ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Sterically Stabilized Anti-HER2 Immunoliposomes:  Design and Targeting to Human Breast Cancer Cells in Vitro

View Author Information
Department of Cellular and Molecular Pharmacology, Box 0450, and Department of Hematology/Oncology, Cancer Research Institute, Box 0128, University of California, San Francisco, San Francisco, California 94143, Sequus Pharmaceuticals, Inc., 1050 Hamilton Court, Menlo Park, California 94025, and Genentech, Inc., 460 Point San Bruno Boulevard, South San Francisco, California 94080
Cite this: Biochemistry 1997, 36, 1, 66–75
Publication Date (Web):January 7, 1997
https://doi.org/10.1021/bi962148u
Copyright © 1997 American Chemical Society

    Article Views

    3899

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Liposomes (70−100 nm) of 1-palmitoyl-2-oleoylphosphatidylcholine, cholesterol, and poly(ethylene glycol) (PEG)-modified phosphatidylethanolamine (PEG-DSPE) were conjugated to Fab‘ fragments of a humanized recombinant MAb against the extracellular domain of HER2/neu to create sterically stabilized immunoliposomes (anti-HER2 SL) as a drug carrier targeting HER2-overexpressing cancers. Conjugation employed maleimide-terminated membrane-anchored spacers of two kinds:  a short spacer, providing attachment of Fab‘ close to the liposome bilayer, or a long spacer, with Fab‘ attachment at the distal terminus of the PEG chain. Confocal microscopy and spectrofluorometry of HER2-overexpressing breast cancer cells incubated with fluorescently labeled anti-HER2 SL prepared with either spacer showed binding of liposomes (8000−23 000 vesicles/cell) followed by endocytosis (rate constant ke = 0.012−0.033 min-1) via the coated-pit pathway, evidenced by intracellular acidification and colocalization with transferrin. Uptake of anti-HER2 immunoliposomes by breast cancer cells with low HER2 expression, or after preincubation of cells with free anti-HER2 Fab‘, was less than 0.2% and 4.3%, respectively, of the uptake by HER2-overexpressing cells. Increasing PEG-DSPE content (up to 5.7 mol %) in anti-HER2-SL prepared with the short spacer decreased liposome−cell binding affinity 60−100-fold, while kedecreased only 2-fold; however, when Fab‘ fragments were conjugated via a PEG spacer, both binding afffinity and ke were unaffected by PEG-DSPE content. Cell binding and internalization of anti-HER2 immunoliposomes increased at higher surface density of conjugated Fab‘ fragments, reaching plateaus at ∼40 Fab‘/liposome for binding and ∼10−15 Fab‘/liposome for internalization. Uptake of anti-HER2 immunoliposomes correlated with the cell surface density of HER2 and significantly (p < 0.005) correlated with the antiproliferative effect of the targeting antibody but not with the total level of cellular HER2 expression. The results obtained were used to optimize in vivo preclinical studies of anti-HER2 SL loaded with antineoplastic drugs.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by NIH Grant P50CA58207.

    *

     Address correspondence to this author. Telephone:  (415) 476-4828. Fax (415) 476-0688. E-mail:  [email protected].

     Department of Cellular and Molecular Pharmacology, University of California, San Francisco.

    §

     Genentech, Inc.

     Department of Hematology/Oncology, University of California, San Francisco.

     Sequus Pharmaceuticals, Inc.

     Abstract published in Advance ACS Abstracts, December 15, 1996.

    Cited By

    This article is cited by 356 publications.

    1. Vahid Heravi Shargh, Jeni Luckett, Kaouthar Bouzinab, Stephen Paisey, Lyudmila Turyanska, William G. B. Singleton, Stephen Lowis, Pavel Gershkovich, Tracey D. Bradshaw, Malcolm F. G. Stevens, Alison Bienemann, Beth Coyle. Chemosensitization of Temozolomide-Resistant Pediatric Diffuse Midline Glioma Using Potent Nanoencapsulated Forms of a N(3)-Propargyl Analogue. ACS Applied Materials & Interfaces 2021, 13 (30) , 35266-35280. https://doi.org/10.1021/acsami.1c04164
    2. Yuchuan Dai, Yilin Song, Jingyu Xie, Guihua Xiao, Xuanyu Li, Ziyue Li, Fei Gao, Yu Zhang, Enhui He, Shengwei Xu, Yun Wang, Wenfu Zheng, Xingyu Jiang, Zhimei Qi, Dongdong Meng, Zhongwei Fan, Xinxia Cai. CB1-Antibody Modified Liposomes for Targeted Modulation of Epileptiform Activities Synchronously Detected by Microelectrode Arrays. ACS Applied Materials & Interfaces 2020, 12 (37) , 41148-41156. https://doi.org/10.1021/acsami.0c13372
    3. Jason Kuhn, Asya Smirnov, Alison K. Criss, Linda Columbus. Quantifying Carcinoembryonic Antigen-like Cell Adhesion Molecule-Targeted Liposome Delivery Using Imaging Flow Cytometry. Molecular Pharmaceutics 2019, 16 (6) , 2354-2363. https://doi.org/10.1021/acs.molpharmaceut.8b01274
    4. Ahmed M. Shabana Marc A. Ilies . Drug Delivery to Hypoxic Tumors Targeting Carbonic Anhydrase IX. 2019, 223-252. https://doi.org/10.1021/bk-2019-1309.ch010
    5. Mira Oswald, Simon Geissler, and Achim Goepferich . Targeting the Central Nervous System (CNS): A Review of Rabies Virus-Targeting Strategies. Molecular Pharmaceutics 2017, 14 (7) , 2177-2196. https://doi.org/10.1021/acs.molpharmaceut.7b00158
    6. Bhushan S. Pattni, Vladimir V. Chupin, and Vladimir P. Torchilin . New Developments in Liposomal Drug Delivery. Chemical Reviews 2015, 115 (19) , 10938-10966. https://doi.org/10.1021/acs.chemrev.5b00046
    7. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer . Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. ACS Nano 2013, 7 (9) , 8115-8127. https://doi.org/10.1021/nn4033954
    8. Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer . A Systematic Analysis of Peptide Linker Length and Liposomal Polyethylene Glycol Coating on Cellular Uptake of Peptide-Targeted Liposomes. ACS Nano 2013, 7 (4) , 2935-2947. https://doi.org/10.1021/nn305663e
    9. Kim E. Sapsford, W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill, Brendan J. Casey, Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz . Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews 2013, 113 (3) , 1904-2074. https://doi.org/10.1021/cr300143v
    10. Niladri Chattopadhyay, Humphrey Fonge, Zhongli Cai, Deborah Scollard, Eli Lechtman, Susan J. Done, Jean-Philippe Pignol, and Raymond M. Reilly . Role of Antibody-Mediated Tumor Targeting and Route of Administration in Nanoparticle Tumor Accumulation in Vivo. Molecular Pharmaceutics 2012, 9 (8) , 2168-2179. https://doi.org/10.1021/mp300016p
    11. Sjoerd Hak, Emily Helgesen, Helga H. Hektoen, Else Marie Huuse, Peter A. Jarzyna, Willem J.M. Mulder, Olav Haraldseth, and Catharina de Lange Davies . The Effect of Nanoparticle Polyethylene Glycol Surface Density on Ligand-Directed Tumor Targeting Studied in Vivo by Dual Modality Imaging. ACS Nano 2012, 6 (6) , 5648-5658. https://doi.org/10.1021/nn301630n
    12. Weixia Zhang, Ling Tong, and Chen Yang . Cellular Binding and Internalization of Functionalized Silicon Nanowires. Nano Letters 2012, 12 (2) , 1002-1006. https://doi.org/10.1021/nl204131n
    13. R. Pillai, E. R. Marinelli, H. Fan, P. Nanjappan, B. Song, M. A. von Wronski, S. Cherkaoui, I. Tardy, S. Pochon, M. Schneider, A. D. Nunn and R. E. Swenson. A Phospholipid−PEG2000 Conjugate of a Vascular Endothelial Growth Factor Receptor 2 (VEGFR2)-Targeting Heterodimer Peptide for Contrast-Enhanced Ultrasound Imaging of Angiogenesis. Bioconjugate Chemistry 2010, 21 (3) , 556-562. https://doi.org/10.1021/bc9005688
    14. Boris Garnier, Anthony Bouter, Céline Gounou, Klaus G. Petry and Alain R. Brisson . Annexin A5-Functionalized Liposomes for Targeting Phosphatidylserine-Exposing Membranes. Bioconjugate Chemistry 2009, 20 (11) , 2114-2122. https://doi.org/10.1021/bc9002579
    15. Eun Chul Cho, Jingwei Xie, Patricia A. Wurm and Younan Xia . Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I2/KI Etchant. Nano Letters 2009, 9 (3) , 1080-1084. https://doi.org/10.1021/nl803487r
    16. Ranga Partha, Linsey R. Mitchell, Jennifer L. Lyon, Pratixa P. Joshi and Jodie L. Conyers. Buckysomes: Fullerene-Based Nanocarriers for Hydrophobic Molecule Delivery. ACS Nano 2008, 2 (9) , 1950-1958. https://doi.org/10.1021/nn800422k
    17. Min-Yuan Chang, Jonathan Seideman and Stavroula Sofou . Enhanced Loading Efficiency and Retention of 225Ac in Rigid Liposomes for Potential Targeted Therapy of Micrometastases. Bioconjugate Chemistry 2008, 19 (6) , 1274-1282. https://doi.org/10.1021/bc700440a
    18. Shrirang Karve, Gautam Bajagur Kempegowda and Stavroula Sofou. Heterogeneous Domains and Membrane Permeability in Phosphatidylcholine−Phosphatidic Acid Rigid Vesicles As a Function of pH and Lipid Chain Mismatch. Langmuir 2008, 24 (11) , 5679-5688. https://doi.org/10.1021/la800331a
    19. Stavroula Sofou, Barry J. Kappel, Jaspreet S. Jaggi, Michael R. McDevitt, David A. Scheinberg and George Sgouros. Enhanced Retention of the α-Particle-Emitting Daughters of Actinium-225 by Liposome Carriers. Bioconjugate Chemistry 2007, 18 (6) , 2061-2067. https://doi.org/10.1021/bc070075t
    20. Evonne M. Rezler,, David R. Khan,, Janelle Lauer-Fields,, Mare Cudic,, Diane Baronas-Lowell, and, Gregg B. Fields. Targeted Drug Delivery Utilizing Protein-Like Molecular Architecture. Journal of the American Chemical Society 2007, 129 (16) , 4961-4972. https://doi.org/10.1021/ja066929m
    21. Xiaogang Pan,, Gong Wu,, Weiliang Yang,, Rolf F. Barth,, Werner Tjarks, and, Robert J. Lee. Synthesis of Cetuximab-Immunoliposomes via a Cholesterol-Based Membrane Anchor for Targeting of EGFR. Bioconjugate Chemistry 2007, 18 (1) , 101-108. https://doi.org/10.1021/bc060174r
    22. M. E. Hayes,, D. C. Drummond,, K. Hong,, W. W. Zheng,, V. A. Khorosheva,, J. A. Cohen,, C. O. Noble IV,, J. W. Park,, J. D. Marks,, C. C. Benz, and, D. B. Kirpotin. Increased Target Specificity of Anti-HER2 Genospheres by Modification of Surface Charge and Degree of PEGylation. Molecular Pharmaceutics 2006, 3 (6) , 726-736. https://doi.org/10.1021/mp060040v
    23. Charles W. Scales,, Anthony J. Convertine, and, Charles L. McCormick. Fluorescent Labeling of RAFT-Generated Poly(N-isopropylacrylamide) via a Facile Maleimide−Thiol Coupling Reaction. Biomacromolecules 2006, 7 (5) , 1389-1392. https://doi.org/10.1021/bm060192b
    24. Jennifer Takasaki,, Sameersingh G. Raney,, Ghania Chikh,, Laura Sekirov,, Irina Brodsky,, Ying Tam, and, Steven M. Ansell. Methods for the Preparation of Protein−Oligonucleotide−Lipid Constructs. Bioconjugate Chemistry 2006, 17 (2) , 451-458. https://doi.org/10.1021/bc050052j
    25. David Lebœuf and, Nelly Henry. Molecular Bond Formation between Surfaces:  Anchoring and Shearing Effects. Langmuir 2006, 22 (1) , 127-133. https://doi.org/10.1021/la0518501
    26. Alexander L. Klibanov. Ligand-Carrying Gas-Filled Microbubbles:  Ultrasound Contrast Agents for Targeted Molecular Imaging. Bioconjugate Chemistry 2005, 16 (1) , 9-17. https://doi.org/10.1021/bc049898y
    27. P. Chenevier,, L. Bourel-Bonnet, and, D. Roux. Chemical Characterization of α-Oxohydrazone Ligation on Colloids:  toward Grafting Molecular Addresses onto Biological Vectors. Journal of the American Chemical Society 2003, 125 (52) , 16261-16270. https://doi.org/10.1021/ja0370746
    28. C. Wilhelm,, F. Gazeau,, J. Roger,, J. N. Pons, and, J.-C. Bacri. Interaction of Anionic Superparamagnetic Nanoparticles with Cells:  Kinetic Analyses of Membrane Adsorption and Subsequent Internalization. Langmuir 2002, 18 (21) , 8148-8155. https://doi.org/10.1021/la0257337
    29. Michael Fleiner,, Petra Benzinger,, Thomas Fichert, and, Ulrich Massing. Studies on Protein−Liposome Coupling Using Novel Thiol-Reactive Coupling Lipids:  Influence of Spacer Length and Polarity. Bioconjugate Chemistry 2001, 12 (4) , 470-475. https://doi.org/10.1021/bc000101m
    30. Steven M. Ansell,, Ljiljana D. Kojic,, Janet S. Hankins,, Laura Sekirov,, Anthony Boey,, Dora K. Lee,, Athena R. Bennett,, Sandra K. Klimuk,, Troy O. Harasym,, Nancy Dos Santos, and, Sean C. Semple. Application of Oligo-(14-amino-3,6,9,12-tetraoxatetradecanoic acid) Lipid Conjugates as Steric Barrier Molecules in Liposomal Formulations. Bioconjugate Chemistry 1999, 10 (4) , 653-666. https://doi.org/10.1021/bc990005p
    31. Alberto Gabizon,, Aviva T. Horowitz,, Dorit Goren,, Dinah Tzemach,, Frederika Mandelbaum-Shavit,, Masoud M. Qazen, and, Samuel Zalipsky. Targeting Folate Receptor with Folate Linked to Extremities of Poly(ethylene glycol)-Grafted Liposomes:  In Vitro Studies. Bioconjugate Chemistry 1999, 10 (2) , 289-298. https://doi.org/10.1021/bc9801124
    32. Michael C. Willis,, Brian Collins,, Tong Zhang,, Louis S. Green,, David P. Sebesta,, Carol Bell,, Elizabeth Kellogg,, Stanley C. Gill,, Anna Magallanez,, Susan Knauer,, Ray A. Bendele,, Parkash S. Gill, and, Nebojša Janjić. Liposome-Anchored Vascular Endothelial Growth Factor Aptamers. Bioconjugate Chemistry 1998, 9 (5) , 573-582. https://doi.org/10.1021/bc980002x
    33. Christina R. Miller,, Bruce Bondurant,, Shannon D. McLean,, Kathy A. McGovern, and, David F. O'Brien. Liposome−Cell Interactions in Vitro:  Effect of Liposome Surface Charge on the Binding and Endocytosis of Conventional and Sterically Stabilized Liposomes. Biochemistry 1998, 37 (37) , 12875-12883. https://doi.org/10.1021/bi980096y
    34. Jiexin Li, Qian Qiu, He Ren, Jingyu Zhang, Chen Zhang, Gengqi Liu, Boyang Sun, Bin Zheng, Jonathan F. Lovell, Yumiao Zhang. A metalloprotein nanoparticle scaffold co-delivers antigens and adjuvants with metal-enhanced STING activation for vaccination preventing viral infections. Nano Today 2024, 55 , 102156. https://doi.org/10.1016/j.nantod.2024.102156
    35. Leora Goldbloom-Helzner, Harjn Bains, Aijun Wang. Approaches to Characterize and Quantify Extracellular Vesicle Surface Conjugation Efficiency. Life 2024, 14 (4) , 511. https://doi.org/10.3390/life14040511
    36. Stavroula Sofou. Liposomes for drug delivery to cancer cells. 2024, 263-273. https://doi.org/10.1016/B978-0-443-15491-1.00020-1
    37. Negar Nasri, Shaghayegh Saharkhiz, Ghasem Dini, Saghar Yousefnia. Thermo- and pH-responsive targeted lipid-coated mesoporous nano silica platform for dual delivery of paclitaxel and gemcitabine to overcome HER2-positive breast cancer. International Journal of Pharmaceutics 2023, 648 , 123606. https://doi.org/10.1016/j.ijpharm.2023.123606
    38. Sarjana Raikwar, Vivek Yadav, Sanyog Jain, Sanjay K. Jain. Antibody-conjugated pH-sensitive liposomes for HER-2 positive breast cancer: development, characterization, in vitro and in vivo assessment. Journal of Liposome Research 2023, 2012 , 1-25. https://doi.org/10.1080/08982104.2023.2248505
    39. Mingzhu Pan, Yali Liu, Tian Sang, Jiajun Xie, Huishu Lin, Jianpeng Wei, Shuai Shao, Yanying Zheng, Juan Zhang. Enhanced antitumor and anti-metastasis by VEGFR2-targeted doxorubicin immunoliposome synergy with NK cell activation. Investigational New Drugs 2023, 160 https://doi.org/10.1007/s10637-023-01372-5
    40. Peter van Kerkhof, Tomica Kralj, Francesca Spanevello, Louis van Bloois, Ingrid Jordens, Jelte van der Vaart, Cara Jamieson, Alessandra Merenda, Enrico Mastrobattista, Madelon M. Maurice. RSPO3 Furin domain-conjugated liposomes for selective drug delivery to LGR5-high cells. Journal of Controlled Release 2023, 356 , 72-83. https://doi.org/10.1016/j.jconrel.2023.02.025
    41. Matteo Massaro, Suhong Wu, Gherardo Baudo, Haoran Liu, Scott Collum, Hyunho Lee, Cinzia Stigliano, Victor Segura-Ibarra, Harry Karmouty-Quintana, Elvin Blanco. Lipid nanoparticle-mediated mRNA delivery in lung fibrosis. European Journal of Pharmaceutical Sciences 2023, 183 , 106370. https://doi.org/10.1016/j.ejps.2023.106370
    42. Ayça Tunçel, Fatma Yurt. Chemo-Photothermal Combination Therapy of HER-2 Overexpressing Breast Cancer Cells with Dual-Ordered Mesoporous Carbon@Silica Nanocomposite. Applied Biochemistry and Biotechnology 2023, 195 (3) , 1904-1927. https://doi.org/10.1007/s12010-022-04235-6
    43. Maryam Iman, Seyedeh Alia Moosavian, Parvin Zamani, Mahmoud Reza Jaafari. Preparation of AS1411 aptamer-modified PEGylated liposomal doxorubicin and evaluation of its anti-cancer effects in vitro and in vivo. Journal of Drug Delivery Science and Technology 2023, 81 , 104255. https://doi.org/10.1016/j.jddst.2023.104255
    44. Kenan Aloss, Peter Hamar. Recent Preclinical and Clinical Progress in Liposomal Doxorubicin. Pharmaceutics 2023, 15 (3) , 893. https://doi.org/10.3390/pharmaceutics15030893
    45. Neha Parveen, Mohammed A.S. Abourehab, Rahul Shukla, Punniyakoti Veeraveedu Thanikachalam, Gaurav Kumar Jain, Prashant Kesharwani. Immunoliposomes as an emerging nanocarrier for breast cancer therapy. European Polymer Journal 2023, 184 , 111781. https://doi.org/10.1016/j.eurpolymj.2022.111781
    46. Chaemin Lim, Yuseon Shin, Kioh Kang, Patihul Husni, Dayoon Lee, Sehwa Lee, Han-Gon Choi, Eun Seong Lee, Yu Seok Youn, Kyung Taek Oh. Effects of PEG-Linker Chain Length of Folate-Linked Liposomal Formulations on Targeting Ability and Antitumor Activity of Encapsulated Drug. International Journal of Nanomedicine 2023, Volume 18 , 1615-1630. https://doi.org/10.2147/IJN.S402418
    47. Melissa L. Geddie, Dmitri B. Kirpotin, Neeraj Kohli, Tad Kornaga, Bjoern Boll, Maja Razlog, Daryl C. Drummond, Alexey A. Lugovskoy. Development of disulfide-stabilized Fabs for targeting of antibody-directed nanotherapeutics. mAbs 2022, 14 (1) https://doi.org/10.1080/19420862.2022.2083466
    48. Bárbara S. Mesquita, Marcel H. A. M. Fens, Alessia Di Maggio, Esmeralda D. C. Bosman, Wim E. Hennink, Michal Heger, Sabrina Oliveira. The Impact of Nanobody Density on the Targeting Efficiency of PEGylated Liposomes. International Journal of Molecular Sciences 2022, 23 (23) , 14974. https://doi.org/10.3390/ijms232314974
    49. Raghavendra C. Mundargi, Neetika Taneja, Jayeshkumar J. Hadia, Ajay J. Khopade. Liposomes as Targeted Drug‐Delivery Systems. 2022, 69-125. https://doi.org/10.1002/9783527827855.ch4
    50. Yan Li, Qing Bao, Shuxu Yang, Mingying Yang, Chuanbin Mao. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022, 3 (4) https://doi.org/10.1002/VIW.20200027
    51. Laxmikant Gautam, Priya Shrivastava, Bhavana Yadav, Anamika Jain, Rajeev Sharma, Sonal Vyas, S.P. Vyas. Multicompartment systems: A putative carrier for combined drug delivery and targeting. Drug Discovery Today 2022, 27 (4) , 1184-1195. https://doi.org/10.1016/j.drudis.2021.12.007
    52. Felipe da Silva Feltrin, Tamara Agner, Claudia Sayer, Liliane Maria Ferrareso Lona. Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Advances in Colloid and Interface Science 2022, 300 , 102582. https://doi.org/10.1016/j.cis.2021.102582
    53. Kandasamy Saravanakumar, Sathiyaseelan Anbazhagan, Janandi Pujani Usliyanage, Kumar Vishven Naveen, Udari Wijesinghe, Hu Xiaowen, Veeraraghavan Vishnu Priya, Gobika Thiripuranathar, Myeong-Hyeon Wang. A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures. International Immunopharmacology 2022, 103 , 108433. https://doi.org/10.1016/j.intimp.2021.108433
    54. Weixia Zhang, Yimin Huang, Chen Yang. Functional silicon nanowires for cellular binding and internalization. 2022, 111-136. https://doi.org/10.1016/B978-0-12-821351-3.00010-0
    55. Manuela Carvalheiro, Margarida Ferreira-Silva, Denys Holovanchuk, H. Susana Marinho, João Nuno Moreira, Helena Soares, M. Luisa Corvo, Maria Eugénia M. Cruz. Antagonist G-targeted liposomes for improved delivery of anticancer drugs in small cell lung carcinoma. International Journal of Pharmaceutics 2022, 612 , 121380. https://doi.org/10.1016/j.ijpharm.2021.121380
    56. Amal Elamir, Saniha Ajith, Nour Al Sawaftah, Waad Abuwatfa, Debasmita Mukhopadhyay, Vinod Paul, Mohammad H. Al-Sayah, Nahid Awad, Ghaleb A. Husseini. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-86860-5
    57. Kai-Wen Ho, I.-J.u Chen, Yi-An Cheng, Tzu-Yi Liao, En-Shuo Liu, Huei-Jen Chen, Yun-Chi Lu, Yu-Cheng Su, Steve R. Roffler, Bo-Cheng Huang, Hui-Ju Liu, Ming-Yii Huang, Chiao-Yun Chen, Tian-Lu Cheng. Double attack strategy for leukemia using a pre-targeting bispecific antibody (CD20 Ab-mPEG scFv) and actively attracting PEGylated liposomal doxorubicin to enhance anti-tumor activity. Journal of Nanobiotechnology 2021, 19 (1) https://doi.org/10.1186/s12951-020-00752-w
    58. Abhishek Bhattacherjee, Gour C. Daskhan, Arjun Bains, Adrianne E.S. Watson, Ghazaleh Eskandari-Sedighi, Chris D. St. Laurent, Anastassia Voronova, Matthew S. Macauley. Increasing phagocytosis of microglia by targeting CD33 with liposomes displaying glycan ligands. Journal of Controlled Release 2021, 338 , 680-693. https://doi.org/10.1016/j.jconrel.2021.09.010
    59. Neha Desai, Munira Momin, Tabassum Khan, Sankalp Gharat, Raghumani Singh Ningthoujam, Abdelwahab Omri. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opinion on Drug Delivery 2021, 18 (9) , 1261-1290. https://doi.org/10.1080/17425247.2021.1912008
    60. Saeed Mohammadian Haftcheshmeh, Mahmoud Reza Jaafari, Mohammad Mashreghi, Amin Mehrabian, Seyedeh Hoda Alavizadeh, Parvin Zamani, Javad Zarqi, Mohammad Hasan Darvishi, Fatemeh Gheybi. Liposomal doxorubicin targeting mitochondria: A novel formulation to enhance anti-tumor effects of Doxil® in vitro and in vivo. Journal of Drug Delivery Science and Technology 2021, 62 , 102351. https://doi.org/10.1016/j.jddst.2021.102351
    61. Saeed Mohammadian Haftcheshmeh, Parvin Zamani, Mohammad Mashreghi, Amin Reza Nikpoor, Jalil Tavakkol‐Afshari, Mahmoud Reza Jaafari. Immunoliposomes bearing lymphocyte activation gene 3 fusion protein and P5 peptide: A novel vaccine for breast cancer. Biotechnology Progress 2021, 37 (2) https://doi.org/10.1002/btpr.3095
    62. Victoria Fasiku, Edith K. Amuhaya, Kingo M. Rajab, Calvin A. Omolo. Nano/Microparticles Encapsulation Via Covalent Drug Conjugation. 2021https://doi.org/10.5772/intechopen.93364
    63. Arsalan Ahmed, Shumaila Sarwar, Yong Hu, Muhammad Usman Munir, Muhammad Farrukh Nisar, Fakhera Ikram, Anila Asif, Saeed Ur Rahman, Aqif Anwar Chaudhry, Ihtasham Ur Rehman. Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opinion on Drug Delivery 2021, 18 (1) , 1-24. https://doi.org/10.1080/17425247.2020.1822321
    64. Mahfoozur Rahman, Eliana B. Souto, Kainat Alam, Sarwar Beg. Liposomal nanotherapeutics in cancer treatment. 2021, 121-129. https://doi.org/10.1016/B978-0-12-821095-6.00002-1
    65. Gils Jose, Yu-Jen Lu, Jung-Tung Hung, Alice L. Yu, Jyh-Ping Chen. Co-Delivery of CPT-11 and Panobinostat with Anti-GD2 Antibody Conjugated Immunoliposomes for Targeted Combination Chemotherapy. Cancers 2020, 12 (11) , 3211. https://doi.org/10.3390/cancers12113211
    66. Alberto Juan, Francisco J. Cimas, Iván Bravo, Atanasio Pandiella, Alberto Ocaña, Carlos Alonso-Moreno. Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. International Journal of Molecular Sciences 2020, 21 (17) , 6018. https://doi.org/10.3390/ijms21176018
    67. Mahfoozur Rahman, Sarwar Beg, Amita Verma, Imran Kazmi, Farhan Jalees Ahmed, Vikas Kumar, Firoz Anwar, Sohail Akhter. Liposomes as Anticancer Therapeutic Drug Carrier’s Systems: More than a Tour de Force. Current Nanomedicine 2020, 10 (2) , 178-185. https://doi.org/10.2174/2468187309666190618171332
    68. Katia Cortese, Silvia Marconi, Cinzia Aiello, Maria Cristina Gagliani, Serena Pilato, Romina Zappacosta, Antonella Fontana, Patrizio Castagnola. Liposomes Loaded with the Proteasome Inhibitor Z-Leucinyl-Leucinyl-Norleucinal Are Effective in Inducing Apoptosis in Colorectal Cancer Cell Lines. Membranes 2020, 10 (5) , 91. https://doi.org/10.3390/membranes10050091
    69. Alexandra Kosareva, Lotfi Abou-Elkacem, Sayan Chowdhury, Jonathan R. Lindner, Beat A. Kaufmann. Seeing the Invisible—Ultrasound Molecular Imaging. Ultrasound in Medicine & Biology 2020, 46 (3) , 479-497. https://doi.org/10.1016/j.ultrasmedbio.2019.11.007
    70. Dinglin Zhang, Jianxiang Zhang. Surface engineering of nanomaterials with phospholipid-polyethylene glycol-derived functional conjugates for molecular imaging and targeted therapy. Biomaterials 2020, 230 , 119646. https://doi.org/10.1016/j.biomaterials.2019.119646
    71. Jyoti Ahlawat, Mahesh Narayan. Introduction to Active, Smart, and Intelligent Nanomaterials for Biomedical Application. 2020, 1-16. https://doi.org/10.1016/B978-0-12-817830-0.00001-1
    72. Jiaxing Di, Fang Xie, Yuhong Xu. When liposomes met antibodies: Drug delivery and beyond. Advanced Drug Delivery Reviews 2020, 154-155 , 151-162. https://doi.org/10.1016/j.addr.2020.09.003
    73. Arif Khan, Ahmed N Aljarbou, Yousef H Aldebasi, Khaled SA Allemeilam, Mohammad A Alsahly, Shamshir Khan, Abdulmohsen M Alruwetei, Masood A Khan. <p>Fatty Acid Synthase (FASN) siRNA-Encapsulated-Her-2 Targeted Fab’-Immunoliposomes for Gene Silencing in Breast Cancer Cells</p>. International Journal of Nanomedicine 2020, Volume 15 , 5575-5589. https://doi.org/10.2147/IJN.S256022
    74. Yi-An Cheng, I-Ju Chen, Yu-Cheng Su, Kai-Wen Cheng, Yun-Chi Lu, Wen-Wei Lin, Yuan-Chin Hsieh, Chien-Han Kao, Fang-Ming Chen, Steve R. Roffler, Tian-Lu Cheng. Enhanced drug internalization and therapeutic efficacy of PEGylated nanoparticles by one-step formulation with anti-mPEG bispecific antibody in intrinsic drug-resistant breast cancer. Biomaterials Science 2019, 7 (8) , 3404-3417. https://doi.org/10.1039/C9BM00323A
    75. Sara Al Basha, Najla Salkho, Sarah Dalibalta, Ghaleb Adnan Husseini. Liposomes in Active, Passive and Acoustically-Triggered Drug Delivery. Mini-Reviews in Medicinal Chemistry 2019, 19 (12) , 961-969. https://doi.org/10.2174/1389557519666190408155251
    76. Walid S. Kamoun, Dmitri B. Kirpotin, Zhaohua Richard Huang, Suresh K. Tipparaju, Charles O. Noble, Mark E. Hayes, Lia Luus, Alexander Koshkaryev, Jaeyeon Kim, Ken Olivier, Tad Kornaga, Shinji Oyama, Vasileios Askoxylakis, Christine Pien, Geoffrey Kuesters, Nancy Dumont, Alexey A. Lugovskoy, Sarah A. Schihl, John H. Wilton, Melissa L. Geddie, James Suchy, Stephanie Grabow, Neeraj Kohli, C. Patrick Reynolds, Rachel Blaydes, Yu Zhou, Andrew J. Sawyer, James D. Marks, Daryl C. Drummond. Antitumour activity and tolerability of an EphA2-targeted nanotherapeutic in multiple mouse models. Nature Biomedical Engineering 2019, 3 (4) , 264-280. https://doi.org/10.1038/s41551-019-0385-4
    77. Xiaoxiong Han, Feirong Gong, Lili Chi, Caochuan Feng, Jing Sun, Yiyang Chen, Jianwen Liu, Yaling Shen. Cancer-targeted and glutathione-responsive micellar carriers for controlled delivery of cabazitaxel. Nanotechnology 2019, 30 (5) , 055601. https://doi.org/10.1088/1361-6528/aaf020
    78. Alireza Farasat, Fatemeh Rahbarizadeh, Davoud Ahmadvand, Saeed Ranjbar, Shahryar Khoshtinat Nikkhoi. Effective suppression of tumour cells by oligoclonal HER2-targeted delivery of liposomal doxorubicin. Journal of Liposome Research 2019, 29 (1) , 53-65. https://doi.org/10.1080/08982104.2018.1430829
    79. Alexander J. Donovan, Ying Liu. Oral Nanotherapeutics for Cancer with Innovations in Lipid and Polymeric Nanoformulations. 2019, 207-229. https://doi.org/10.1007/978-3-030-01775-0_9
    80. Thekkeparambil Chandrabose Srijaya, Sandhya Sriram, Noor Hayaty Abu Kasim, Shigeki Sugii. MSCs as Biological Drugs. 2019, 395-418. https://doi.org/10.1016/B978-0-12-811920-4.00016-1
    81. Mansour Amin, Aminollah Pourshohod, Alireza Kheirollah, Moslem Afrakhteh, Fatollah Gholami-Borujeni, Majid Zeinali, Mostafa Jamalan. Specific delivery of idarubicin to HER2-positive breast cancerous cell line by trastuzumab-conjugated liposomes. Journal of Drug Delivery Science and Technology 2018, 47 , 209-214. https://doi.org/10.1016/j.jddst.2018.07.017
    82. Seyed-Ali Hosseinian, Aliakbar Haddad-Mashadrizeh, Samaneh Dolatabadi. Simulation and Stability Assessment of Anti-EpCAM Immunotoxin for Cancer Therapy. Advanced Pharmaceutical Bulletin 2018, 8 (3) , 447-455. https://doi.org/10.15171/apb.2018.052
    83. Susan Hua, Maria B. C. de Matos, Josbert M. Metselaar, Gert Storm. Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization. Frontiers in Pharmacology 2018, 9 https://doi.org/10.3389/fphar.2018.00790
    84. Johannes Winkler. Extrahepatic Targeting of Oligonucleotides with Receptor-Binding Non-Immunoglobulin Scaffold Proteins. Nucleic Acid Therapeutics 2018, 28 (3) , 137-145. https://doi.org/10.1089/nat.2017.0713
    85. Shahrzad Amiri Darban, Sara Nikoofal-Sahlabadi, Nafise Amiri, Nafiseh Kiamanesh, Amin Mehrabian, Bamdad Zendehbad, Zahra Gholizadeh, Mahmoud Reza Jaafari. Targeting the leptin receptor: To evaluate therapeutic efficacy and anti-tumor effects of Doxil, in vitro and in vivo in mice bearing C26 colon carcinoma tumor. Colloids and Surfaces B: Biointerfaces 2018, 164 , 107-115. https://doi.org/10.1016/j.colsurfb.2018.01.035
    86. Calvin Cheung, Wafa T. Al-Jamal. Liposomes-Based Nanoparticles for Cancer Therapy and Bioimaging. 2018, 51-87. https://doi.org/10.1007/978-3-319-89878-0_2
    87. M.J. Santander-Ortega, M. Plaza-Oliver, V. Rodríguez-Robledo, L. Castro-Vázquez, N. Villaseca-González, J. González-Fuentes, P. Marcos, M.M. Arroyo-Jiménez, M.V. Lozano. Colloids for drug delivery to the brain. Journal of Drug Delivery Science and Technology 2017, 42 , 193-206. https://doi.org/10.1016/j.jddst.2017.07.012
    88. Behzad Mansoori, Ali Mohammadi, Neda Shajari, Sadaf Davudian, Shima Salehi, Behzad Baradaran. Nano-liposome-based target toxicity machine: an alternative/complementary approach in atopic diseases. Artificial Cells, Nanomedicine, and Biotechnology 2017, 45 (7) , 1292-1297. https://doi.org/10.1080/21691401.2016.1261872
    89. Scott K. Shaw, Wenqi Liu, Seamus P. Brennan, María de Lourdes Betancourt‐Mendiola, Bradley D. Smith. Non‐Covalent Assembly Method that Simultaneously Endows a Liposome Surface with Targeting Ligands, Protective PEG Chains, and Deep‐Red Fluorescence Reporter Groups. Chemistry – A European Journal 2017, 23 (51) , 12646-12654. https://doi.org/10.1002/chem.201702649
    90. Weicui Chen, Bo Liu, Jun Chen, Guoqing Liu, Xian Liu. Targeted tumor MRI with gadobutrol-loaded anti-HER2 immunoliposomes. Acta Radiologica 2017, 58 (5) , 573-580. https://doi.org/10.1177/0284185116664225
    91. Tianshu Li, Takuya Amari, Kentaro Semba, Tadashi Yamamoto, Shinji Takeoka. Construction and evaluation of pH-sensitive immunoliposomes for enhanced delivery of anticancer drug to ErbB2 over-expressing breast cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine 2017, 13 (3) , 1219-1227. https://doi.org/10.1016/j.nano.2016.11.018
    92. Ting Jiang, Kai Jin, Xianpping Liu, Zhiqing Pang. Nanoparticles for tumor targeting. 2017, 221-267. https://doi.org/10.1016/B978-0-08-101914-6.00008-9
    93. Daniela A. Quinteros, José M. Bermúdez, Soledad Ravetti, Alicia Cid, Daniel A. Allemandi, Santiago D. Palma. Therapeutic use of monoclonal antibodies: general aspects and challenges for drug delivery. 2017, 807-833. https://doi.org/10.1016/B978-0-323-46143-6.00025-7
    94. Shang-Hsuan Lee, Yusuke Sato, Mamoru Hyodo, Hideyoshi Harashima. Size-Dependency of the Surface Ligand Density of Liposomes Prepared by Post-insertion. Biological & Pharmaceutical Bulletin 2017, 40 (7) , 1002-1009. https://doi.org/10.1248/bpb.b16-00990
    95. Paul Tardi, Chung Ping Leon Wan, Lawrence Mayer. Passive and semi-active targeting of bone marrow and leukemia cells using anionic low cholesterol liposomes. Journal of Drug Targeting 2016, 24 (9) , 797-804. https://doi.org/10.1080/1061186X.2016.1184669
    96. Mahfoozur Rahman, Vikas Kumar, Sarwar Beg, Gajanand Sharma, Om Prakash Katare, Firoz Anwar. Emergence of liposome as targeted magic bullet for inflammatory disorders: current state of the art. Artificial Cells, Nanomedicine, and Biotechnology 2016, 44 (7) , 1597-1608. https://doi.org/10.3109/21691401.2015.1129617
    97. Virginia J. Yao, Sara D'Angelo, Kimberly S. Butler, Christophe Theron, Tracey L. Smith, Serena Marchiò, Juri G. Gelovani, Richard L. Sidman, Andrey S. Dobroff, C. Jeffrey Brinker, Andrew R.M. Bradbury, Wadih Arap, Renata Pasqualini. Ligand-targeted theranostic nanomedicines against cancer. Journal of Controlled Release 2016, 240 , 267-286. https://doi.org/10.1016/j.jconrel.2016.01.002
    98. Seyedeh Hoda Alavizadeh, Javad Akhtari, Ali Badiee, Shiva Golmohammadzadeh, Mahmoud Reza Jaafari. Improved therapeutic activity of HER2 Affibody-targeted cisplatin liposomes in HER2-expressing breast tumor models. Expert Opinion on Drug Delivery 2016, 13 (3) , 325-336. https://doi.org/10.1517/17425247.2016.1121987
    99. Dae Hwan Shin, Min-Ji Koo, Jung Seok Kim, Jin-Seok Kim. Herceptin-conjugated temperature-sensitive immunoliposomes encapsulating gemcitabine for breast cancer. Archives of Pharmacal Research 2016, 39 (3) , 350-358. https://doi.org/10.1007/s12272-016-0707-y
    100. Tongcheng Dai, Na Li, Fajun Han, Hua Zhang, Yuanxing Zhang, Qin Liu. AMP-guided tumour-specific nanoparticle delivery via adenosine A1 receptor. Biomaterials 2016, 83 , 37-50. https://doi.org/10.1016/j.biomaterials.2016.01.011
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect