ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Proteolytic Release of Membrane-Bound Angiotensin-Converting Enzyme:  Role of the Juxtamembrane Stalk Sequence

View Author Information
Department of Medical Biochemistry, University of Cape Town Medical School, Observatory 7925, South Africa, Department of Biochemistry, University of Cape Town, Rondebosch 7700, South Africa, and Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Boston, Massachusetts 02115
Cite this: Biochemistry 1996, 35, 29, 9549–9559
Publication Date (Web):July 23, 1996
https://doi.org/10.1021/bi9602425
Copyright © 1996 American Chemical Society

    Article Views

    257

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Many structurally and functionally diverse membrane proteins are solubilized by a specific proteolytic cleavage in the stalk sequence adjacent to the membrane anchor, with release of the extracellular domain. Examples are the amyloid precursor protein, membrane-bound growth factors, and angiotensin-converting enzyme (ACE). The identities and characteristics of the responsible proteases remain elusive. We have studied this process in Chinese hamster ovary (CHO) cells stably expressing wild-type ACE (WT-ACE; human testis isozyme) or one of four juxtamembrane (stalk) mutants containing either deletions of 17, 24, and 47 residues (ACE-JMΔ17, -JMΔ24, and -JMΔ47, respectively) or a substitution of 26 stalk residues with a 20-residue sequence from the stalk of the low-density lipoprotein receptor (ACE-JMLDL). The C termini of released, soluble WT-ACE and ACE-JMΔ17 and -JMLDL were determined by MALDI-TOF mass spectrometry analyses of C-terminal peptides generated by CNBr cleavage. Observed masses of 4264 (WT-ACE) and 4269 (ACE- JMΔ17) are in good agreement with an expected mass of 4262 for the C-terminal CNBr peptide ending at Arg-627, indicating cleavage at the Arg-627/Ser-628 bond in both WT-ACE and ACE-JMΔ17, at distances of 24 and 10 residues from the membrane, respectively. Data for ACE-JMΔ24 are also consistent with cleavage at or near Arg-627. For ACE-JMLDL, in which the native cleavage site is absent, observed masses of 4372 and 4542 are in close agreement with expected masses of 4371 and 4542 for peptides ending at Ala-628 and Gly-630, respectively, indicating cleavages at 17 or 15 residues from the membrane. These data indicate that the membrane-protein-solubilizing protease (MPSP) in CHO cells is not constrained by a particular cleavage site motif or by a specific distance from the membrane but instead may position itself with respect to the putative proximal, folded extracellular domain adjacent to the stalk. Nevertheless, cleavage at a distance of 10 residues from the membrane is more favorable, as ACE-JMΔ17 is cleaved 12-fold faster than WT-ACE. In contrast, ACE-JMΔ24 is released 17-fold slower, suggesting that a minimum distance from the membrane must be preserved. This is supported by results with the ACE-JMΔ47 mutant, which is membrane-bound but not cleaved, likely because the entire stalk has been deleted. Finally, soluble full-length (anchor-plus) WT-ACE is not cleaved when incubated with various CHO cell fractions or intact CHO cells. On the basis of these and other data, we propose that the CHO cell MPSP that solubilizes ACE (1) only cleaves proteins embedded in a membrane; (2) requires an accessible stalk and cleaves at a minimum distance from both the membrane and proximal extracellular domain; (3) positions itself primarily with respect to the proximal extracellular domain; and (4) may have a weak preference for cleavage at Arg/Lys-X bonds.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Supported by a grant from the South African Medical Research Council (M.R.W.E.), NIH Grant HL34704 (J.F.R.), a grant from the Foundation for Research Development (W.F.B.), the Honors Program, University of MichiganFlint (G.A.M.), and grants from the Nellie Atkinson, Latham and Caporn, and Cancer Research Trusts.

    *

     To whom correspondence should be addressed. Tel:  +27 21 406-6335. FAX:  +27 21 47-7669. E-mail:  [email protected].

     Department of Medical Biochemistry.

     Present address:  Department of Biochemistry and Institute for Molecular Virology, University of WisconsinMadison, Madison, WI 53706.

    §

     Department of Biochemistry.

     Harvard Medical School.

     Abstract published in Advance ACS Abstracts, June 15, 1996.

    Cited By

    This article is cited by 49 publications.

    1. Zon W. Lai, Iresha Hanchapola, David L. Steer, and A. Ian Smith . Angiotensin-Converting Enzyme 2 Ectodomain Shedding Cleavage-Site Identification: Determinants and Constraints. Biochemistry 2011, 50 (23) , 5182-5194. https://doi.org/10.1021/bi200525y
    2. Georgina S. Butler and Christopher M. Overall. Updated Biological Roles for Matrix Metalloproteinases and New “Intracellular” Substrates Revealed by Degradomics. Biochemistry 2009, 48 (46) , 10830-10845. https://doi.org/10.1021/bi901656f
    3. Jean M. Watermeyer,, B. Trevor Sewell,, Sylva L. Schwager,, Ramanathan Natesh,, Hazel R. Corradi,, K. Ravi Acharya, and, Edward D. Sturrock. Structure of Testis ACE Glycosylation Mutants and Evidence for Conserved Domain Movement,. Biochemistry 2006, 45 (42) , 12654-12663. https://doi.org/10.1021/bi061146z
    4. Lizelle Lubbe, Bryan Trevor Sewell, Jeremy D Woodward, Edward D Sturrock. Cryo‐EM reveals mechanisms of angiotensin I‐converting enzyme allostery and dimerization. The EMBO Journal 2022, 41 (16) https://doi.org/10.15252/embj.2021110550
    5. Lauren B. Arendse, A. H. Jan Danser, Marko Poglitsch, Rhian M. Touyz, John C. Burnett, Catherine Llorens-Cortes, Mario R. Ehlers, Edward D. Sturrock, . Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Pharmacological Reviews 2019, 71 (4) , 539-570. https://doi.org/10.1124/pr.118.017129
    6. Nailah Conrad, Sylva L.U. Schwager, Adriana K. Carmona, Edward D. Sturrock. The effect of structural motifs on the ectodomain shedding of human angiotensin-converting enzyme. Biochemical and Biophysical Research Communications 2016, 481 (1-2) , 111-116. https://doi.org/10.1016/j.bbrc.2016.10.155
    7. Sergi Clotet, María José Soler, Marta Rebull, Javier Gimeno, Susan B. Gurley, Julio Pascual, Marta Riera. Gonadectomy prevents the increase in blood pressure and glomerular injury in angiotensin-converting enzyme 2 knockout diabetic male mice. Effects on renin–angiotensin system. Journal of Hypertension 2016, 34 (9) , 1752-1765. https://doi.org/10.1097/HJH.0000000000001015
    8. Basil Rapoport, Sandra M. McLachlan. TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocrine Reviews 2016, 37 (2) , 114-134. https://doi.org/10.1210/er.2015-1098
    9. Kate M. Larmuth, Geoffrey Masuyer, Ross G. Douglas, Sylva L. Schwager, K. Ravi Acharya, Edward D. Sturrock. Kinetic and structural characterization of amyloid‐β peptide hydrolysis by human angiotensin‐1‐converting enzyme. The FEBS Journal 2016, 283 (6) , 1060-1076. https://doi.org/10.1111/febs.13647
    10. Geoffrey Masuyer, Ross G. Douglas, Edward D. Sturrock, K. Ravi Acharya. Structural basis of Ac-SDKP hydrolysis by Angiotensin-I converting enzyme. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep13742
    11. Geoffrey Masuyer, Christopher J. Yates, Edward D. Sturrock, K. Ravi Acharya. Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence. Biological Chemistry 2014, 395 (10) , 1135-1149. https://doi.org/10.1515/hsz-2014-0157
    12. Adeline Heurich, Heike Hofmann-Winkler, Stefanie Gierer, Thomas Liepold, Olaf Jahn, Stefan Pöhlmann. TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein. Journal of Virology 2014, 88 (2) , 1293-1307. https://doi.org/10.1128/JVI.02202-13
    13. Edward D. Sturrock, Colin S. Anthony, Sergei M. Danilov. Peptidyl-Dipeptidase A/Angiotensin I-Converting Enzyme. 2013, 480-494. https://doi.org/10.1016/B978-0-12-382219-2.00098-3
    14. Kenneth E. Bernstein, Frank S. Ong, Wendell-Lamar B. Blackwell, Kandarp H. Shah, Jorge F. Giani, Romer A. Gonzalez-Villalobos, Xiao Z. Shen, Sebastien Fuchs, . A Modern Understanding of the Traditional and Nontraditional Biological Functions of Angiotensin-Converting Enzyme. Pharmacological Reviews 2013, 65 (1) , 1-46. https://doi.org/10.1124/pr.112.006809
    15. Pablo Engel, Natàlia Pérez‐Carmona, M Mar Albà, Kevin Robertson, Peter Ghazal, Ana Angulo. Human cytomegalovirus UL7, a homologue of the SLAM‐family receptor CD229, impairs cytokine production. Immunology & Cell Biology 2011, 89 (7) , 753-766. https://doi.org/10.1038/icb.2011.55
    16. Sarah Felice Evans, Krithi Irmady, Katya Ostrow, Taeho Kim, Anders Nykjaer, Paul Saftig, Carl Blobel, Barbara L. Hempstead. Neuronal Brain-derived Neurotrophic Factor Is Synthesized in Excess, with Levels Regulated by Sortilin-mediated Trafficking and Lysosomal Degradation. Journal of Biological Chemistry 2011, 286 (34) , 29556-29567. https://doi.org/10.1074/jbc.M111.219675
    17. Nazim Ali, Vera Knaüper. Phorbol Ester-induced Shedding of the Prostate Cancer Marker Transmembrane Protein with Epidermal Growth Factor and Two Follistatin Motifs 2 Is Mediated by the Disintegrin and Metalloproteinase-17. Journal of Biological Chemistry 2007, 282 (52) , 37378-37388. https://doi.org/10.1074/jbc.M702170200
    18. Viktoria Kaczur, Laszlo. G. Puskas, Zsuzsanna U. Nagy, Nabil Miled, Ahmed Rebai, Ferenc Juhasz, Zoltan Kupihar, Agnes Zvara, Laszlo Hackler, Nadir R. Farid. Cleavage of the human thyrotropin receptor by ADAM10 is regulated by thyrotropin. Journal of Molecular Recognition 2007, 20 (5) , 392-404. https://doi.org/10.1002/jmr.851
    19. Keisuke Takeuchi, Hisazumi Araki, Tomohisa Sakaue, Yoshio Yamamoto, Manabu Fujiwara, Katsuji Nishi, Iwao Ohkubo. Porcine germinal angiotensin I-converting enzyme: Isolation, characterization and molecular cloning. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2007, 146 (2) , 215-226. https://doi.org/10.1016/j.cbpb.2006.10.108
    20. Kumar Sambamurti. Secretases. 2007, 1-5. https://doi.org/10.1016/B978-008055232-3.60569-0
    21. Sotirios‐Spyridon M. Vamvakas, Leondios Leondiadis, George Pairas, Evy Manessi‐Zoupa, Georgios A. Spyroulias, Paul Cordopatis. Expression, purification, and physicochemical characterization of the N ‐terminal active site of human angiotensin‐I converting enzyme. Journal of Peptide Science 2007, 13 (1) , 31-36. https://doi.org/10.1002/psc.788
    22. Zenda L. Woodman, Sylva L.U. Schwager, Pierre Redelinghuys, Anthony J. Chubb, Elizabeth L. van der Merwe, Mario R.W. Ehlers, Edward D. Sturrock. Homologous substitution of ACE C-domain regions with N-domain sequences: effect on processing, shedding, and catalytic properties. Biological Chemistry 2006, 387 (8) https://doi.org/10.1515/BC.2006.129
    23. Zenda L. Woodman, Sylva L. U. Schwager, Pierre Redelinghuys, Adriana K. Carmona, Mario R. W. Ehlers, Edward D. Sturrock. The N domain of somatic angiotensin-converting enzyme negatively regulates ectodomain shedding and catalytic activity. Biochemical Journal 2005, 389 (3) , 739-744. https://doi.org/10.1042/BJ20050187
    24. Daniel W. Lambert, Mike Yarski, Fiona J. Warner, Paul Thornhill, Edward T. Parkin, A. Ian Smith, Nigel M. Hooper, Anthony J. Turner. Tumor Necrosis Factor-α Convertase (ADAM17) Mediates Regulated Ectodomain Shedding of the Severe-acute Respiratory Syndrome-Coronavirus (SARS-CoV) Receptor, Angiotensin-converting Enzyme-2 (ACE2). Journal of Biological Chemistry 2005, 280 (34) , 30113-30119. https://doi.org/10.1074/jbc.M505111200
    25. G. A. LUNDBERG, A. KELLIN, A. SAMNEGÅRD, P. LUNDMAN, P. TORNVALL, S. DIMMELER, A. M. ZEIHER, A. HAMSTEN, G. K. HANSSON, P. ERIKSSON. Severity of coronary artery stenosis is associated with a polymorphism in the CXCL16/SR‐PSOX gene. Journal of Internal Medicine 2005, 257 (5) , 415-422. https://doi.org/10.1111/j.1365-2796.2005.01469.x
    26. Irina V. Balyasnikova, Zhu-Li Sun, Folker E. Franke, Yulia V. Berestetskaya, Antony J. Chubb, Ronald F. Albrecht, Edward D. Sturrock, Sergei M. Danilov. Monoclonal Antibodies 1B3 and 5C8 as Probes for Monitoring the Integrity of the C-Terminal End of Soluble Angiotensin-Converting Enzyme. Hybridoma 2005, 24 (1) , 14-26. https://doi.org/10.1089/hyb.2005.24.14
    27. Viktor E. Volchkov, Valentina A. Volchkova, Olga Dolnik, Heinz Feldmann, Hans‐Dieter Klenk. Polymorphism of Filovirus Glycoproteins. 2005, 359-381. https://doi.org/10.1016/S0065-3527(05)64011-0
    28. Olga Dolnik, Valentina Volchkova, Wolfgang Garten, Caroline Carbonnelle, Stephan Becker, Jörg Kahnt, Ute Ströher, Hans-Dieter Klenk, Viktor Volchkov. Ectodomain shedding of the glycoprotein GP of Ebola virus. The EMBO Journal 2004, 23 (10) , 2175-2184. https://doi.org/10.1038/sj.emboj.7600219
    29. Anthony J Chubb, Sylva L.U Schwager, Elizabeth van der Merwe, Mario R.W Ehlers, Edward D Sturrock. Deletion of the cytoplasmic domain increases basal shedding of angiotensin-converting enzyme. Biochemical and Biophysical Research Communications 2004, 314 (4) , 971-975. https://doi.org/10.1016/j.bbrc.2003.12.198
    30. Gisela Weskamp, Johannes Schlöndorff, Lawrence Lum, J. David Becherer, Tae-Wan Kim, Paul Saftig, Dieter Hartmann, Gillian Murphy, Carl P. Blobel. Evidence for a Critical Role of the Tumor Necrosis Factor α Convertase (TACE) in Ectodomain Shedding of the p75 Neurotrophin Receptor (p75NTR). Journal of Biological Chemistry 2004, 279 (6) , 4241-4249. https://doi.org/10.1074/jbc.M307974200
    31. Pierre Corvol, Mélanie Eyries, Florent Soubrier. Peptidyl-dipeptidase A/angiotensin I-converting enzyme. 2004, 332-346. https://doi.org/10.1016/B978-0-12-079611-3.50090-2
    32. K. Ravi Acharya, Edward D. Sturrock, James F. Riordan, Mario R. W. Ehlers. Ace revisited: A new target for structure-based drug design. Nature Reviews Drug Discovery 2003, 2 (11) , 891-902. https://doi.org/10.1038/nrd1227
    33. Edward T. Parkin, Fulong Tan, Randal A. Skidgel, Anthony J. Turner, Nigel M. Hooper. The ectodomain shedding of angiotensin-converting enzyme is independent of its localisation in lipid rafts. Journal of Cell Science 2003, 116 (15) , 3079-3087. https://doi.org/10.1242/jcs.00626
    34. Anthony J Chubb, Sylva L.U Schwager, Zenda L Woodman, Mario R.W Ehlers, Edward D Sturrock. Defining the boundaries of the testis angiotensin I-converting enzyme ectodomain. Biochemical and Biophysical Research Communications 2002, 297 (5) , 1225-1230. https://doi.org/10.1016/S0006-291X(02)02324-0
    35. Persio Dello Sbarba, Elisabetta Rovida. Transmodulation of Cell Surface Regulatory Molecules via Ectodomain Shedding. Biological Chemistry 2002, 383 (1) https://doi.org/10.1515/BC.2002.007
    36. Cornelis Kramers, Sergei M. Danilov, Jaap Deinum, Irina V. Balyasnikova, Nicole Scharenborg, Maaike Looman, Frans Boomsma, Marinus H. de Keijzer, Cornelia van Duijn, Sabrina Martin, Florent Soubrier, Gosse J. Adema. Point Mutation in the Stalk of Angiotensin-Converting Enzyme Causes a Dramatic Increase in Serum Angiotensin-Converting Enzyme But No Cardiovascular Disease. Circulation 2001, 104 (11) , 1236-1240. https://doi.org/10.1161/hc3601.095932
    37. Marwan Alfalah, Edward T. Parkin, Ralf Jacob, Edward D. Sturrock, Reinhard Mentele, Anthony J. Turner, Nigel M. Hooper, Hassan Y. Naim. A Point Mutation in the Juxtamembrane Stalk of Human Angiotensin I-converting Enzyme Invokes the Action of a Distinct Secretase. Journal of Biological Chemistry 2001, 276 (24) , 21105-21109. https://doi.org/10.1074/jbc.M100339200
    38. Melanie Eyries, Annie Michaud, Jaap Deinum, Monique Agrapart, Jacques Chomilier, Cornelis Kramers, Florent Soubrier. Increased Shedding of Angiotensin-converting Enzyme by a Mutation Identified in the Stalk Region. Journal of Biological Chemistry 2001, 276 (8) , 5525-5532. https://doi.org/10.1074/jbc.M007706200
    39. Katja Althoff, Pranitha Reddy, Nicole Voltz, Stefan Rose‐John, Jürgen Müllberg. Shedding of interleukin‐6 receptor and tumor necrosis factor α. European Journal of Biochemistry 2000, 267 (9) , 2624-2631. https://doi.org/10.1046/j.1432-1327.2000.01278.x
    40. Bomie Han, Gerald D. Fischbach. The Release of Acetylcholine Receptor Inducing Activity (ARIA) from Its Transmembrane Precursor in Transfected Fibroblasts. Journal of Biological Chemistry 1999, 274 (37) , 26407-26415. https://doi.org/10.1074/jbc.274.37.26407
    41. Sven Lammich, Elzbieta Kojro, Rolf Postina, Sandra Gilbert, Roland Pfeiffer, Marek Jasionowski, Christian Haass, Falk Fahrenholz. Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proceedings of the National Academy of Sciences 1999, 96 (7) , 3922-3927. https://doi.org/10.1073/pnas.96.7.3922
    42. Rachel Yabkowitz, Susanne Meyer, Tabitha Black, Gary Elliott, Lee Anne Merewether, Harvey K. Yamane. Inflammatory Cytokines and Vascular Endothelial Growth Factor Stimulate the Release of Soluble Tie Receptor From Human Endothelial Cells Via Metalloprotease Activation. Blood 1999, 93 (6) , 1969-1979. https://doi.org/10.1182/blood.V93.6.1969.406k14_1969_1979
    43. Jacques J. Peschon, Jennifer L. Slack, Pranitha Reddy, Kim L. Stocking, Susan W. Sunnarborg, David C. Lee, William E. Russell, Beverly J. Castner, Richard S. Johnson, Jeffrey N. Fitzner, Rogely W. Boyce, Nicole Nelson, Carl J. Kozlosky, Martin F. Wolfson, Charles T. Rauch, Douglas Pat Cerretti, Raymond J. Paxton, Carl J. March, Roy A. Black. An Essential Role for Ectodomain Shedding in Mammalian Development. Science 1998, 282 (5392) , 1281-1284. https://doi.org/10.1126/science.282.5392.1281
    44. Roy A Black, Judith M White. ADAMs: focus on the protease domain. Current Opinion in Cell Biology 1998, 10 (5) , 654-659. https://doi.org/10.1016/S0955-0674(98)80042-2
    45. Christa L. Brown, Katherine S. Meise, Gregory D. Plowman, Robert J. Coffey, Peter J. Dempsey. Cell Surface Ectodomain Cleavage of Human Amphiregulin Precursor Is Sensitive to a Metalloprotease Inhibitor. Journal of Biological Chemistry 1998, 273 (27) , 17258-17268. https://doi.org/10.1074/jbc.273.27.17258
    46. John R. Hagaman, Jeffrey S. Moyer, Eric S. Bachman, Mathilde Sibony, Patricia L. Magyar, Jeffrey E. Welch, Oliver Smithies, John H. Krege, Deborah A. O’Brien. Angiotensin-converting enzyme and male fertility. Proceedings of the National Academy of Sciences 1998, 95 (5) , 2552-2557. https://doi.org/10.1073/pnas.95.5.2552
    47. Ramkrishna Sadhukhan, Ganes C. Sen, Ramaswamy Ramchandran, Indira Sen. The distal ectodomain of angiotensin-converting enzyme regulates its cleavage-secretion from the cell surface. Proceedings of the National Academy of Sciences 1998, 95 (1) , 138-143. https://doi.org/10.1073/pnas.95.1.138
    48. Edward D. Sturrock, Sergei M. Danilov, James F. Riordan. Limited Proteolysis of Human Kidney Angiotensin-Converting Enzyme and Generation of Catalytically Active N- and C-Terminal Domains. Biochemical and Biophysical Research Communications 1997, 236 (1) , 16-19. https://doi.org/10.1006/bbrc.1997.6841
    49. X. Christopher Yu, Edward D. Sturrock, Zhuchun Wu, Klaus Biemann, Mario R.W. Ehlers, James F. Riordan. Identification of N-Linked Glycosylation Sites in Human Testis Angiotensin-converting Enzyme and Expression of an Active Deglycosylated Form. Journal of Biological Chemistry 1997, 272 (6) , 3511-3519. https://doi.org/10.1074/jbc.272.6.3511

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect