ACS Publications. Most Trusted. Most Cited. Most Read
Evaluation of Atypical Cytochrome P450 Kinetics with Two-Substrate Models:  Evidence That Multiple Substrates Can Simultaneously Bind to Cytochrome P450 Active Sites
My Activity
    Article

    Evaluation of Atypical Cytochrome P450 Kinetics with Two-Substrate Models:  Evidence That Multiple Substrates Can Simultaneously Bind to Cytochrome P450 Active Sites
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Clinical Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15217, Department of Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, and Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 1998, 37, 12, 4137–4147
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi9715627
    Published March 3, 1998
    Copyright © 1998 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Some cytochrome P450 catalyzed reactions show atypical kinetics, and these kinetic processes can be grouped into five categories:  activation, autoactivation, partial inhibition, substrate inhibition, and biphasic saturation curves. A two-site model in which the enzyme can bind two substrate molecules simultaneously is presented which can be used to describe all of these observed kinetic properties. Sigmoidal kinetic characteristics were observed for carbamazepine metabolism by CYP3A4 and naphthalene metabolism by CYPs 2B6, 2C8, 2C9, and 3A5 as well as dapsone metabolism by CYP2C9. Naphthalene metabolism by CYP3A4 and naproxen metabolism by CYP2C9 demonstrated nonhyperbolic enzyme kinetics suggestive of a low Km, low Vmax component for the first substrate molecule and a high Km, high Vmax component for the second substrate molecule. 7,8-Benzoflavone activation of phenanthrene metabolism by CYP3A4 and dapsone activation of flurbiprofen and naproxen metabolism by CYP2C9 were also observed. Furthermore, partial inhibition of 7,8-benzoflavone metabolism by phenanthrene was observed. These results demonstrate that various P450 isoforms may exhibit atypical enzyme kinetics depending on the substrate(s) employed and that these results may be explained by a model which includes simultaneous binding of two substrate molecules in the active site.

    Copyright © 1998 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Supported by NSF Grant OSR-9450578 and NIH Grants NO1-DK-6-2274 and GM32165.

    *

     To whom correspondence should be addressed at the Center for Clinical Pharmacology, 623 Scaife Hall, University of Pittsburgh Medical Center, Pittsburgh, PA 15213.

     University of Pittsburgh.

    §

     Merck Research Laboratories.

     University of Washington.

     National Cancer Institute.

    #

     West Virginia University.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 446 publications.

    1. Yanjun Feng, Changda Gong, Jieyu Zhu, Guixia Liu, Yun Tang, Weihua Li. Unraveling the Ligand-Binding Sites of CYP3A4 by Molecular Dynamics Simulations with Solvent Probes. Journal of Chemical Information and Modeling 2024, 64 (8) , 3451-3464. https://doi.org/10.1021/acs.jcim.4c00089
    2. Rong-Jing He, Zhen-Hao Tian, Jian Huang, Meng-Ru Sun, Feng Wei, Chun-Yu Li, Hai-Rong Zeng, Feng Zhang, Xiao-Qing Guan, Yan Feng, Xiang-Ming Meng, Hui Yang, Guang-Bo Ge. Rationally Engineered CYP3A4 Fluorogenic Substrates for Functional Imaging Analysis and Drug–Drug Interaction Studies. Journal of Medicinal Chemistry 2023, 66 (10) , 6743-6755. https://doi.org/10.1021/acs.jmedchem.3c00101
    3. Bethany D. Latham, D. Spencer Oskin, Rachel D. Crouch, Matthew J. Vergne, Klarissa D. Jackson. Cytochromes P450 2C8 and 3A Catalyze the Metabolic Activation of the Tyrosine Kinase Inhibitor Masitinib. Chemical Research in Toxicology 2022, 35 (9) , 1467-1481. https://doi.org/10.1021/acs.chemrestox.2c00057
    4. Ilia G. Denisov, Yelena V. Grinkova, Tyler Camp, Mark A. McLean, Stephen G. Sligar. Midazolam as a Probe for Drug–Drug Interactions Mediated by CYP3A4: Homotropic Allosteric Mechanism of Site-Specific Hydroxylation. Biochemistry 2021, 60 (21) , 1670-1681. https://doi.org/10.1021/acs.biochem.1c00161
    5. Julie Ducharme, Vanja Polic, Christopher J. Thibodeaux, Karine Auclair. Combining Small-Molecule Bioconjugation and Hydrogen–Deuterium Exchange Mass Spectrometry (HDX-MS) to Expose Allostery: the Case of Human Cytochrome P450 3A4. ACS Chemical Biology 2021, 16 (5) , 882-890. https://doi.org/10.1021/acschembio.1c00084
    6. Kang Xiao, Jie Gao, Shi-Jia Weng, Yan Fang, Na Gao, Qiang Wen, Han Jin, Hai-Ling Qiao. CYP3A4/5 Activity Probed with Testosterone and Midazolam: Correlation between Two Substrates at the Microsomal and Enzyme Levels. Molecular Pharmaceutics 2019, 16 (1) , 382-392. https://doi.org/10.1021/acs.molpharmaceut.8b01043
    7. Jaydeep Yadav, Ken Korzekwa, Swati Nagar. Improved Predictions of Drug–Drug Interactions Mediated by Time-Dependent Inhibition of CYP3A. Molecular Pharmaceutics 2018, 15 (5) , 1979-1995. https://doi.org/10.1021/acs.molpharmaceut.8b00129
    8. Ilia G. Denisov, Javier L. Baylon, Yelena V. Grinkova, Emad Tajkhorshid, and Stephen G. Sligar . Drug–Drug Interactions between Atorvastatin and Dronedarone Mediated by Monomeric CYP3A4. Biochemistry 2018, 57 (5) , 805-816. https://doi.org/10.1021/acs.biochem.7b01012
    9. Keiko Maekawa, Motoyasu Adachi, Yumiko Matsuzawa, Qinghai Zhang, Ryota Kuroki, Yoshiro Saito, and Manish B. Shah . Structural Basis of Single-Nucleotide Polymorphisms in Cytochrome P450 2C9. Biochemistry 2017, 56 (41) , 5476-5480. https://doi.org/10.1021/acs.biochem.7b00795
    10. Matthew D. DeMars, II, Fang Sheng, Sung Ryeol Park, Andrew N. Lowell, Larissa M. Podust, and David H. Sherman . Biochemical and Structural Characterization of MycCI, a Versatile P450 Biocatalyst from the Mycinamicin Biosynthetic Pathway. ACS Chemical Biology 2016, 11 (9) , 2642-2654. https://doi.org/10.1021/acschembio.6b00479
    11. Carlo Barnaba, Jaydeep Yadav, Swati Nagar, Ken Korzekwa, and Jeffrey P. Jones . Mechanism-Based Inhibition of CYP3A4 by Podophyllotoxin: Aging of an Intermediate Is Important for in Vitro/in Vivo Correlations. Molecular Pharmaceutics 2016, 13 (8) , 2833-2843. https://doi.org/10.1021/acs.molpharmaceut.6b00436
    12. Carlo Barnaba, Sara C. Humphreys, Adam O. Barden, Jeffrey P. Jones, and James A. Brozik . Substrate Dependent Native Luminescence from Cytochromes P450 3A4, 2C9, and P450cam. The Journal of Physical Chemistry B 2016, 120 (12) , 3038-3047. https://doi.org/10.1021/acs.jpcb.5b11804
    13. Irina F. Sevrioukova and Thomas L. Poulos . Anion-Dependent Stimulation of CYP3A4 Monooxygenase. Biochemistry 2015, 54 (26) , 4083-4096. https://doi.org/10.1021/acs.biochem.5b00510
    14. Christian S. Müller, Tim Knehans, Dmitri R. Davydov, Patricia L. Bounds, Ursula von Mandach, James R. Halpert, Amedeo Caflisch, and Willem H. Koppenol . Concurrent Cooperativity and Substrate Inhibition in the Epoxidation of Carbamazepine by Cytochrome P450 3A4 Active Site Mutants Inspired by Molecular Dynamics Simulations. Biochemistry 2015, 54 (3) , 711-721. https://doi.org/10.1021/bi5011656
    15. W. Kurtis Childers and John P. Harrelson . Allosteric Modulation of Substrate Motion in Cytochrome P450 3A4-Mediated Xylene Oxidation. Biochemistry 2014, 53 (6) , 1018-1028. https://doi.org/10.1021/bi401472p
    16. Jue Li, Dong-Qing Wei, Jing-Fang Wang, and Yi-Xue Li . A Negative Cooperativity Mechanism of Human CYP2E1 Inferred from Molecular Dynamics Simulations and Free Energy Calculations. Journal of Chemical Information and Modeling 2011, 51 (12) , 3217-3225. https://doi.org/10.1021/ci2004016
    17. Arthur G. Roberts, Jing Yang, James R. Halpert, Sidney D. Nelson, Kenneth T. Thummel, and William M. Atkins . The Structural Basis for Homotropic and Heterotropic Cooperativity of Midazolam Metabolism by Human Cytochrome P450 3A4. Biochemistry 2011, 50 (50) , 10804-10818. https://doi.org/10.1021/bi200924t
    18. Caleb M. Woods, Cristina Fernandez, Kent L. Kunze, and William M. Atkins . Allosteric Activation of Cytochrome P450 3A4 by α-Naphthoflavone: Branch Point Regulation Revealed by Isotope Dilution Analysis. Biochemistry 2011, 50 (46) , 10041-10051. https://doi.org/10.1021/bi2013454
    19. Alfonso T. García-Sosa, Sulev Sild, Kalev Takkis, and Uko Maran . Combined Approach Using Ligand Efficiency, Cross-Docking, and Antitarget Hits for Wild-Type and Drug-Resistant Y181C HIV-1 Reverse Transcriptase. Journal of Chemical Information and Modeling 2011, 51 (10) , 2595-2611. https://doi.org/10.1021/ci200203h
    20. William M. Atkins and Hong Qian . Stochastic Ensembles, Conformationally Adaptive Teamwork, and Enzymatic Detoxification. Biochemistry 2011, 50 (19) , 3866-3872. https://doi.org/10.1021/bi200275r
    21. Arthur G. Roberts, Matthew J. Cheesman, Andrew Primak, Michael K. Bowman, William M. Atkins, and Allan E. Rettie . Intramolecular Heme Ligation of the Cytochrome P450 2C9 R108H Mutant Demonstrates Pronounced Conformational Flexibility of the B−C Loop Region: Implications for Substrate Binding. Biochemistry 2010, 49 (40) , 8700-8708. https://doi.org/10.1021/bi100911q
    22. Josh T. Pearson, Sophia Siu, David P. Meininger, Larry C. Wienkers and Dan A. Rock . In Vitro Modulation of Cytochrome P450 Reductase Supported Indoleamine 2,3-Dioxygenase Activity by Allosteric Effectors Cytochrome b5 and Methylene Blue. Biochemistry 2010, 49 (12) , 2647-2656. https://doi.org/10.1021/bi100022c
    23. Stefan Balaz. Modeling Kinetics of Subcellular Disposition of Chemicals. Chemical Reviews 2009, 109 (5) , 1793-1899. https://doi.org/10.1021/cr030440j
    24. Carrie M. Mosher, Matthew A. Hummel, Timothy S. Tracy and Allan E. Rettie . Functional Analysis of Phenylalanine Residues in the Active Site of Cytochrome P450 2C9. Biochemistry 2008, 47 (45) , 11725-11734. https://doi.org/10.1021/bi801231m
    25. Dmitri R. Davydov, Nadezhda Y. Davydova and James R. Halpert. Allosteric Transitions in Cytochrome P450eryF Explored with Pressure-Perturbation Spectroscopy, Lifetime FRET, and a Novel Fluorescent Substrate, Fluorol-7GA. Biochemistry 2008, 47 (43) , 11348-11359. https://doi.org/10.1021/bi8011803
    26. John P. Harrelson, William M. Atkins and Sidney D. Nelson. Multiple-Ligand Binding in CYP2A6: Probing Mechanisms of Cytochrome P450 Cooperativity by Assessing Substrate Dynamics. Biochemistry 2008, 47 (9) , 2978-2988. https://doi.org/10.1021/bi702020y
    27. Jed N. Lampe,, Cristina Fernandez,, Abhinav Nath, and, William M. Atkins. Nile Red Is a Fluorescent Allosteric Substrate of Cytochrome P450 3A4. Biochemistry 2008, 47 (2) , 509-516. https://doi.org/10.1021/bi7013807
    28. Dan Fishelovitch,, Carina Hazan,, Hajime Hirao,, Haim J. Wolfson,, Ruth Nussinov, and, Sason Shaik. QM/MM Study of the Active Species of the Human Cytochrome P450 3A4, and the Influence Thereof of the Multiple Substrate Binding. The Journal of Physical Chemistry B 2007, 111 (49) , 13822-13832. https://doi.org/10.1021/jp076401j
    29. Matthew G. McDonald and Allan E. Rettie. Sequential Metabolism and Bioactivation of the Hepatotoxin Benzbromarone: Formation of Glutathione Adducts From a Catechol Intermediate. Chemical Research in Toxicology 2007, 20 (12) , 1833-1842. https://doi.org/10.1021/tx7001228
    30. Dmitri R. Davydov,, Bradley J. Baas,, Stephen G. Sligar, and, James R. Halpert. Allosteric Mechanisms in Cytochrome P450 3A4 Studied by High-Pressure Spectroscopy:  Pivotal Role of Substrate-Induced Changes in the Accessibility and Degree of Hydration of the Heme Pocket. Biochemistry 2007, 46 (26) , 7852-7864. https://doi.org/10.1021/bi602400y
    31. Daniel R. McMasters,, Rhonda A. Torres,, Susan J. Crathern,, Deborah L. Dooney,, Robert B. Nachbar,, Robert P. Sheridan, and, Kenneth R. Korzekwa. Inhibition of Recombinant Cytochrome P450 Isoforms 2D6 and 2C9 by Diverse Drug-like Molecules. Journal of Medicinal Chemistry 2007, 50 (14) , 3205-3213. https://doi.org/10.1021/jm0700060
    32. Yonghua Wang,, Yan Li, and, Bin Wang. Stochastic Simulations of the Cytochrome P450 Catalytic Cycle. The Journal of Physical Chemistry B 2007, 111 (16) , 4251-4260. https://doi.org/10.1021/jp071222n
    33. Dan Fishelovitch,, Carina Hazan,, Sason Shaik,, Haim J. Wolfson, and, Ruth Nussinov. Structural Dynamics of the Cooperative Binding of Organic Molecules in the Human Cytochrome P450 3A4. Journal of the American Chemical Society 2007, 129 (6) , 1602-1611. https://doi.org/10.1021/ja066007j
    34. B. K. Muralidhara,, Surendra S. Negi, and, James R. Halpert. Dissecting the Thermodynamics and Cooperativity of Ligand Binding in Cytochrome P450eryF. Journal of the American Chemical Society 2007, 129 (7) , 2015-2024. https://doi.org/10.1021/ja066303w
    35. Tamara N. Tsalkova,, Nadezhda Y. Davydova,, James R. Halpert, and, Dmitri R. Davydov. Mechanism of Interactions of α-Naphthoflavone with Cytochrome P450 3A4 Explored with an Engineered Enzyme Bearing a Fluorescent Probe. Biochemistry 2007, 46 (1) , 106-119. https://doi.org/10.1021/bi061944p
    36. Jed N. Lampe and, William M. Atkins. Time-Resolved Fluorescence Studies of Heterotropic Ligand Binding to Cytochrome P450 3A4. Biochemistry 2006, 45 (40) , 12204-12215. https://doi.org/10.1021/bi060083h
    37. Matthew G. Hudelson and, Jeffrey P. Jones. Line-Walking Method for Predicting the Inhibition of P450 Drug Metabolism. Journal of Medicinal Chemistry 2006, 49 (14) , 4367-4373. https://doi.org/10.1021/jm0601553
    38. Harshica Fernando,, James R. Halpert, and, Dmitri R. Davydov. Resolution of Multiple Substrate Binding Sites in Cytochrome P450 3A4:  The Stoichiometry of the Enzyme−Substrate Complexes Probed by FRET and Job's Titration. Biochemistry 2006, 45 (13) , 4199-4209. https://doi.org/10.1021/bi052491b
    39. Michael D. Cameron,, Bo Wen,, Kyle E. Allen,, Arthur G. Roberts,, Jason T. Schuman,, A. Patricia Campbell,, Kent L. Kunze, and, Sidney D. Nelson. Cooperative Binding of Midazolam with Testosterone and α-Naphthoflavone within the CYP3A4 Active Site:  A NMR T1 Paramagnetic Relaxation Study. Biochemistry 2005, 44 (43) , 14143-14151. https://doi.org/10.1021/bi051689t
    40. Dmitri R. Davydov,, Harshica Fernando,, Bradley J. Baas,, Stephen G. Sligar, and, James R. Halpert. Kinetics of Dithionite-Dependent Reduction of Cytochrome P450 3A4:  Heterogeneity of the Enzyme Caused by Its Oligomerization. Biochemistry 2005, 44 (42) , 13902-13913. https://doi.org/10.1021/bi0509346
    41. Arthur G. Roberts,, A. Patricia Campbell, and, William M. Atkins. The Thermodynamic Landscape of Testosterone Binding to Cytochrome P450 3A4:  Ligand Binding and Spin State Equilibria. Biochemistry 2005, 44 (4) , 1353-1366. https://doi.org/10.1021/bi0481390
    42. Matthew A. Hummel,, Peter M. Gannett,, Jarrett S. Aguilar, and, Timothy S. Tracy. Effector-Mediated Alteration of Substrate Orientation in Cytochrome P450 2C9. Biochemistry 2004, 43 (22) , 7207-7214. https://doi.org/10.1021/bi036158o
    43. Dmitri R. Davydov,, Alexandra E. Botchkareva,, Santosh Kumar,, You Qun He, and, James R. Halpert. An Electrostatically Driven Conformational Transition Is Involved in the Mechanisms of Substrate Binding and Cooperativity in Cytochrome P450eryF. Biochemistry 2004, 43 (21) , 6475-6485. https://doi.org/10.1021/bi036260l
    44. Mattias C. U. Gustafsson,, Olivier Roitel,, Ker R. Marshall,, Michael A. Noble,, Stephen K. Chapman,, Antonio Pessegueiro,, Armand J. Fulco,, Myles R. Cheesman,, Claes von Wachenfeldt, and, Andrew W. Munro. Expression, Purification, and Characterization of Bacillus subtilis Cytochromes P450 CYP102A2 and CYP102A3:  Flavocytochrome Homologues of P450 BM3 from Bacillus megaterium. Biochemistry 2004, 43 (18) , 5474-5487. https://doi.org/10.1021/bi035904m
    45. Nao Torimoto,, Itsuko Ishii,, Masayuki Hata,, Hiroyoshi Nakamura,, Hiroshi Imada,, Noritaka Ariyoshi,, Shigeru Ohmori,, Takashi Igarashi, and, Mitsukazu Kitada. Direct Interaction between Substrates and Endogenous Steroids in the Active Site May Change the Activity of Cytochrome P450 3A4. Biochemistry 2003, 42 (51) , 15068-15077. https://doi.org/10.1021/bi034409n
    46. Dietmar Schwab,, Holger Fischer,, Ali Tabatabaei,, Sonia Poli, and, Jörg Huwyler. Comparison of in Vitro P-Glycoprotein Screening Assays:  Recommendations for Their Use in Drug Discovery. Journal of Medicinal Chemistry 2003, 46 (9) , 1716-1725. https://doi.org/10.1021/jm021012t
    47. Michael J. Dabrowski,, Michael L. Schrag,, Larry C. Wienkers, and, William M. Atkins. Pyrene·Pyrene Complexes at the Active Site of Cytochrome P450 3A4:  Evidence for a Multiple Substrate Binding Site. Journal of the American Chemical Society 2002, 124 (40) , 11866-11867. https://doi.org/10.1021/ja027552x
    48. Marcel J. de Groot,, Alexander A. Alex, and, Barry C. Jones. Development of a Combined Protein and Pharmacophore Model for Cytochrome P450 2C9. Journal of Medicinal Chemistry 2002, 45 (10) , 1983-1993. https://doi.org/10.1021/jm0110791
    49. George F. Cawley, J. Patrick Connick, Marilyn K. Eyer, Wayne L. Backes. Environmentally persistent free radicals stimulate CYP2E1-mediated generation of reactive oxygen species at the expense of substrate metabolism. Drug Metabolism and Disposition 2025, 53 (1) , 100012. https://doi.org/10.1124/dmd.124.001939
    50. Denis POMPON, Luis F. GARCIA-ALLES, Philippe URBAN. Geometry-encoded molecular dynamics enables deep learning insights into P450 regiospecificity control. 2024https://doi.org/10.21203/rs.3.rs-5197791/v1
    51. Yisang Zhang, Guobin Zhang, Taichang Wang, Yu Chen, Junqing Wang, Piwu Li, Ruiming Wang, Jing Su. Understanding Cytochrome P450 Enzyme Substrate Inhibition and Prospects for Elimination Strategies. ChemBioChem 2024, 25 (22) https://doi.org/10.1002/cbic.202400297
    52. Marzieh Dehghan Shasaltaneh, Elmira Naghdi, Zahra Moosavi-Nejad. Mechanistic studies on substrate inhibition and substrate activation of ribonuclease A: experimental and in silico investigation. Journal of Biomolecular Structure and Dynamics 2024, 42 (13) , 6628-6644. https://doi.org/10.1080/07391102.2023.2235618
    53. Slobodan P. Rendic, F. Peter Guengerich. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Archives of Toxicology 2024, 98 (6) , 1581-1628. https://doi.org/10.1007/s00204-024-03710-9
    54. Shuhui Liu, Tao Jing, Ran Jia, Ji-Long Zhang, Fu-Quan Bai. MD investigation on the differences in the dynamic interactions between the specific ligand azamulin and two CYP3A isoforms, 3A4 and 3A5. Journal of Biomolecular Structure and Dynamics 2024, , 1-10. https://doi.org/10.1080/07391102.2024.2331100
    55. Haiying Mo, Xin Chen, Manwen Tang, Ying Qu, Zhihao Li, Wang Liu, Chunlin Yang, Yijian Chen, Jingxian Sun, Haiying Yang, Gang Du. Expression of a thermostable glucose-stimulated β-glucosidase from a hot-spring metagenome and its promising application to produce gardenia blue. Bioorganic Chemistry 2024, 143 , 107036. https://doi.org/10.1016/j.bioorg.2023.107036
    56. Angela Hayward, Benjamin J. Hunt, Julian Haas, Ellie Bushnell‐Crowther, Bartlomiej J. Troczka, Adam Pym, Katherine Beadle, Jeremy Field, David R. Nelson, Ralf Nauen, Chris Bass. A cytochrome P450 insecticide detoxification mechanism is not conserved across the Megachilidae family of bees. Evolutionary Applications 2024, 17 (1) https://doi.org/10.1111/eva.13625
    57. Pramod C. Nair, Kushari Burns, Nuy Chau, Ross A. McKinnon, John O. Miners. The molecular basis of dapsone activation of CYP2C9-catalyzed nonsteroidal anti-inflammatory drug oxidation. Journal of Biological Chemistry 2023, 299 (12) , 105368. https://doi.org/10.1016/j.jbc.2023.105368
    58. J. Patrick Connick, James R. Reed, George F. Cawley, Aratrika Saha, Wayne L. Backes. Functional characterization of CYP1 enzymes: Complex formation, membrane localization and function. Journal of Inorganic Biochemistry 2023, 247 , 112325. https://doi.org/10.1016/j.jinorgbio.2023.112325
    59. Cyrus Khojasteh, Jasleen K. Sodhi, Jason Halladay, Donglu Zhang. The past decade of Genentech experience in elucidation of novel reaction mechanisms in drug metabolism. Medicinal Chemistry Research 2023, 32 (9) , 2016-2033. https://doi.org/10.1007/s00044-023-03128-5
    60. Tatiana A. Filippova, Rami A. Masamrekh, Victoria V. Shumyantseva, Yulia Yu. Khudoklinova, Alexey V. Kuzikov. Voltammetric Analysis of (S)-O-Desmethylnaproxen for Determination of CYP2C9 Demethylase Activity. BioNanoScience 2023, 13 (3) , 1278-1288. https://doi.org/10.1007/s12668-023-01159-1
    61. Suzana Mustafa, Mahiran Mustafa, Wan Nazirah Wan Yusuf. Methadone Reduced Nevirapine Pharmacokinetic Parameters in People Living With HIV in Malaysia. Malaysian Journal of Medicine and Health Sciences 2023, 19 (3) , 247-253. https://doi.org/10.47836/mjmhs.19.3.32
    62. Hening Lin. Substrate-selective small-molecule modulators of enzymes: Mechanisms and opportunities. Current Opinion in Chemical Biology 2023, 72 , 102231. https://doi.org/10.1016/j.cbpa.2022.102231
    63. Lina Shan, Xianbao Shi, Tingting Hu, Jiayin Hu, Zhe Guo, Yonggui Song, Dan Su, Xiaoyong Zhang. In vitro differences in toddalolactone metabolism in various species and its effect on cytochrome P450 expression. Pharmaceutical Biology 2022, 60 (1) , 1591-1605. https://doi.org/10.1080/13880209.2022.2108062
    64. Alexey V. Kuzikov, Tatiana A. Filippova, Rami A. Masamrekh, Victoria V. Shumyantseva. Biotransformation of phenytoin in the electrochemically-driven CYP2C19 system. Biophysical Chemistry 2022, 291 , 106894. https://doi.org/10.1016/j.bpc.2022.106894
    65. Ziteng Wang, Eric Chun Yong Chan. Inhibition of Cytochrome P450 2J2-Mediated Metabolism of Rivaroxaban and Arachidonic Acid by Ibrutinib and Osimertinib. Drug Metabolism and Disposition 2022, 50 (10) , 1332-1341. https://doi.org/10.1124/dmd.122.000928
    66. Adielis Jiménez, Antonio Castillo, Andrea Mahn. Kinetic Study and Modeling of Wild-Type and Recombinant Broccoli Myrosinase Produced in E. coli and S. cerevisiae as a Function of Substrate Concentration, Temperature, and pH. Catalysts 2022, 12 (7) , 683. https://doi.org/10.3390/catal12070683
    67. Julian Haas, Angela Hayward, Benjamin Buer, Frank Maiwald, Birgit Nebelsiek, Johannes Glaubitz, Chris Bass, Ralf Nauen. Phylogenomic and functional characterization of an evolutionary conserved cytochrome P450-based insecticide detoxification mechanism in bees. Proceedings of the National Academy of Sciences 2022, 119 (26) https://doi.org/10.1073/pnas.2205850119
    68. Ilia G. Denisov, Yelena V. Grinkova, Mark A. McLean, Tyler Camp, Stephen G. Sligar. Midazolam as a Probe for Heterotropic Drug-Drug Interactions Mediated by CYP3A4. Biomolecules 2022, 12 (6) , 853. https://doi.org/10.3390/biom12060853
    69. Mei-Hui Hsu, Eric F. Johnson. Structural characterization of the homotropic cooperative binding of azamulin to human cytochrome P450 3A5. Journal of Biological Chemistry 2022, 298 (5) , 101909. https://doi.org/10.1016/j.jbc.2022.101909
    70. Alan Talevi, Carolina L. Bellera. Drug Metabolism. 2022, 362-368. https://doi.org/10.1007/978-3-030-84860-6_6
    71. Komal Agrawal, Pradeep Verma. Enzyme Kinetics: A Plethora of Information. 2022, 195-211. https://doi.org/10.1007/978-981-16-5214-1_7
    72. William R. Arnold, Lauren N. Carnevale, Zili Xie, Javier L. Baylon, Emad Tajkhorshid, Hongzhen Hu, Aditi Das. Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-20946-6
    73. Zeyuan Wang, Erickson M. Paragas, Swati Nagar, Ken Korzekwa. Complex Cytochrome P450 Kinetics Due to Multisubstrate Binding and Sequential Metabolism. Part 1. Theoretical Considerations. Drug Metabolism and Disposition 2021, 49 (12) , 1090-1099. https://doi.org/10.1124/dmd.121.000553
    74. Erickson M. Paragas, Zeyuan Wang, Ken Korzekwa, Swati Nagar. Complex Cytochrome P450 Kinetics Due to Multisubstrate Binding and Sequential Metabolism. Part 2. Modeling of Experimental Data. Drug Metabolism and Disposition 2021, 49 (12) , 1100-1108. https://doi.org/10.1124/dmd.121.000554
    75. Jacqueline Wen Hui Leow, Ravi Kumar Verma, Amos Boon Hao Lim, Hao Fan, Eric Chun Yong Chan. Atypical kinetics of cytochrome P450 2J2: Epoxidation of arachidonic acid and reversible inhibition by xenobiotic inhibitors. European Journal of Pharmaceutical Sciences 2021, 164 , 105889. https://doi.org/10.1016/j.ejps.2021.105889
    76. Eric Gonzalez, Sankalp Jain, Pranav Shah, Nao Torimoto-Katori, Alexey Zakharov, Ðắc-Trung Nguyễn, Srilatha Sakamuru, Ruili Huang, Menghang Xia, R. Scott Obach, Cornelis E.C.A. Hop, Anton Simeonov, Xin Xu. Development of Robust Quantitative Structure-Activity Relationship Models for CYP2C9, CYP2D6, and CYP3A4 Catalysis and Inhibition. Drug Metabolism and Disposition 2021, 49 (9) , 822-832. https://doi.org/10.1124/dmd.120.000320
    77. Lloyd Wei Tat Tang, Ravi Kumar Verma, Ren Ping Yong, Xin Li, Lili Wang, Qingsong Lin, Hao Fan, Eric Chun Yong Chan. Differential Reversible and Irreversible Interactions between Benzbromarone and Human Cytochrome P450s 3A4 and 3A5. Molecular Pharmacology 2021, 100 (3) , 224-236. https://doi.org/10.1124/molpharm.121.000256
    78. Saneesh Kumar, Patrick J. Bouic, Bernd Rosenkranz. Investigation of CYP2B6, 3A4 and β-esterase interactions of Withania somnifera (L.) dunal in human liver microsomes and HepG2 cells. Journal of Ethnopharmacology 2021, 270 , 113766. https://doi.org/10.1016/j.jep.2020.113766
    79. Slobodan P. Rendic, F. Peter Guengerich. Human Family 1–4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Archives of Toxicology 2021, 95 (2) , 395-472. https://doi.org/10.1007/s00204-020-02971-4
    80. Julian Haas, Ralf Nauen. Pesticide risk assessment at the molecular level using honey bee cytochrome P450 enzymes: A complementary approach. Environment International 2021, 147 , 106372. https://doi.org/10.1016/j.envint.2020.106372
    81. Eleanore Seibert, Timothy S. Tracy. Fundamentals of Enzyme Kinetics: Michaelis-Menten and Non-Michaelis–Type (Atypical) Enzyme Kinetics. 2021, 3-27. https://doi.org/10.1007/978-1-0716-1554-6_1
    82. Erickson M. Paragas, Kanika Choughule, Jeffrey P. Jones, John T. Barr. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. 2021, 257-284. https://doi.org/10.1007/978-1-0716-1554-6_10
    83. David M. Stresser, Arian Emami-Riedmaier. Case Study 3: Criticality of High-Quality Curve Fitting—“Getting a Km,app” Isn’t as Simple as It May Seem. 2021, 653-664. https://doi.org/10.1007/978-1-0716-1554-6_22
    84. Jasleen K. Sodhi, Jason S. Halladay. Case Study 9: Probe-Dependent Binding Explains Lack of CYP2C9 Inactivation by 1-Aminobenzotriazole (ABT). 2021, 765-779. https://doi.org/10.1007/978-1-0716-1554-6_28
    85. Michael Mohutsky, Stephen D. Hall. Irreversible Enzyme Inhibition Kinetics and Drug–Drug Interactions. 2021, 51-88. https://doi.org/10.1007/978-1-0716-1554-6_3
    86. Jaydeep Yadav, Ken Korzekwa, Swati Nagar. Numerical Methods for Modeling Enzyme Kinetics. 2021, 147-168. https://doi.org/10.1007/978-1-0716-1554-6_6
    87. D. Fernando Estrada, Amit Kumar, Christopher S. Campomizzi, Natalie Jay. Crystal Structures of Drug-Metabolizing CYPs. 2021, 171-192. https://doi.org/10.1007/978-1-0716-1554-6_7
    88. Ken Korzekwa. Enzyme Kinetics of Oxidative Metabolism—Cytochromes P450. 2021, 237-256. https://doi.org/10.1007/978-1-0716-1554-6_9
    89. Alan Talevi, Carolina L. Bellera. Drug Metabolism. 2021, 1-7. https://doi.org/10.1007/978-3-030-51519-5_6-1
    90. Nagendra Sai Kumar Achanta, Kuldeep Rajpoot, Rakesh Kumar Tekade. Drug metabolic kinetics. 2021, 335-353. https://doi.org/10.1016/B978-0-12-814425-1.00015-2
    91. Heather K. Knych, Carrie J. Finno, Russell Baden, Rick M. Arthur, Daniel S. McKemie. Identification and characterization of the enzymes responsible for the metabolism of the non‐steroidal anti‐inflammatory drugs, flunixin meglumine and phenylbutazone, in horses. Journal of Veterinary Pharmacology and Therapeutics 2021, 44 (1) , 36-46. https://doi.org/10.1111/jvp.12891
    92. P. I. Koroleva, A. V. Kuzikov, R. A. Masamrekh, D. A. Filimonov, A. V. Dmitriev, M. G. Zaviyalova, S. M. Rikova, E. V. Shich, A. A. Makhova, T. V. Bulko, A. A. Gilep, V. V. Shumyantseva. Modeling of Drug-Drug Interactions between Omeprazole and Erythromycin in the Cytochrome P450-Dependent System In vitro. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry 2021, 15 (1) , 62-70. https://doi.org/10.1134/S1990750821010030
    93. Beatriz Carvalho Henriques, Esther H. Yang, Diego Lapetina, Michael S. Carr, Vasyl Yavorskyy, Joshua Hague, Katherine J. Aitchison. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing?. Frontiers in Genetics 2020, 11 https://doi.org/10.3389/fgene.2020.491895
    94. Aditi Das, Austin T. Weigle, William R. Arnold, Justin S. Kim, Lauren N. Carnevale, Hannah C. Huff. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacology & Therapeutics 2020, 215 , 107601. https://doi.org/10.1016/j.pharmthera.2020.107601
    95. Michael J. Espiritu, Justin Chen, Jaydeep Yadav, Michael Larkin, Robert D. Pelletier, Jeannine M. Chan, Jeevan B. GC, Senthil Natesan, John P. Harrelson. Mechanisms of Herb-Drug Interactions Involving Cinnamon and CYP2A6: Focus on Time-Dependent Inhibition by Cinnamaldehyde and 2-Methoxycinnamaldehyde. Drug Metabolism and Disposition 2020, 48 (10) , 1028-1043. https://doi.org/10.1124/dmd.120.000087
    96. Bharath Srinivasan, Vasudev Kantae, James Robinson. Resurrecting the phoenix: When an assay fails. Medicinal Research Reviews 2020, 40 (5) , 1776-1793. https://doi.org/10.1002/med.21670
    97. Josemarco Mendoza-Avila, Kanchan Chauhan, Rafael Vazquez-Duhalt. Enzymatic synthesis of indigo-derivative industrial dyes. Dyes and Pigments 2020, 178 , 108384. https://doi.org/10.1016/j.dyepig.2020.108384
    98. Diego L. Lapetina, Esther H. Yang, Beatriz C. Henriques, Katherine J. Aitchison. Pharmacogenomics and Psychopharmacology. 2020, 151-202. https://doi.org/10.1017/9781911623465.007
    99. Julie Ducharme, Christopher J. Thibodeaux, Karine Auclair. Combining small-molecule bioconjugation and hydrogen-deuterium exchange mass spectrometry (HDX-MS) to expose allostery: the case of human cytochrome P450 3A4. 2020https://doi.org/10.1101/2020.06.09.142851
    100. William R. Arnold, Lauren N. Carnevale, Zili Xie, Javier L. Baylon, Emad Tajkhorshid, Hongzhen Hu, Aditi Das. Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel. 2020https://doi.org/10.1101/2020.05.05.079624
    Load more citations

    Biochemistry

    Cite this: Biochemistry 1998, 37, 12, 4137–4147
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi9715627
    Published March 3, 1998
    Copyright © 1998 American Chemical Society

    Article Views

    3590

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.