ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Mutational Analysis of Potential Zinc-Binding Residues in the Active Site of the Enterococcal d-Ala-d-Ala Dipeptidase VanX

View Author Information
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
Cite this: Biochemistry 1997, 36, 34, 10498–10505
Publication Date (Web):August 26, 1997
https://doi.org/10.1021/bi970543u
Copyright © 1997 American Chemical Society

    Article Views

    675

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    VanX, one of the five proteins required for the vancomycin-resistant phenotype in clinically pathogenic Enterococci, is a zinc-containing d-Ala-d-Ala dipeptidase. To identify potential zinc ligands and begin defining the active site residues, we have mutated the 2 cysteine, 5 histidine, and 4 of the 28 aspartate and glutamate residues in the 202 residue VanX protein. Of 10 mutations, 3 cause inactivation and greater than 90% loss of zinc in purified enzyme samples, implicating His116, Asp123, and His184 as zinc-coordinating residues. Homology searches using the 10 amino acid sequence SxHxxGxAxD, in which histidine and aspartate residues are putative zinc ligands, identified the metal coordinating ligands in the N-terminal domain of the murine Sonic hedgehog protein, which also exhibits an architecture for metal coordination identical to that observed in thermolysin from Bacillus thermoproteolyticus. Furthermore, this 10 amino acid consensus sequence is found in the Streptomycesalbus G zinc-dependent N-acyl-d-Ala-d-Ala carboxypeptidase, an enzyme catalyzing essentially the same d-Ala-d-Ala dipeptide bond cleavage as VanX, suggesting equivalent mechanisms and zinc catalytic site architectures. VanX residue Glu181 is analogous to the Glu143 catalytic base in B. thermoproteolyticus thermolysin, and the E181A VanX mutant has no detectable dipeptidase activity, yet maintains near-stoichiometric zinc content, a result consistent with the participation of the residue as a catalytic base.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This research was supported by NIH Grant GM 49338 to C.T.W. I.A.D.L. received postdoctoral fellowship support from the Natural Sciences and Engineering Research Council of Canada.

     D.G.M. and I.A.D.L. contributed equally to this work.

    *

     Corresponding author. Phone:  617-432-1715. FAX:  617-432-0556. E-mail:  [email protected].

     Abstract published in Advance ACS Abstracts, August 1, 1997.

    Cited By

    This article is cited by 83 publications.

    1. Sean E. Pidgeon and Marcos M. Pires . Cell Wall Remodeling by a Synthetic Analog Reveals Metabolic Adaptation in Vancomycin Resistant Enterococci. ACS Chemical Biology 2017, 12 (7) , 1913-1918. https://doi.org/10.1021/acschembio.7b00412
    2. Hao Yang, Mahesh Aitha, Alyssa M. Hetrick, Timothy K. Richmond, David L. Tierney, and Michael W. Crowder . Mechanistic and Spectroscopic Studies of Metallo-β-lactamase NDM-1. Biochemistry 2012, 51 (18) , 3839-3847. https://doi.org/10.1021/bi300056y
    3. Xiaojun Lei, Kwangwook Ahn, Lei Zhu, Iban Ubarretxena-Belandia and Yue-Ming Li . Soluble Oligomers of the Intramembrane Serine Protease YqgP Are Catalytically Active in the Absence of Detergents. Biochemistry 2008, 47 (46) , 11920-11929. https://doi.org/10.1021/bi800385r
    4. Megan L. Matthews,, Gopalraj Periyannan,, Christine Hajdin,, Tara K. Sidgel,, Brian Bennett, and, Michael W. Crowder. Probing the Reaction Mechanism of the d-ala-d-ala Dipeptidase, VanX, by Using Stopped-Flow Kinetic and Rapid-Freeze Quench EPR Studies on the Co(II)-Substituted Enzyme. Journal of the American Chemical Society 2006, 128 (40) , 13050-13051. https://doi.org/10.1021/ja0627343
    5. Nayeong Kim, Hyo Jeong Kim, Man Hwan Oh, Se Yeon Kim, Mi Hyun Kim, Joo Hee Son, Seung Il Kim, Minsang Shin, Yoo Chul Lee, Je Chul Lee. The role of Zur-regulated lipoprotein A in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles in Acinetobacter baumannii. BMC Microbiology 2021, 21 (1) https://doi.org/10.1186/s12866-020-02083-0
    6. Peter J. Stogios, Alexei Savchenko. Molecular mechanisms of vancomycin resistance. Protein Science 2020, 29 (3) , 654-669. https://doi.org/10.1002/pro.3819
    7. Subhasree Saha, Durg Vijai Singh. Mechanism of Antibiotic Resistance and Pathogenicity of Vibrio cholerae. 2020, 273-299. https://doi.org/10.1007/978-981-15-1695-5_15
    8. Miao Lv, Yue-Juan Zhang, Fan Zhou, Ying Ge, Mu-Han Zhao, Ya Liu, Ke-Wu Yang. Real-time monitoring of D-Ala-D-Ala dipeptidase activity of VanX in living bacteria by isothermal titration calorimetry. Analytical Biochemistry 2019, 578 , 29-35. https://doi.org/10.1016/j.ab.2019.05.002
    9. Irina Etobayeva, Sara Linden, Farhang Alem, Laith Harb, Lucas Rizkalla, Philip Mosier, Allison Johnson, Louise Temple, Ramin Hakami, Daniel Nelson. Discovery and Biochemical Characterization of PlyP56, PlyN74, and PlyTB40—Bacillus Specific Endolysins. Viruses 2018, 10 (5) , 276. https://doi.org/10.3390/v10050276
    10. Israel García-Cano, Manuel Campos-Gómez, Mariana Contreras-Cruz, Carlos Eduardo Serrano-Maldonado, Augusto González-Canto, Carolina Peña-Montes, Romina Rodríguez-Sanoja, Sergio Sánchez, Amelia Farrés. Expression, purification, and characterization of a bifunctional 99-kDa peptidoglycan hydrolase from Pediococcus acidilactici ATCC 8042. Applied Microbiology and Biotechnology 2015, 99 (20) , 8563-8573. https://doi.org/10.1007/s00253-015-6593-2
    11. Boon Aun Teh, Sy Bing Choi, Nasihah Musa, Few Ling Ling, See Too Wei Cun, Abu Bakar Salleh, Nazalan Najimudin, Habibah A Wahab, Yahaya M Normi. Structure to function prediction of hypothetical protein KPN_00953 (Ycbk) from Klebsiella pneumoniae MGH 78578 highlights possible role in cell wall metabolism. BMC Structural Biology 2014, 14 (1) https://doi.org/10.1186/1472-6807-14-7
    12. Djalal Meziane-Cherif, Peter J. Stogios, Elena Evdokimova, Alexei Savchenko, Patrice Courvalin. Structural basis for the evolution of vancomycin resistance D , D -peptidases. Proceedings of the National Academy of Sciences 2014, 111 (16) , 5872-5877. https://doi.org/10.1073/pnas.1402259111
    13. Christopher J. Kristich, Dušanka Djorić, Jaime L. Little. Genetic Basis for Vancomycin-Enhanced Cephalosporin Susceptibility in Vancomycin-Resistant Enterococci Revealed Using Counterselection with Dominant-Negative Thymidylate Synthase. Antimicrobial Agents and Chemotherapy 2014, 58 (3) , 1556-1564. https://doi.org/10.1128/AAC.02001-13
    14. Elisa Binda, Giorgia Letizia Marcone, Francesca Berini, Loredano Pollegioni, Flavia Marinelli. Streptomyces spp. as efficient expression system for a d,d-peptidase/d,d-carboxypeptidase involved in glycopeptide antibiotic resistance. BMC Biotechnology 2013, 13 (1) https://doi.org/10.1186/1472-6750-13-24
    15. L. Hudek, L. A. Pearson, A. Michalczyk, B. A. Neilan, M. L. Ackland. Functional characterization of the twin ZIP/SLC39 metal transporters, NpunF3111 and NpunF2202 in Nostoc punctiforme. Applied Microbiology and Biotechnology 2013, 97 (19) , 8649-8662. https://doi.org/10.1007/s00253-013-5047-y
    16. Cheng-Cheng Liu, Xiang-Bo Zhao, Ke-Wu Yang, Kang-Zhen Xu, Le Zhai, Xia Yang, Hui-Zhou Gao. Exploring antibiotic resistance based on enzyme hydrolysis by microcalorimetry. Journal of Thermal Analysis and Calorimetry 2013, 111 (3) , 1663-1667. https://doi.org/10.1007/s10973-011-2010-y
    17. Neil D. Rawlings, Alan J. Barrett. Introduction. 2013, 325-370. https://doi.org/10.1016/B978-0-12-382219-2.00077-6
    18. Ivan A.D. Lessard. VanX d-,d-Dipeptidase. 2013, 1395-1401. https://doi.org/10.1016/B978-0-12-382219-2.00314-8
    19. Bokyung Son, Jiae Yun, Jeong-A Lim, Hakdong Shin, Sunggi Heu, Sangryeol Ryu. Characterization of LysB4, an endolysin from the Bacillus cereus-infecting bacteriophage B4. BMC Microbiology 2012, 12 (1) https://doi.org/10.1186/1471-2180-12-33
    20. Dustin J. Little, Joanna Poloczek, John C. Whitney, Howard Robinson, Mark Nitz, P.Lynne Howell. The Structure- and Metal-dependent Activity of Escherichia coli PgaB Provides Insight into the Partial De-N-acetylation of Poly-β-1,6-N-acetyl-d-glucosamine. Journal of Biological Chemistry 2012, 287 (37) , 31126-31137. https://doi.org/10.1074/jbc.M112.390005
    21. Elisa Binda, Giorgia L. Marcone, Loredano Pollegioni, Flavia Marinelli. Characterization of VanY n , a novel D,D-peptidase/D,D-carboxypeptidase involved in glycopeptide antibiotic resistance in Nonomuraea sp. ATCC 39727. FEBS Journal 2012, 279 (17) , 3203-3213. https://doi.org/10.1111/j.1742-4658.2012.08706.x
    22. M. Patrick Hensley, Thusitha S. Gunasekera, J. Allen Easton, Tara K. Sigdel, Stacy A. Sugarbaker, Lindsey Klingbeil, Robert M. Breece, David L. Tierney, Michael W. Crowder. Characterization of Zn(II)-responsive ribosomal proteins YkgM and L31 in E. coli. Journal of Inorganic Biochemistry 2012, 111 , 164-172. https://doi.org/10.1016/j.jinorgbio.2011.11.022
    23. Mathias Schmelcher, Florian Waldherr, Martin J. Loessner. Listeria bacteriophage peptidoglycan hydrolases feature high thermoresistance and reveal increased activity after divalent metal cation substitution. Applied Microbiology and Biotechnology 2012, 93 (2) , 633-643. https://doi.org/10.1007/s00253-011-3372-6
    24. Chao Jia, Ke-Wu Yang, Cheng-Cheng Liu, Lei Feng, Jian-Min Xiao, Li-Sheng Zhou, Yi-Lin Zhang. Synthesis, characterization and activity of new phosphonate dipeptides as potential inhibitors of VanX. Bioorganic & Medicinal Chemistry Letters 2012, 22 (1) , 482-484. https://doi.org/10.1016/j.bmcl.2011.10.094
    25. Crysten E. Blaby-Haas, Jessica A. Flood, Valérie de Crécy-Lagard, Deborah B. Zamble. YeiR: a metal-binding GTPase from Escherichia coli involved in metal homeostasis. Metallomics 2012, 4 (5) , 488. https://doi.org/10.1039/c2mt20012k
    26. Ke-Wu Yang, Xu Cheng, Chuan Zhao, Cheng-Cheng Liu, Chao Jia, Lei Feng, Jian-Min Xiao, Li-Sheng Zhou, Hui-Zhou Gao, Xia Yang, Le Zhai. Synthesis and activity study of phosphonamidate dipeptides as potential inhibitors of VanX. Bioorganic & Medicinal Chemistry Letters 2011, 21 (23) , 7224-7227. https://doi.org/10.1016/j.bmcl.2011.09.020
    27. Jean van Heijenoort. Peptidoglycan Hydrolases of Escherichia coli. Microbiology and Molecular Biology Reviews 2011, 75 (4) , 636-663. https://doi.org/10.1128/MMBR.00022-11
    28. Yuan Tian, Christina J. Crump, Yue-Ming Li. Dual Role of α-Secretase Cleavage in the Regulation of γ-Secretase Activity for Amyloid Production. Journal of Biological Chemistry 2010, 285 (42) , 32549-32556. https://doi.org/10.1074/jbc.M110.128439
    29. Philip A. Beachy, Sarah G. Hymowitz, Robert A. Lazarus, Daniel J. Leahy, Christian Siebold. Interactions between Hedgehog proteins and their binding partners come into view. Genes & Development 2010, 24 (18) , 2001-2012. https://doi.org/10.1101/gad.1951710
    30. Yuan Tian, Bhramdeo Bassit, Deming Chau, Yue-Ming Li. An APP inhibitory domain containing the Flemish mutation residue modulates γ-secretase activity for Aβ production. Nature Structural & Molecular Biology 2010, 17 (2) , 151-158. https://doi.org/10.1038/nsmb.1743
    31. Christopher C Shelton, Yuan Tian, Mark G Frattini, Yue-Ming Li. An exo-cell assay for examining real-time γ-secretase activity and inhibition. Molecular Neurodegeneration 2009, 4 (1) https://doi.org/10.1186/1750-1326-4-22
    32. F. Depardieu, M.-L. Foucault, J. Bell, A. Dubouix, M. Guibert, J.-P. Lavigne, M. Levast, P. Courvalin. New Combinations of Mutations in VanD-Type Vancomycin-Resistant Enterococcus faecium , Enterococcus faecalis , and Enterococcus avium Strains. Antimicrobial Agents and Chemotherapy 2009, 53 (5) , 1952-1963. https://doi.org/10.1128/AAC.01348-08
    33. . d-Ala-d-Ala dipeptidase. 2009, 292-298. https://doi.org/10.1007/978-3-540-85703-7_40
    34. Burckhard Seelig, Jack W. Szostak. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 2007, 448 (7155) , 828-831. https://doi.org/10.1038/nature06032
    35. Sheref S. Mansy, Jinglei Zhang, Rainer Kümmerle, Mikael Nilsson, James J. Chou, Jack W. Szostak, John C. Chaput. Structure and Evolutionary Analysis of a Non-biological ATP-binding Protein. Journal of Molecular Biology 2007, 371 (2) , 501-513. https://doi.org/10.1016/j.jmb.2007.05.062
    36. Michael R. Leach, Jie Wei Zhang, Deborah B. Zamble. The Role of Complex Formation between the Escherichia coli Hydrogenase Accessory Factors HypB and SlyD. Journal of Biological Chemistry 2007, 282 (22) , 16177-16186. https://doi.org/10.1074/jbc.M610834200
    37. Marie Deghorain, Philippe Goffin, Laetitia Fontaine, Jean-Luc Mainardi, Richard Daniel, Jeff Errington, Bernard Hallet, Pascal Hols. Selectivity for d -Lactate Incorporation into the Peptidoglycan Precursors of Lactobacillus plantarum : Role of Aad, a VanX-Like d -Alanyl- d -Alanine Dipeptidase. Journal of Bacteriology 2007, 189 (11) , 4332-4337. https://doi.org/10.1128/JB.01829-06
    38. Christophe Antczak, David Shum, Sindy Escobar, Bhramdeo Bassit, Earl Kim, Venkatraman E. Seshan, Nian Wu, Guangli Yang, Ouathek Ouerfelli, Yue-Ming Li, David A. Scheinberg, Hakim Djaballah. High-Throughput Identification of Inhibitors of Human Mitochondrial Peptide Deformylase. SLAS Discovery 2007, 12 (4) , 521-535. https://doi.org/10.1177/1087057107300463
    39. Russell A. Miller, Brock F. Binkowski, Peter J. Belshaw. Ligand-regulated Peptide Aptamers that Inhibit the 5′-AMP-activated Protein Kinase. Journal of Molecular Biology 2007, 365 (4) , 945-957. https://doi.org/10.1016/j.jmb.2006.07.035
    40. Yi-Pin Chang, Min-Jen Tseng, Yen-Ho Chu. Using surface plasmon resonance to directly measure slow binding of low-molecular mass inhibitors to a VanX chip. Analytical Biochemistry 2006, 359 (1) , 63-71. https://doi.org/10.1016/j.ab.2006.08.009
    41. Ming-Lung Hsieh, Min-Jen Tseng, Ming-Chung Tseng, Yen-Ho Chu. Identification of a new chromophoric substrate in the library of amino acid p-nitroanilides for continuous assay of VanX, a d,d-dipeptidase essential for vancomycin resistance. Analytical Biochemistry 2006, 354 (1) , 104-110. https://doi.org/10.1016/j.ab.2006.03.054
    42. Robert M. Breece, Alison Costello, Brian Bennett, Tara K. Sigdel, Megan L. Matthews, David L. Tierney, Michael W. Crowder. A Five-coordinate Metal Center in Co(II)-substituted VanX. Journal of Biological Chemistry 2005, 280 (12) , 11074-11081. https://doi.org/10.1074/jbc.M412582200
    43. Florence Depardieu, Mathias Kolbert, Hendrik Pruul, Jan Bell, Patrice Courvalin. VanD-Type Vancomycin-Resistant Enterococcus faecium and Enterococcus faecalis. Antimicrobial Agents and Chemotherapy 2004, 48 (10) , 3892-3904. https://doi.org/10.1128/AAC.48.10.3892-3904.2004
    44. Frank C Golich, Tara Sigdel, Robert M Breece, Lisa Detar, Lissa R Herron, Michael W Crowder. l-Alanine-p-nitroanilide is not a substrate for VanX. Analytical Biochemistry 2004, 331 (2) , 398-400. https://doi.org/10.1016/j.ab.2004.05.026
    45. John C Chaput, Jack W Szostak. Evolutionary Optimization of a Nonbiological ATP Binding Protein for Improved Folding Stability. Chemistry & Biology 2004, 11 (6) , 865-874. https://doi.org/10.1016/j.chembiol.2004.04.006
    46. Neil D. Rawlings, Alan J. Barrett. Introduction: metallopeptidases and their clans. 2004, 231-267. https://doi.org/10.1016/B978-0-12-079611-3.50075-6
    47. Ivan A.D. Lessard. VanX d-,d-dipeptidase. 2004, 860-866. https://doi.org/10.1016/B978-0-12-079611-3.50264-0
    48. Neil R. Stokes, Heath D. Murray, Chandrasekaran Subramaniam, Richard L. Gourse, Petra Louis, Wendy Bartlett, Samantha Miller, Ian R. Booth. A role for mechanosensitive channels in survival of stationary phase: Regulation of channel expression by RpoS. Proceedings of the National Academy of Sciences 2003, 100 (26) , 15959-15964. https://doi.org/10.1073/pnas.2536607100
    49. Florence Depardieu, Maria Grazia Bonora, Peter E. Reynolds, Patrice Courvalin. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Molecular Microbiology 2003, 50 (3) , 931-948. https://doi.org/10.1046/j.1365-2958.2003.03737.x
    50. M. Anissimova, L. Yaouancq, M.‐A. Badet‐Denisot, B. Badet. New chromogenic dipeptide substrate for continuous assay of the d ‐alanyl‐ d ‐alanine dipeptidase VanX required for high‐level vancomycin resistance. The Journal of Peptide Research 2003, 62 (2) , 88-95. https://doi.org/10.1034/j.1399-3011.2003.00072.x
    51. Florence Depardieu, Peter E. Reynolds, Patrice Courvalin. VanD-Type Vancomycin-Resistant Enterococcus faecium 10/96A. Antimicrobial Agents and Chemotherapy 2003, 47 (1) , 7-18. https://doi.org/10.1128/AAC.47.1.7-18.2003
    52. Vivek Anantharaman, L Aravind. . Genome Biology 2003, 4 (2) , R11. https://doi.org/10.1186/gb-2003-4-2-r11
    53. Lorena Abadía Patiño, Patrice Courvalin, Bruno Perichon. vanE Gene Cluster of Vancomycin-Resistant Enterococcus faecalis BM4405. Journal of Bacteriology 2002, 184 (23) , 6457-6464. https://doi.org/10.1128/JB.184.23.6457-6464.2002
    54. Colette Goffin, Jean-Marie Ghuysen. Biochemistry and Comparative Genomics of SxxK Superfamily Acyltransferases Offer a Clue to the Mycobacterial Paradox: Presence of Penicillin-Susceptible Target Proteins versus Lack of Efficiency of Penicillin as Therapeutic Agent. Microbiology and Molecular Biology Reviews 2002, 66 (4) , 702-738. https://doi.org/10.1128/MMBR.66.4.702-738.2002
    55. Adrian H. B. Podmore, Peter E. Reynolds. Purification and characterization of VanXY C , a d , d ‐dipeptidase/ d , d ‐carboxypeptidase in vancomycin‐resistant Enterococcus gallinarum BM4174. European Journal of Biochemistry 2002, 269 (11) , 2740-2746. https://doi.org/10.1046/j.1432-1033.2002.02946.x
    56. Ai Lin Tan, Paxton Loke, Tiow-Suan Sim. Molecular cloning and functional characterisation of VanX, a D-alanyl-D-alanine dipeptidase from Streptomyces coelicolor A3(2). Research in Microbiology 2002, 153 (1) , 27-32. https://doi.org/10.1016/S0923-2508(01)01282-7
    57. Anthony D. Keefe, David S. Wilson, Burckhard Seelig, Jack W. Szostak. One-Step Purification of Recombinant Proteins Using a Nanomolar-Affinity Streptavidin-Binding Peptide, the SBP-Tag. Protein Expression and Purification 2001, 23 (3) , 440-446. https://doi.org/10.1006/prep.2001.1515
    58. Barbara Casadewall, Peter E. Reynolds, Patrice Courvalin. Regulation of Expression of the vanD Glycopeptide Resistance Gene Cluster from Enterococcus faecium BM4339. Journal of Bacteriology 2001, 183 (11) , 3436-3446. https://doi.org/10.1128/JB.183.11.3436-3446.2001
    59. Anthony D. Keefe, Jack W. Szostak. Functional proteins from a random-sequence library. Nature 2001, 410 (6829) , 715-718. https://doi.org/10.1038/35070613
    60. Claudiu T Supuran, Andrea Scozzafava, Antonio Mastrolorenzo. Bacterial proteases: current therapeutic use and future prospects for the development of new antibiotics. Expert Opinion on Therapeutic Patents 2001, 11 (2) , 221-259. https://doi.org/10.1517/13543776.11.2.221
    61. Jeffrey J. Brandt, Lisa L. Chatwood, Michael W. Crowder. Analysis of Three Overexpression Systems for VanX, the Zinc(II) Dipeptidase Required for High-Level Vancomycin Resistance in Bacteria. Protein Expression and Purification 2000, 20 (2) , 300-307. https://doi.org/10.1006/prep.2000.1303
    62. John W. Trauger, Christopher T. Walsh. Heterologous expression in Escherichia coli of the first module of the nonribosomal peptide synthetase for chloroeremomycin, a vancomycin-type glycopeptide antibiotic. Proceedings of the National Academy of Sciences 2000, 97 (7) , 3112-3117. https://doi.org/10.1073/pnas.97.7.3112
    63. David E. Ehmann, Cathryn A. Shaw-Reid, Heather C. Losey, Christopher T. Walsh. The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase: Sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates. Proceedings of the National Academy of Sciences 2000, 97 (6) , 2509-2514. https://doi.org/10.1073/pnas.040572897
    64. Yasuhisa Asano, Tina L. Lübbehüsen. Enzymes acting on peptides containing d-amino acid. Journal of Bioscience and Bioengineering 2000, 89 (4) , 295-306. https://doi.org/10.1016/S1389-1723(00)88949-5
    65. Peter E. Reynolds, Cesar A. Arias, Patrice Courvalin. Gene vanXY C encodes d,d ‐dipeptidase (VanX) and d,d ‐carboxypeptidase (VanY) activities in vancomycin‐resistant Enterococcus gallinarum BM4174. Molecular Microbiology 1999, 34 (2) , 341-349. https://doi.org/10.1046/j.1365-2958.1999.01604.x
    66. Ivan A. D. Lessard, Christopher T. Walsh. VanX, a bacterial d -alanyl- d -alanine dipeptidase: Resistance, immunity, or survival function?. Proceedings of the National Academy of Sciences 1999, 96 (20) , 11028-11032. https://doi.org/10.1073/pnas.96.20.11028
    67. Jeffrey J. Brandt, Lisa L. Chatwood, Ke-Wu Yang, Michael W. Crowder. Continuous Assay for VanX, the d-Alanyl–d-Alanine Dipeptidase Required for High-Level Vancomycin Resistance. Analytical Biochemistry 1999, 272 (1) , 94-99. https://doi.org/10.1006/abio.1999.4166
    68. Barbara Casadewall, Patrice Courvalin. Characterization of the vanD Glycopeptide Resistance Gene Cluster from Enterococcus faecium BM4339. Journal of Bacteriology 1999, 181 (12) , 3644-3648. https://doi.org/10.1128/JB.181.12.3644-3648.1999
    69. Friederike Hilbert, Francisco García del Portillo, Eduardo A. Groisman. A Periplasmic d -Alanyl- d -Alanine Dipeptidase in the Gram-Negative Bacterium Salmonella enterica. Journal of Bacteriology 1999, 181 (7) , 2158-2165. https://doi.org/10.1128/JB.181.7.2158-2165.1999
    70. Ivan AD Lessard, Christopher T Walsh. Mutational analysis of active-site residues of the enterococcal d-Ala-d-Ala dipeptidase VanX and comparison with Escherichia colid-Ala-d-Ala ligase and d-Ala-d-Ala carboxypeptidase VanY. Chemistry & Biology 1999, 6 (3) , 177-187. https://doi.org/10.1016/S1074-5521(99)89009-7
    71. David T. Jones, Michael Tress, Kevin Bryson, Caroline Hadley. Successful recognition of protein folds using threading methods biased by sequence similarity and predicted secondary structure. Proteins: Structure, Function, and Genetics 1999, 37 (S3) , 104-111. https://doi.org/10.1002/(SICI)1097-0134(1999)37:3+<104::AID-PROT14>3.0.CO;2-P
    72. Francisco S. Domingues, Walter A. Koppensteiner, Markus Jaritz, Andreas Prlic, Christian Weichenberger, Markus Wiederstein, Hannes Floeckner, Peter Lackner, Manfred J. Sippl. Sustained performance of knowledge-based potentials in fold recognition. Proteins: Structure, Function, and Genetics 1999, 37 (S3) , 112-120. https://doi.org/10.1002/(SICI)1097-0134(1999)37:3+<112::AID-PROT15>3.0.CO;2-R
    73. Motonori Ota, Takeshi Kawabata, Akira R. Kinjo, Ken Nishikawa. Cooperative approach for the protein fold recognition. Proteins: Structure, Function, and Genetics 1999, 37 (S3) , 126-132. https://doi.org/10.1002/(SICI)1097-0134(1999)37:3+<126::AID-PROT17>3.0.CO;2-8
    74. Kristin K. Koretke, Robert B. Russell, Richard R. Copley, Andrei N. Lupas. Fold recognition using sequence and secondary structure information. Proteins: Structure, Function, and Genetics 1999, 37 (S3) , 141-148. https://doi.org/10.1002/(SICI)1097-0134(1999)37:3+<141::AID-PROT19>3.0.CO;2-F
    75. Aron Marchler-Bauer, Stephen H. Bryant. A measure of progress in fold recognition?. Proteins: Structure, Function, and Genetics 1999, 37 (S3) , 218-225. https://doi.org/10.1002/(SICI)1097-0134(1999)37:3+<218::AID-PROT28>3.0.CO;2-X
    76. Alexey G. Murzin. Structure classification-based assessment of CASP3 predictions for the fold recognition targets. Proteins: Structure, Function, and Genetics 1999, 37 (S3) , 88-103. https://doi.org/10.1002/(SICI)1097-0134(1999)37:3+<88::AID-PROT13>3.0.CO;2-3
    77. Jian Tu, Yen-Ho Chu. Vancomycin Resistance inEnterococcus faecium:A Capillary Electrophoresis- Based Assay for VanX Enzyme. Analytical Biochemistry 1998, 264 (2) , 293-296. https://doi.org/10.1006/abio.1998.2870
    78. Luis E.N. Quadri, Jason Sello, Thomas A. Keating, Paul H. Weinreb, Christopher T. Walsh. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chemistry & Biology 1998, 5 (11) , 631-645. https://doi.org/10.1016/S1074-5521(98)90291-5
    79. Michel Arthur, Florence Depardieu, Lucien Cabanié, Peter Reynolds, Patrice Courvalin. Requirement of the VanY and VanX D,D-peptidases for glycopeptide resistance in enterococci. Molecular Microbiology 1998, 30 (4) , 819-830. https://doi.org/10.1046/j.1365-2958.1998.01114.x
    80. Ivan A.D. Lessard, Steve D. Pratt, Dewey G. McCafferty, Dirksen E. Bussiere, Charles Hutchins, Barry L. Wanner, Leonard Katz, Christopher T. Walsh. Homologs of the vancomycin resistance d-Ala-d-Ala dipeptidase VanX in Streptomyces toyocaensis, Escherichia coli and Synechocystis: attributes of catalytic efficiency, stereoselectivity and regulation with implications for function. Chemistry & Biology 1998, 5 (9) , 489-504. https://doi.org/10.1016/S1074-5521(98)90005-9
    81. C. G. Marshall, I. A. D. Lessard, I.-S. Park, G. D. Wright. Glycopeptide Antibiotic Resistance Genes in Glycopeptide-Producing Organisms. Antimicrobial Agents and Chemotherapy 1998, 42 (9) , 2215-2220. https://doi.org/10.1128/AAC.42.9.2215
    82. Dirksen E. Bussiere, Steven D. Pratt, Leonard Katz, Jean M. Severin, Thomas Holzman, Chang H. Park. The Structure of VanX Reveals a Novel Amino-Dipeptidase Involved in Mediating Transposon-Based Vancomycin Resistance. Molecular Cell 1998, 2 (1) , 75-84. https://doi.org/10.1016/S1097-2765(00)80115-X
    83. Ranabir Sinha Roy, Soyoun Kim, James D Baleja, Christopher T Walsh. Role of the microcin B17 propeptide in substrate recognition: solution structure and mutational analysis of McbA1−26. Chemistry & Biology 1998, 5 (4) , 217-228. https://doi.org/10.1016/S1074-5521(98)90635-4

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect