ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

The Cluster-Arranged Cooperative Model:  A Model That Accounts for the Kinetics of Binding to A1 Adenosine Receptors

View Author Information
Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Barcelona, Martí i Franquès, 1, 08071-Barcelona, Catalonia, Spain
Cite this: Biochemistry 1996, 35, 9, 3007–3015
Publication Date (Web):March 5, 1996
https://doi.org/10.1021/bi952415g
Copyright © 1996 American Chemical Society

    Article Views

    141

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (409 KB)

    Abstract

    To explain the equilibrium binding and binding kinetics of ligands to membrane receptors, a number of models have been proposed, none of which is able to adequately describe the experimental findings, in particular the apparent negative cooperativity of ligand binding. In this paper, a new model, the cluster-arranged cooperative model, is presented whose main characteristic is that it explains the existence of negative cooperativity in the binding of ligands to the receptor molecule. The model is based on our findings of agonist binding to A1 adenosine receptors and of ligand-induced clustering of these receptors on the cell surface. The model assumes the existence of two conformational forms of the receptor in an equilibrium which depends on the concentration of the ligand. In this way, negative cooperativity is explained by the transmission of the information between receptor molecules through the structure of the membrane. The model is able to predict the thermodynamic binding and binding kinetics of [3H]-(R)-(phenylisopropyl)adenosine to A1 adenosine receptors in the presence and absence of guanylyl imidodiphosphate. In the presence of the guanine nucleotide analogue, the linear Scatchard plots obtained for [3H]-(R)-(phenylisopropyl)adenosine binding are explained by the disappearance of cooperativity, thus suggesting that G proteins are important for the existence of negative cooperativity in ligand binding. Among other predictions, the model justifies early events in homologous desensitization since high ligand concentrations would lead to the saturation of the receptor in a low-affinity conformation that does not signal. Our model can likely explain the behavior of a number of heptaspanning and tyrosine-kinase receptors exhibiting complex binding kinetics.

     This study was supported by Grants PB91-0263 and PB94-0941 from DGICYT.

    *

     Author to whom correspondence should be addressed. Fax:  34-3-4021219. Phone:  34-3-4021208. E-Mail:  [email protected].

     Abstract published in Advance ACS Abstracts, February 15, 1996.

    Cited By

    This article is cited by 30 publications.

    1. Verònica Casadó-Anguera, Estefanía Moreno, Josefa Mallol, Sergi Ferré, Enric I. Canela, Antoni Cortés, Vicent Casadó. Reinterpreting anomalous competitive binding experiments within G protein-coupled receptor homodimers using a dimer receptor model. Pharmacological Research 2019, 139 , 337-347. https://doi.org/10.1016/j.phrs.2018.11.032
    2. Rafael Franco, Eva Martínez-Pinilla, José L. Lanciego, Gemma Navarro. Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization. Frontiers in Pharmacology 2016, 7 https://doi.org/10.3389/fphar.2016.00076
    3. Rafael Franco, Eva Martínez-Pinilla, Ana Ricobaraza, Peter J. McCormick. Challenges in the Development of Heteromer-GPCR-Based Drugs. 2013, 143-162. https://doi.org/10.1016/B978-0-12-386931-9.00006-4
    4. Roberto Maggio, Cristina Rocchi, Marco Scarselli. Experimental Strategies for Studying G Protein-Coupled Receptor Homo- and Heteromerization with Radioligand Binding and Signal Transduction Methods. 2013, 295-310. https://doi.org/10.1016/B978-0-12-391862-8.00016-8
    5. Elodie Kara, Hong Lin, Philip G. Strange. Co-operativity in agonist binding at the D 2 dopamine receptor: evidence from agonist dissociation kinetics. Journal of Neurochemistry 2010, 112 (6) , 1442-1453. https://doi.org/10.1111/j.1471-4159.2009.06554.x
    6. Vicent Casadó, Carla Ferrada, Jordi Bonaventura, Eduard Gracia, Josefa Mallol, Enric I. Canela, Carmen Lluís, Antoni Cortés, Rafael Franco. Useful pharmacological parameters for G-protein-coupled receptor homodimers obtained from competition experiments. Agonist–antagonist binding modulation. Biochemical Pharmacology 2009, 78 (12) , 1456-1463. https://doi.org/10.1016/j.bcp.2009.07.012
    7. Vicent Casadó, Antoni Cortés, Josefa Mallol, Kamil Pérez-Capote, Sergi Ferré, Carmen Lluis, Rafael Franco, Enric I. Canela. GPCR homomers and heteromers: A better choice as targets for drug development than GPCR monomers?. Pharmacology & Therapeutics 2009, 124 (2) , 248-257. https://doi.org/10.1016/j.pharmthera.2009.07.005
    8. Rafael Franco. G‐protein‐coupled receptor heteromers or how neurons can display differently flavoured patterns in response to the same neurotransmitter. British Journal of Pharmacology 2009, 158 (1) , 23-31. https://doi.org/10.1111/j.1476-5381.2009.00181.x
    9. Rafael Franco. Neurotransmitter receptor heteromers in neurodegenerative diseases and neural plasticity. Journal of Neural Transmission 2009, 116 (8) , 983-987. https://doi.org/10.1007/s00702-008-0148-y
    10. Vincent Casadó, Antoni Cortés, Francisco Ciruela, Josefa Mallol, Sergi Ferré, Carmen Lluis, Enric I. Canela, Rafael Franco. Old and new ways to calculate the affinity of agonists and antagonists interacting with G-protein-coupled monomeric and dimeric receptors: The receptor–dimer cooperativity index. Pharmacology & Therapeutics 2007, 116 (3) , 343-354. https://doi.org/10.1016/j.pharmthera.2007.05.010
    11. Francisca Barceló, Jesús Prades, José Antonio Encinar, Sérgio S. Funari, Oliver Vögler, José Manuel González-Ros, Pablo V. Escribá. Interaction of the C-Terminal Region of the Gγ Protein with Model Membranes. Biophysical Journal 2007, 93 (7) , 2530-2541. https://doi.org/10.1529/biophysj.106.101196
    12. William R. Law, Beth A. Conlon, James D. Ross. THE EXTRACELLULAR CARDIAC PURINE METABOLOME IN SEPSIS. Shock 2007, 28 (3) , 259-264. https://doi.org/10.1097/01.shk.0000232587.61871.1b
    13. R. Franco, C. Lluis, E. I. Canela, J. Mallol, L. Agnati, V. Casadó, F. Ciruela, S. Ferré, K. Fuxe. Receptor–receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. Journal of Neural Transmission 2007, 114 (1) , 93-104. https://doi.org/10.1007/s00702-006-0566-7
    14. Rafael Franco, Vicent Casadó, Josefa Mallol, Carla Ferrada, Sergi Ferré, Kjell Fuxe, Antoni Cortés, Francisco Ciruela, Carmen Lluis, Enric I. Canela. The Two-State Dimer Receptor Model: A General Model for Receptor Dimers. Molecular Pharmacology 2006, 69 (6) , 1905-1912. https://doi.org/10.1124/mol.105.020685
    15. Meritxell Vivo, Hong Lin, Philip G. Strange. Investigation of Cooperativity in the Binding of Ligands to the D 2 Dopamine Receptor. Molecular Pharmacology 2006, 69 (1) , 226-235. https://doi.org/10.1124/mol.105.012443
    16. Làszló Vigh, Pablo V. Escribá, Alois Sonnleitner, Max Sonnleitner, Stefano Piotto, Bruno Maresca, Ibolya Horváth, John L. Harwood. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Progress in Lipid Research 2005, 44 (5) , 303-344. https://doi.org/10.1016/j.plipres.2005.08.001
    17. Rafael Franco, Vicent Casadó, Josefa Mallol, Sergi Ferré, Kjell Fuxe, Antonio Cortés, Francisco Ciruela, Carmen Lluis, Enric I. Canela. Dimer-based model for heptaspanning membrane receptors. Trends in Biochemical Sciences 2005, 30 (7) , 360-366. https://doi.org/10.1016/j.tibs.2005.05.010
    18. Oliver Vögler, Jesús Casas, Danita Capó, Tünde Nagy, Gudrun Borchert, Gabriel Martorell, Pablo V. Escribá. The Gβγ Dimer Drives the Interaction of Heterotrimeric Gi Proteins with Nonlamellar Membrane Structures. Journal of Biological Chemistry 2004, 279 (35) , 36540-36545. https://doi.org/10.1074/jbc.M402061200
    19. Luigi Francesco Agnati, Letizia Santarossa, Susanna Genedani, Enric I. Canela, Giuseppina Leo, Rafael Franco, Amina Woods, Carmen Lluis, Sergi Ferré, Kjell Fuxe. On the Nested Hierarchical Organization of CNS: Basic Characteristics of Neuronal Molecular Networks. 2004, 24-54. https://doi.org/10.1007/978-3-540-27862-7_2
    20. Luigi F. Agnati, Sergi Ferré, Carme Lluis, Rafael Franco, Kjell Fuxe. Molecular Mechanisms and Therapeutical Implications of Intramembrane Receptor/Receptor Interactions among Heptahelical Receptors with Examples from the Striatopallidal GABA Neurons. Pharmacological Reviews 2003, 55 (3) , 509-550. https://doi.org/10.1124/pr.55.3.2
    21. Rafael Franco, Meritxell Canals, Daniel Marcellino, Sergi Ferré, Luigi Agnati, Josefa Mallol, Vicent Casadó, Francisco Ciruela, Kjell Fuxe, Carmen Lluis, Enric I. Canela. Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. Trends in Biochemical Sciences 2003, 28 (5) , 238-243. https://doi.org/10.1016/S0968-0004(03)00065-3
    22. Rafael Franco, Sergi Ferré, Maria Torvinen, Silvia Ginés, Joëlle Hillion, Francisco Ciruela, Enric I. Canela, Josefa Mallol, Vicent Casadó, Carmen Lluis, Kjell Fuxe. Adenosine/dopamine receptor‐receptor interactions in the central nervous system. Drug Development Research 2001, 52 (1-2) , 296-302. https://doi.org/10.1002/ddr.1127
    23. A. Minelli, C. Allegrucci, I. Mezzasoma, G. Ronquist, C. Lluis, R. Franco. CD26 and Adenosine Deaminase Interaction: Its Role in the Fusion Between Horse Membrane Vesicles and Spermatozoa1. Biology of Reproduction 1999, 61 (3) , 802-808. https://doi.org/10.1095/biolreprod61.3.802
    24. Vladimir A. Kuznetsov, Raj K. Puri. Kinetic Analysis of High Affinity Forms of Interleukin (IL)-13 Receptors: Suppression of IL-13 Binding by IL-2 Receptor γ Chain. Biophysical Journal 1999, 77 (1) , 154-172. https://doi.org/10.1016/S0006-3495(99)76879-7
    25. M. Mayne, P. N. Shepel, Y. Jiang, J. D. Geiger, C. Power. Dysregulation of adenosine A1 receptor-mediated cytokine expression in peripheral blood mononuclear cells from multiple sclerosis patients. Annals of Neurology 1999, 45 (5) , 633-639. https://doi.org/10.1002/1531-8249(199905)45:5<633::AID-ANA12>3.0.CO;2-X
    26. Rafael Franco, Josefa Mallol, Vicent Casad�, Carmen Lluis, Enric I. Canela, Carles Saura, Juli� Blanco, Francisco Ciruela. Ecto-adenosine deaminase: An ecto-enzyme and a costimulatory protein acting on a variety of cell surface receptors. Drug Development Research 1998, 45 (3-4) , 261-268. https://doi.org/10.1002/(SICI)1098-2299(199811/12)45:3/4<261::AID-DDR24>3.0.CO;2-M
    27. Carlos A. Saura, Josefa Mallol, Enric I. Canela, Carmen Lluis, Rafael Franco. Adenosine Deaminase and A1 Adenosine Receptors Internalize Together following Agonist-induced Receptor Desensitization. Journal of Biological Chemistry 1998, 273 (28) , 17610-17617. https://doi.org/10.1074/jbc.273.28.17610
    28. Rafael Franco, Agustin Valenzuela, Carmen Lluis, Julia Blanco. Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunological Reviews 1998, 161 (1) , 27-42. https://doi.org/10.1111/j.1600-065X.1998.tb01569.x
    29. Francisco Ciruela, Carles Saura, Enric I. Canela, Josefa Mallol, Carmen Lluís, Rafael Franco. Ligand-Induced Phosphorylation, Clustering, and Desensitization of A 1 Adenosine Receptors. Molecular Pharmacology 1997, 52 (5) , 788-797. https://doi.org/10.1124/mol.52.5.788
    30. Rafael Franco, Vicent Casadó, Francisco Ciruela, Carles Saura, Josefa Mallol, Enric I. Canela, Carmen Lluis. Cell surface adenosine deaminase: Much more than an ectoenzyme. Progress in Neurobiology 1997, 52 (4) , 283-294. https://doi.org/10.1016/S0301-0082(97)00013-0

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect