Andrew Cothrell, Kevin Cao, Rachele Bonasera, Abraham Tenorio, Ravi Orugunty, Leif Smith. Intravaginal Gel for Sustained Delivery of Occidiofungin and Long-Lasting Antifungal Effects. Gels 2023, 9 (10) , 787. https://doi.org/10.3390/gels9100787
    15. D. E. Tsvetkov, A. O. Chizhov, A. S. Dmitrenok, O. A. Lapchinskaya, G. S. Katrukha, N. E. Nifantiev. Structure, 1H and 13C NMR spectra of the minor component from the antimicrobial complex produced by actinomycete Streptomyces roseoflavus (INA-Ac-5812). Russian Chemical Bulletin 2023, 72 (9) , 2197-2205. https://doi.org/10.1007/s11172-023-4016-6
    16. Vartika Mathur, Dana Ulanova. Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. Microbial Ecology 2023, 86 (1) , 25-48. https://doi.org/10.1007/s00248-022-02073-x
    17. Lijuan Wu, Liqun Tang, Yuchang He, Cong Han, Lei Wang, Yunzeng Zhang, Zhiguo E, . BysR, a LysR-Type Pleiotropic Regulator, Controls Production of Occidiofungin by Activating the LuxR-Type Transcriptional Regulator AmbR1 in Burkholderia sp. Strain JP2-270. Microbiology Spectrum 2023, 11 (2) https://doi.org/10.1128/spectrum.02684-22
    18. , Junfeng Shi, Jingting Du, . Identification of postharvest fruit biocontrol strain Burkholderia contaminans against fungi decay. European Journal of Horticultural Science 2023, 88 (1) , 1-12. https://doi.org/10.17660/eJHS.2023/002
    19. Ying Liu, Makoto Ojika. Genomic Analysis of the Rare Slightly Halophilic Myxobacterium “Paraliomyxa miuraensis” SMH-27-4, the Producer of the Antibiotic Miuraenamide A. Microorganisms 2023, 11 (2) , 371. https://doi.org/10.3390/microorganisms11020371
    20. Mariana Rodríguez-Cisneros, Leslie Mariana Morales-Ruíz, Anuar Salazar-Gómez, Fernando Uriel Rojas-Rojas, Paulina Estrada-de los Santos. Compilation of the Antimicrobial Compounds Produced by Burkholderia Sensu Stricto. Molecules 2023, 28 (4) , 1646. https://doi.org/10.3390/molecules28041646
    21. Sharon L. Doty, Pierre M. Joubert, Andrea Firrincieli, Andrew W. Sher, Robert Tournay, Carina Kill, Shruti S. Parikh, Patricia Okubara. Potential Biocontrol Activities of Populus Endophytes against Several Plant Pathogens Using Different Inhibitory Mechanisms. Pathogens 2023, 12 (1) , 13. https://doi.org/10.3390/pathogens12010013
    22. Peng Deng, Jiayuan Jia, Adam Foxfire, Sonya M. Baird, Leif J. Smith, Shi-En Lu. A Polyketide Synthetase Gene Cluster Is Responsible for Antibacterial Activity of Burkholderia contaminans MS14. Phytopathology® 2023, 113 (1) , 11-20. https://doi.org/10.1094/PHYTO-03-22-0106-R
    23. Mengxin Geng, Nopakorn Hansanant, Shi-En Lu, Steve W. Lockless, Ronald Shin, Ravi Orugunty, Leif Smith. Synthesis and characterization of semisynthetic analogs of the antifungal occidiofungin. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.1056453
    24. Tanya Clements-Decker, Megan Kode, Sehaam Khan, Wesaal Khan. Underexplored bacteria as reservoirs of novel antimicrobial lipopeptides. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.1025979
    25. Marta B. Lousada, Tim Lachnit, Janin Edelkamp, Ralf Paus, Thomas C. G. Bosch. Hydra and the hair follicle – An unconventional comparative biology approach to exploring the human holobiont. BioEssays 2022, 44 (5) https://doi.org/10.1002/bies.202100233
    26. Rabina Kumpakha, Donna M. Gordon. Inhibition of morphological transition and hyphae extension in Candida spp. by occidiofungin. Journal of Applied Microbiology 2022, 132 (4) , 3038-3048. https://doi.org/10.1111/jam.15425
    27. Evelise Bach, Luciane Maria Pereira Passaglia, Junjing Jiao, Harald Gross. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Critical Reviews in Microbiology 2022, 48 (2) , 121-160. https://doi.org/10.1080/1040841X.2021.1946009
    28. Jiayuan Jia, Emerald Ford, Sarah M. Hobbs, Sonya M. Baird, Shi-En Lu. Occidiofungin Is the Key Metabolite for Antifungal Activity of the Endophytic Bacterium Burkholderia sp. MS455 Against Aspergillus flavus. Phytopathology® 2022, 112 (3) , 481-491. https://doi.org/10.1094/PHYTO-06-21-0225-R
    29. Hiroyuki Konno, Mio Sasaki, Hinata Sano, Keima Osawa, Kazuto Nosaka, Shigekazu Yano. The Hydrophobicity and Antifungal Potentiation of Burkholdine Analogues. Molecules 2022, 27 (4) , 1191. https://doi.org/10.3390/molecules27041191
    30. Cahya Prihatna, Theodorus Eko Pramudito, Arild Ranlym Arifin, Thi Kim Ngan Nguyen, Maria Indah Purnamasari, Antonius Suwanto. Antifungal Peptides from a Burkholderia Strain Suppress Basal Stem Rot Disease of Oil Palm. Phytopathology® 2022, 112 (2) , 238-248. https://doi.org/10.1094/PHYTO-11-20-0529-R
    31. Mio Sasaki, Toma Kadowaki, Seiya Kato, So Chida, Shigekazu Yano, Kazuto Nosaka, Hiroyuki Konno. Synthesis of xylose-binding cyclic octalipopeptides burkholdine-1213 analogues. Tetrahedron Letters 2021, 87 , 153542. https://doi.org/10.1016/j.tetlet.2021.153542
    32. Marika Pellegrini, Claudia Ercole, Carmelo Gianchino, Matteo Bernardi, Loretta Pace, Maddalena Del Gallo. Fusarium Oxysporum f. sp. Cannabis Isolated from Cannabis Sativa L.: In Vitro and In Planta Biocontrol by a Plant Growth Promoting-Bacteria Consortium. Plants 2021, 10 (11) , 2436. https://doi.org/10.3390/plants10112436
    33. Eliza Depoorter, Tom Coenye, Peter Vandamme, . Biosynthesis of Ditropolonyl Sulfide, an Antibacterial Compound Produced by Burkholderia cepacia Complex Strain R-12632. Applied and Environmental Microbiology 2021, 87 (22) https://doi.org/10.1128/AEM.01169-21
    34. Ravikumar R. Patel, Disha D. Patel, Jaimika Bhatt, Parth Thakor, Lindsay R. Triplett, Vasudev R. Thakkar. Induction of pre‐chorismate, jasmonate and salicylate pathways by Burkholderia sp. RR18 in peanut seedlings. Journal of Applied Microbiology 2021, 131 (3) , 1417-1430. https://doi.org/10.1111/jam.15019
    35. Anton P. Tyurin, Vera A. Alferova, Alexander S. Paramonov, Maxim V. Shuvalov, Gulnara K. Kudryakova, Eugene A. Rogozhin, Alexander Y. Zherebker, Vladimir A. Brylev, Alexey A. Chistov, Anna A. Baranova, Mikhail V. Biryukov, Igor A. Ivanov, Igor A. Prokhorenko, Natalia E. Grammatikova, Tatyana V. Kravchenko, Elena B. Isakova, Elena P. Mirchink, Elena G. Gladkikh, Elena V. Svirshchevskaya, Andrey V. Mardanov, Aleksey V. Beletsky, Milita V. Kocharovskaya, Valeriya V. Kulyaeva, Alexander S. Shashkov, Dmitry E. Tsvetkov, Nikolay E. Nifantiev, Alexander S. Apt, Konstantin B. Majorov, Svetlana S. Efimova, Nikolai V. Ravin, Evgeny N. Nikolaev, Olga S. Ostroumova, Genrikh S. Katrukha, Olda A. Lapchinskaya, Olga A. Dontsova, Stanislav S. Terekhov, Ilya A. Osterman, Zakhar O. Shenkarev, Vladimir A. Korshun. Gausemycins A,B: Cyclic Lipoglycopeptides from Streptomyces sp.**. Angewandte Chemie International Edition 2021, 60 (34) , 18694-18703. https://doi.org/10.1002/anie.202104528
    36. Anton P. Tyurin, Vera A. Alferova, Alexander S. Paramonov, Maxim V. Shuvalov, Gulnara K. Kudryakova, Eugene A. Rogozhin, Alexander Y. Zherebker, Vladimir A. Brylev, Alexey A. Chistov, Anna A. Baranova, Mikhail V. Biryukov, Igor A. Ivanov, Igor A. Prokhorenko, Natalia E. Grammatikova, Tatyana V. Kravchenko, Elena B. Isakova, Elena P. Mirchink, Elena G. Gladkikh, Elena V. Svirshchevskaya, Andrey V. Mardanov, Aleksey V. Beletsky, Milita V. Kocharovskaya, Valeriya V. Kulyaeva, Alexander S. Shashkov, Dmitry E. Tsvetkov, Nikolay E. Nifantiev, Alexander S. Apt, Konstantin B. Majorov, Svetlana S. Efimova, Nikolai V. Ravin, Evgeny N. Nikolaev, Olga S. Ostroumova, Genrikh S. Katrukha, Olda A. Lapchinskaya, Olga A. Dontsova, Stanislav S. Terekhov, Ilya A. Osterman, Zakhar O. Shenkarev, Vladimir A. Korshun. Gausemycins A,B: Cyclic Lipoglycopeptides from Streptomyces sp.**. Angewandte Chemie 2021, 133 (34) , 18842-18851. https://doi.org/10.1002/ange.202104528
    37. Adam Foxfire, Andrew Riley Buhrow, Ravi S. Orugunty, Leif Smith. Drug discovery through the isolation of natural products from Burkholderia. Expert Opinion on Drug Discovery 2021, 16 (7) , 807-822. https://doi.org/10.1080/17460441.2021.1877655
    38. Jay Kishor Prasad, Priyanka Pandey, Richa Anand, Richa Raghuwanshi. Drought Exposed Burkholderia seminalis JRBHU6 Exhibits Antimicrobial Potential Through Pyrazine-1,4-Dione Derivatives Targeting Multiple Bacterial and Fungal Proteins. Frontiers in Microbiology 2021, 12 https://doi.org/10.3389/fmicb.2021.633036
    39. Ester Simonetti, Florencia Alvarez, Nicolás Feldman, Matías Vinacour, Irma N. Roberts, Jimena A. Ruiz. Genomic insights into the potent antifungal activity of B. ambifaria T16. Biological Control 2021, 155 , 104530. https://doi.org/10.1016/j.biocontrol.2020.104530
    40. Felipe de Paula Nogueira Cruz, Ailton Ferreira de Paula, Camila Tita Nogueira, Paulo Henrique Marques de Andrade, Leonardo Maurici Borges, Paulo Teixeira Lacava, Ilana L B C Camargo, Fernanda de Freitas Aníbal, Cristina Paiva de Sousa, . Discovery of a Novel Lineage Burkholderia cepacia ST 1870 Endophytically Isolated from Medicinal Polygala paniculata Which Shows Potent In Vitro Antileishmanial and Antimicrobial Effects. International Journal of Microbiology 2021, 2021 , 1-17. https://doi.org/10.1155/2021/6618559
    41. Ping Kong, Patricia Richardson, Chuanxue Hong. Burkholderia sp. SSG is a broad-spectrum antagonist against plant diseases caused by diverse pathogens. Biological Control 2020, 151 , 104380. https://doi.org/10.1016/j.biocontrol.2020.104380
    42. Akshaya Ravichandran, Jerome Escano, Jung Hwa Lee, Matthew K. Ross, Frank Austin, Ravi Orugunty, Shi-En Lu, Leif Smith. Formulation, Pharmacological Evaluation, and Efficacy Studies of Occidiofungin, a Novel Antifungal. Antimicrobial Agents and Chemotherapy 2020, 64 (12) https://doi.org/10.1128/AAC.01737-20
    43. Siti Meliah, Annisa Wahyu Hardiyanti, Ni’ma Haida, Gita Azizah Putri, Erny Qurotul Ainy. Penapisan Bakteri Penghambat Fusarium yang Diisolasi dari Cairan Kantung Semar (Nepenthes sp.). Jurnal Ilmu Pertanian Indonesia 2020, 25 (4) , 627-635. https://doi.org/10.18343/jipi.25.4.627
    44. Jingbo Ma, Fengguang Guo, Zi Jin, Mengxin Geng, Min Ju, Akshaya Ravichandran, Ravi Orugunty, Leif Smith, Guan Zhu, Haili Zhang. Novel Antiparasitic Activity of the Antifungal Lead Occidiofungin. Antimicrobial Agents and Chemotherapy 2020, 64 (8) https://doi.org/10.1128/AAC.00244-20
    45. Filipa Barbosa, Eugénia Pinto, Anake Kijjoa, Madalena Pinto, Emília Sousa. Targeting antimicrobial drug resistance with marine natural products. International Journal of Antimicrobial Agents 2020, 56 (1) , 106005. https://doi.org/10.1016/j.ijantimicag.2020.106005
    46. Andrew D. Steele, Edward Kalkreuter, Guohui Pan, Song Meng, Ben Shen. Hybrid Peptide–Polyketide Natural Product Biosynthesis. 2020, 284-335. https://doi.org/10.1016/B978-0-12-409547-2.14669-4
    47. Étienne Gallant, Anran Li, Katherine M. Davis, Mohammad R. Seyedsayamdost. Burkholderia-Derived Natural Products: From Discovery to Target Identification Towards Chemical Ecology. 2020, 124-141. https://doi.org/10.1016/B978-0-12-409547-2.14832-2
    48. Xiaoqiang Wang, Dexin Chen, Jing Wang, Chao Feng, Wenjing Wang, Wei Zhang, Bin Li, Jiamin Yu, Bo Xia. Cloning and Analysis of Genes Controlling Antibacterial Activities of Burkholderia pyrrocinia Strain Lyc2. Current Microbiology 2019, 76 (9) , 1003-1009. https://doi.org/10.1007/s00284-019-01690-z
    49. Miguel O. P. Navarro, André Barazetti, Erika T. G. Niekawa, Mickely Liuti Dealis, Jean Marcos Soares Matos, Gabriel Liuti, Fluvio Modolon, Igor Matheus Oliveira, Matheus Andreata, Martha Viviana Torres Cely, Galdino Andrade. Microbial Biological Control of Diseases and Pests by PGPR and PGPF. 2019, 75-122. https://doi.org/10.1007/978-981-13-8383-0_3
    50. Miguel O. P. Navarro, Amanda C. M. Piva, Ane S. Simionato, Flávia R. Spago, Fluvio Modolon, Janaina Emiliano, Anabela Marisa Azul, Andreas Lazaros Chryssafidis, Galdino Andrade. Bioactive Compounds Produced by Biocontrol Agents Driving Plant Health. 2019, 337-374. https://doi.org/10.1007/978-981-13-8495-0_15
    51. Akshaya Ravichandran, Mengxin Geng, Kenneth G. Hull, Jing Li, Daniel Romo, Shi-En Lu, Aaron Albee, Christopher Nutter, Donna M. Gordon, Mahmoud A. Ghannoum, Steve W. Lockless, Leif Smith. A Novel Actin Binding Drug with In Vivo Efficacy. Antimicrobial Agents and Chemotherapy 2019, 63 (1) https://doi.org/10.1128/AAC.01585-18
    52. Yun Xue, Mengya Wang, Pengchao Zhao, Chunshan Quan, Xin Li, Lina Wang, Weina Gao, Jinghua Li, Xiangyang Zu, Dongliao Fu, Shuxiao Feng, Ping Li. Gram-negative bacilli-derived peptide antibiotics developed since 2000. Biotechnology Letters 2018, 40 (9-10) , 1271-1287. https://doi.org/10.1007/s10529-018-2589-1
    53. Qassim Esmaeel, Maude Pupin, Philippe Jacques, Valérie Leclère. Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals. Environmental Science and Pollution Research 2018, 25 (30) , 29794-29807. https://doi.org/10.1007/s11356-017-9166-3
    54. Peter Vandamme, Leo Eberl. B urkholderia . 2018, 1-45. https://doi.org/10.1002/9781118960608.gbm00935.pub2
    55. Fernando Uriel Rojas-Rojas, Anuar Salazar-Gómez, María Elena Vargas-Díaz, María Soledad Vásquez-Murrieta, Ann M. Hirsch, René De Mot, Maarten G. K. Ghequire, J. Antonio Ibarra, Paulina Estrada-de los Santos. Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere. Microbiology 2018, 164 (9) , 1072-1086. https://doi.org/10.1099/mic.0.000675
    56. F. Matias, C.A. Brandt, E.S. da Silva, M.F. de Andrade Rodrigues. Polyhydroxybutyrate and polyhydroxydodecanoate produced by Burkholderia contaminans IPT553. Journal of Applied Microbiology 2017, 123 (1) , 124-133. https://doi.org/10.1111/jam.13469
    57. Kirsty Agnoli, Roman Freitag, Margarida C. Gomes, Christian Jenul, Angela Suppiger, Olga Mannweiler, Carmen Frauenknecht, Daniel Janser, Annette C. Vergunst, Leo Eberl, . Use of Synthetic Hybrid Strains To Determine the Role of Replicon 3 in Virulence of the Burkholderia cepacia Complex. Applied and Environmental Microbiology 2017, 83 (13) https://doi.org/10.1128/AEM.00461-17
    58. Peng Deng, Adam Foxfire, Jianhong Xu, Sonya M. Baird, Jiayuan Jia, Keren H. Delgado, Ronald Shin, Leif Smith, Shi-En Lu, . The Siderophore Product Ornibactin Is Required for the Bactericidal Activity of Burkholderia contaminans MS14. Applied and Environmental Microbiology 2017, 83 (8) https://doi.org/10.1128/AEM.00051-17
    59. Shyam L. Kandel, Andrea Firrincieli, Pierre M. Joubert, Patricia A. Okubara, Natalie D. Leston, Kendra M. McGeorge, Giuseppe S. Mugnozza, Antoine Harfouche, Soo-Hyung Kim, Sharon L. Doty. An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes. Frontiers in Microbiology 2017, 8 https://doi.org/10.3389/fmicb.2017.00386
    60. J. Masschelein, M. Jenner, G. L. Challis. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Natural Product Reports 2017, 34 (7) , 712-783. https://doi.org/10.1039/C7NP00010C
    61. Daniel Lemtukei, Tomoko Tamura, Quyet Thi Nguyen, Makoto Ueno. Inhibitory Activity of Burkholderia sp. Isolated from Soil in Gotsu City, Shimane, against Magnaporthe oryzae. Advances in Microbiology 2017, 07 (02) , 137-148. https://doi.org/10.4236/aim.2017.72011
    62. Kuan Shion Ong, Yoong Kit Aw, Learn Han Lee, Catherine M. Yule, Yuen Lin Cheow, Sui Mae Lee. Burkholderia paludis sp. nov., an Antibiotic-Siderophore Producing Novel Burkholderia cepacia Complex Species, Isolated from Malaysian Tropical Peat Swamp Soil. Frontiers in Microbiology 2016, 7 https://doi.org/10.3389/fmicb.2016.02046
    63. Rachel F. Power, Barry Linnane, Ruth Martin, Noelle Power, Peig Harnett, Brian Casserly, Nuala H. O’Connell, Colum P. Dunne. The first reported case of Burkholderia contaminans in patients with cystic fibrosis in Ireland: from the Sargasso Sea to Irish Children. BMC Pulmonary Medicine 2016, 16 (1) https://doi.org/10.1186/s12890-016-0219-z
    64. Jae-Hoon Choi, Ayaka Kikuchi, Panyapon Pumkaeo, Hirofumi Hirai, Shinji Tokuyama, Hirokazu Kawagishi. Bioconversion of AHX to AOH by resting cells of Burkholderia contaminans CH-1. Bioscience, Biotechnology, and Biochemistry 2016, 80 (10) , 2045-2050. https://doi.org/10.1080/09168451.2016.1189314
    65. Carlos David Grande-Tovar, Clemencia Chaves-Lopez, Manuel Viuda-Martos, Annalisa Serio, Johannes Delgado-Ospina, Josè Angel Perez-Alvarez, Nilson Ospina, Salvatore la Tora, Silvia Palmieri, Antonello Paparella. Sub-lethal concentrations of Colombian Austroeupatorium inulifolium (H.B.K.) essential oil and its effect on fungal growth and the production of enzymes. Industrial Crops and Products 2016, 87 , 315-323. https://doi.org/10.1016/j.indcrop.2016.04.066
    66. Jaroslav Nunvar, Lucie Kalferstova, Ruhi A. M. Bloodworth, Michal Kolar, Jose Degrossi, Silvina Lubovich, Silvia T. Cardona, Pavel Drevinek, . Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis. PLOS ONE 2016, 11 (8) , e0160975. https://doi.org/10.1371/journal.pone.0160975
    67. Eliza Depoorter, Matt J. Bull, Charlotte Peeters, Tom Coenye, Peter Vandamme, Eshwar Mahenthiralingam. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Applied Microbiology and Biotechnology 2016, 100 (12) , 5215-5229. https://doi.org/10.1007/s00253-016-7520-x
    68. Welington L. Araújo, Allison L. Creason, Emy T. Mano, Aline A. Camargo-Neves, Sonia N. Minami, Jeff H. Chang, Joyce E. Loper. Genome Sequencing and Transposon Mutagenesis of Burkholderia seminalis TC3.4.2R3 Identify Genes Contributing to Suppression of Orchid Necrosis Caused by B. gladioli. Molecular Plant-Microbe Interactions® 2016, 29 (6) , 435-446. https://doi.org/10.1094/MPMI-02-16-0047-R
    69. Peng Deng, Xiaoqiang Wang, Sonya M. Baird, Kurt C. Showmaker, Leif Smith, Daniel G. Peterson, Shien Lu. Comparative genome‐wide analysis reveals that Burkholderia contaminans MS 14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis. MicrobiologyOpen 2016, 5 (3) , 353-369. https://doi.org/10.1002/mbo3.333
    70. Afsana Khan, Pratibha Bharti, Isha Saraf, Neha Mittal, Rupinder Tewari, Inder Pal Singh. Two new Aromatic Glycosides from a Soil Bacterium Burkholderia gladioli OR1. Natural Product Communications 2016, 11 (5) , 1934578X1601100. https://doi.org/10.1177/1934578X1601100528
    71. X.Q. Wang, A.X. Liu, A. Guerrero, J. Liu, X.Q. Yu, P. Deng, L. Ma, S.M. Baird, L. Smith, X.D. Li, S.E. Lu. Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2. Journal of Applied Microbiology 2016, 120 (3) , 607-618. https://doi.org/10.1111/jam.13036
    72. Luiz F. Bianchini, Maria F. C. Arruda, Sergio R. Vieira, Patrícia M. S. Campelo, Ana M. T. Grégio, Edvaldo A. R. Rosa. Microbial Biotransformation to Obtain New Antifungals. Frontiers in Microbiology 2015, 6 https://doi.org/10.3389/fmicb.2015.01433
    73. Pietro Tedesco, Marco Visone, Ermenegilda Parrilli, Maria Luisa Tutino, Elena Perrin, Isabel Maida, Renato Fani, Francesco Ballestriero, Radleigh Santos, Clemencia Pinilla, Elia Di Schiavi, George Tegos, Donatella de Pascale, . Investigating the Role of the Host Multidrug Resistance Associated Protein Transporter Family in Burkholderia cepacia Complex Pathogenicity Using a Caenorhabditis elegans Infection Model. PLOS ONE 2015, 10 (11) , e0142883. https://doi.org/10.1371/journal.pone.0142883
    74. Hiroyuki Konno, Kanako Abumi, Yasuhiro Sasaki, Shigekazu Yano, Kazuto Nosaka. Structure activity relationship study of burkholdine analogues toward simple antifungal agents. Bioorganic & Medicinal Chemistry Letters 2015, 25 (16) , 3199-3202. https://doi.org/10.1016/j.bmcl.2015.05.088
    75. Sherif I. Elshahawi, Khaled A. Shaaban, Madan K. Kharel, Jon S. Thorson. A comprehensive review of glycosylated bacterial natural products. Chemical Society Reviews 2015, 44 (21) , 7591-7697. https://doi.org/10.1039/C4CS00426D
    76. Xiao-Qiang Wang, Kurt C. Showmaker, Xiao-Qing Yu, Tao Bi, Chuan-Yu Hsu, Sonya M. Baird, Daniel G. Peterson, Xiang-Dong Li, Shi-En Lu. Draft Genome Sequence of Burkholderia pyrrocinia Lyc2, a Biological Control Strain That Can Suppress Multiple Plant Microbial Pathogens. Genome Announcements 2014, 2 (5) https://doi.org/10.1128/genomeA.00991-14
    77. Notburga Gierlinger. Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA). Frontiers in Plant Science 2014, 5 https://doi.org/10.3389/fpls.2014.00306
    78. Steven Lai Hing, Akshaya Ravichandran, Jerome Escano, Jim Cooley, Frank Austin, Shi-En Lu, Stephen Pruett, Leif Smith. Toxicological Evaluation of Occidiofungin against Mice and Human Cancer Cell Lines. Pharmacology & Pharmacy 2014, 05 (11) , 1085-1093. https://doi.org/10.4236/pp.2014.511118
    79. Ulrike Groenhagen, Rita Baumgartner, Aurélien Bailly, Amber Gardiner, Leo Eberl, Stefan Schulz, Laure Weisskopf. Production of Bioactive Volatiles by Different Burkholderia ambifaria Strains. Journal of Chemical Ecology 2013, 39 (7) , 892-906. https://doi.org/10.1007/s10886-013-0315-y
    80. Hiroyuki Konno, Yusuke Otsuki, Kenta Matsuzaki, Kazuto Nosaka. Synthesis and antifungal activities of cyclic octa-lipopeptide burkholdine analogues. Bioorganic & Medicinal Chemistry Letters 2013, 23 (14) , 4244-4247. https://doi.org/10.1016/j.bmcl.2013.04.091
    81. Kuan-Chih Chen, Akshaya Ravichandran, Adam Guerrero, Peng Deng, Sonya M. Baird, Leif Smith, Shi-En Lu. The Burkholderia contaminans MS14 ocfC Gene Encodes a Xylosyltransferase for Production of the Antifungal Occidiofungin. Applied and Environmental Microbiology 2013, 79 (9) , 2899-2905. https://doi.org/10.1128/AEM.00263-13
    82. Annelise Chapalain, Ludovic Vial, Natacha Laprade, Valérie Dekimpe, Jonathan Perreault, Eric Déziel. Identification of quorum sensing‐controlled genes in B urkholderia ambifaria . MicrobiologyOpen 2013, 2 (2) , 226-242. https://doi.org/10.1002/mbo3.67
    83. Kwang Youll Lee, Hyun-Gi Kong, Seon-Woo Lee. Identification of a Gene Encoding Adenylate Kinase Involved in Antifungal Activity Expression of the Biocontrol Strain Burkholderia pyrrocinia CH-67. The Plant Pathology Journal 2012, 28 (4) , 373-380. https://doi.org/10.5423/PPJ.OA.08.2012.0124
    84. Wei Tan, Jim Cooley, Frank Austin, Shi-En Lu, Stephen B. Pruett, Leif Smith. Nonclinical Toxicological Evaluation of Occidiofungin, a Unique Glycolipopeptide Antifungal. International Journal of Toxicology 2012, 31 (4) , 326-336. https://doi.org/10.1177/1091581812445185
    85. Euan L.S. Thomson, Jonathan J. Dennis. A Burkholderia cepacia complex non-ribosomal peptide-synthesized toxin is hemolytic and required for full virulence. Virulence 2012, 3 (3) , 286-298. https://doi.org/10.4161/viru.19355
    86. Dayna Ellis, Jiten Gosai, Charles Emrick, Rachel Heintz, Lanette Romans, Donna Gordon, Shi-En Lu, Frank Austin, Leif Smith. Occidiofungin's Chemical Stability and In Vitro Potency against Candida Species. Antimicrobial Agents and Chemotherapy 2012, 56 (2) , 765-769. https://doi.org/10.1128/AAC.05231-11
    87. Santi M. Mandal. A novel hydroxyproline rich glycopeptide from pericarp of Datura stramonium : Proficiently eradicate the biofilm of antifungals resistant Candida albicans. Peptide Science 2012, 98 (4) , 332-337. https://doi.org/10.1002/bip.22083
    88. K. Agnoli, S. Schwager, S. Uehlinger, A. Vergunst, D. F. Viteri, D. T. Nguyen, P. A. Sokol, A. Carlier, L. Eberl. Exposing the third chromosome of Burkholderia cepacia complex strains as a virulence plasmid. Molecular Microbiology 2012, 83 (2) , 362-378. https://doi.org/10.1111/j.1365-2958.2011.07937.x
    89. Ganyu Gu, Leif Smith, Aixin Liu, Shi-En Lu. Genetic and Biochemical Map for the Biosynthesis of Occidiofungin, an Antifungal Produced by Burkholderia contaminans Strain MS14. Applied and Environmental Microbiology 2011, 77 (17) , 6189-6198. https://doi.org/10.1128/AEM.00377-11
    90. Xue-Chang Wu, Xiao-Bo Shen, Rui Ding, Chao-Dong Qian, Hai-Huan Fang, Ou Li. Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiology Letters 2010, 310 (1) , 32-38. https://doi.org/10.1111/j.1574-6968.2010.02040.x
    91. Ronald Altig. A Level-Headed Damage Assessment. BioScience 2010, 60 (3) , 241-242. https://doi.org/10.1525/bio.2010.60.3.12
    92. C. S. Quan, X. Wang, S. D. Fan. Antifungal Compounds of Plant Growth Promoting Rhizobacteria and Its Action Mode. 2010, 117-156. https://doi.org/10.1007/978-3-642-13612-2_6

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect