ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Regulation of Phospholipase D2:  Selective Inhibition of Mammalian Phospholipase D Isoenzymes by α- and β-Synucleins

View Author Information
Department of Pharmacological Sciences and Institute for Cell and Developmental Biology, Stony Brook Health Sciences Center, Stony Brook, New York 11794-8651
Cite this: Biochemistry 1998, 37, 14, 4901–4909
Publication Date (Web):March 17, 1998
https://doi.org/10.1021/bi972776r
Copyright © 1998 American Chemical Society

    Article Views

    978

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Two widely expressed mammalian phosphatidylcholine (PC)-specific phospholipases D (PLD), PLD1 and PLD2, have been identified. Recombinantly expressed PLD2 has high basal activity and is insensitive to GTP-binding protein activators of PLD1 [Colley, W. C., et al. (1997) Curr. Biol. 7, 191−201]. To investigate the regulation of PLD2 we isolated PLD2, from mouse brain by immunoaffinity chromatography. The native and recombinant proteins have indistinguishable properties:  PLD2 is potently activated by phosphoinositides with a vicinal 4,5-phosphate pair but is not stimulated by guanosine 5‘-O-(3-thio triphosphate)-activated ADP-ribosylation factor-1, Rho family GTP-binding proteins, or protein kinases C-α, or -β1. We used recombinant PLD2 in a reconstitution assay to search for regulators in cell and tissue extracts. Bovine brain contains a heat-stable protein factor that inhibits PLD2 activity in vitro. This factor was purified to homogeneity and identified as a mixture of α- and β-synucleins by microsequencing and Western blotting. Recombinantly expressed α- and β-synucleins inhibit PLD2 activity in vitro (K0.5 10 nM). Inhibition is not overcome by the protein or lipid activators of PLD1. Synucleins have been implicated in Parkinson's and Alzheimer's diseases. Our findings suggest that inhibition of PLD2 may be a function of synucleins. Modulation of PLD2 activity by synucleins may play a role in some aspects of the pathophysiologies that characterize these neurodegenerative diseases.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Supported by NIH Grants GM 50388 and GM54641.

    *

     Corresponding author. Telephone:  516-444-3022. Fax:  516-444-3218. Email:  [email protected].

    Cited By

    This article is cited by 315 publications.

    1. Shahid A. Malik, Somnath Mondal, Hanudatta S. Atreya. Alpha-Synuclein Aggregation Mechanism in the Presence of Nanomaterials. Biochemistry 2024, 63 (9) , 1162-1169. https://doi.org/10.1021/acs.biochem.3c00624
    2. Tiffiny Chan, Ari M. Chow, Xin R. Cheng, Derek W. F. Tang, Ian R. Brown, and Kagan Kerman . Oxidative Stress Effect of Dopamine on α-Synuclein: Electroanalysis of Solvent Interactions. ACS Chemical Neuroscience 2012, 3 (7) , 569-574. https://doi.org/10.1021/cn300034t
    3. Paige E. Selvy, Robert R. Lavieri, Craig W. Lindsley, and H. Alex Brown . Phospholipase D: Enzymology, Functionality, and Chemical Modulation. Chemical Reviews 2011, 111 (10) , 6064-6119. https://doi.org/10.1021/cr200296t
    4. Anjan P. Pandey, Farzin Haque, Jean-Christophe Rochet, and Jennifer S. Hovis . α-Synuclein-Induced Tubule Formation in Lipid Bilayers. The Journal of Physical Chemistry B 2011, 115 (19) , 5886-5893. https://doi.org/10.1021/jp1121917
    5. Vladimir N. Uversky. Flexible Nets of Malleable Guardians: Intrinsically Disordered Chaperones in Neurodegenerative Diseases. Chemical Reviews 2011, 111 (2) , 1134-1166. https://doi.org/10.1021/cr100186d
    6. Farzin Haque, Anjan P. Pandey, Lee R. Cambrea, Jean-Christophe Rochet and Jennifer S. Hovis . Adsorption of α-Synuclein on Lipid Bilayers: Modulating the Structure and Stability of Protein Assemblies. The Journal of Physical Chemistry B 2010, 114 (11) , 4070-4081. https://doi.org/10.1021/jp1006704
    7. Irit Rappley, Aaron D. Gitler, Paige E. Selvy, Matthew J. LaVoie, Bruce D. Levy, H. Alex Brown, Susan Lindquist and Dennis J. Selkoe . Evidence That α-Synuclein Does Not Inhibit Phospholipase D. Biochemistry 2009, 48 (5) , 1077-1083. https://doi.org/10.1021/bi801871h
    8. Zhiyin Xun, Thomas C. Kaufman and David E. Clemmer . Proteome Response to the Panneural Expression of Human Wild-Type α-Synuclein: A Drosophila Model of Parkinson’s Disease. Journal of Proteome Research 2008, 7 (9) , 3911-3921. https://doi.org/10.1021/pr800207h
    9. Daegeon Kim, Dhananjay Yadav, Minseok Song. An updated review on animal models to study attention-deficit hyperactivity disorder. Translational Psychiatry 2024, 14 (1) https://doi.org/10.1038/s41398-024-02893-0
    10. Mahnoor Javaid, Fazal Arain, Muhammad Daniyal Javaid. Oxidative stress in neurodegenerative diseases. 2024, 167-183. https://doi.org/10.1016/B978-0-443-18807-7.00011-9
    11. Anmol Kanda, Avijit Mazumder, Saumya Das, Vishnu Prabhakar. A Review on Probiotic and Microbiota Modulation: A Promising Nutraceutical in the Management of Neurodegenerative and Psychiatric Conditions. Journal of Natural Remedies 2023, , 1209-1222. https://doi.org/10.18311/jnr/2023/33944
    12. Ashley L. Reed, Wayne Mitchell, Andrei T. Alexandrescu, Nathan N. Alder. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Frontiers in Physiology 2023, 14 https://doi.org/10.3389/fphys.2023.1263420
    13. Gabriella M. Mazzotta, Nadia Ceccato, Carmela Conte. Synucleinopathies Take Their Toll: Are TLRs a Way to Go?. Cells 2023, 12 (9) , 1231. https://doi.org/10.3390/cells12091231
    14. Urba Afnan, Mohamad Sultan Khan, C.A. Swaliha, Umar Manzoor, Ibtisam Mumtaz, Mohd Jamal Dar, Tariq Maqbool. Nanotherapeutic approaches for managing phospholipase-mediated neurodegenerative and metabolic diseases. 2023, 129-157. https://doi.org/10.1016/B978-0-443-15177-4.00002-9
    15. Sinyeon Kim, Jin Gyu Choi, Se Woong Kim, Sang Cheol Park, Yu-ra Kang, Dong Seok Park, Miwon Son, Choong Hwan Lee. Inhibition of α-synuclein aggregation by MT101-5 is neuroprotective in mouse models of Parkinson’s disease. Biomedicine & Pharmacotherapy 2022, 154 , 113637. https://doi.org/10.1016/j.biopha.2022.113637
    16. F. Gubinelli, G. Cazzolla, M. Negrini, I. Kulacz, A. Mehrdadian, G. Tomasello, C. Venuti, L. Sarauskyte, F. Jacobs, F.P. Manfredsson, M. Davidsson, A. Heuer. Lateralized deficits after unilateral AAV-vector based overexpression of alpha-synuclein in the midbrain of rats on drug-free behavioral tests. Behavioural Brain Research 2022, 429 , 113887. https://doi.org/10.1016/j.bbr.2022.113887
    17. Manoj Kumar Pandey. The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Frontiers in Aging Neuroscience 2022, 14 https://doi.org/10.3389/fnagi.2022.902191
    18. Sung-Kuk Kim, Hyo Young Kim, Se-Gun Kim, Sang Mi Han, Sik Ryu, Soon Ok Woo. The Effect of Korean Propolis for Apoptosis by MPTP-mediated Parkinson’s Disease and Its Molecular Mechanism in SH-SY5Y Neuroblastoma Cells. Journal of Apiculture 2022, 37 (1) , 83-90. https://doi.org/10.17519/apiculture.2022.04.37.1.83
    19. Shelby Loraine Hatton, Manoj Kumar Pandey. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson’s Disease. International Journal of Molecular Sciences 2022, 23 (3) , 1089. https://doi.org/10.3390/ijms23031089
    20. Gioia Marino, Paolo Calabresi, Veronica Ghiglieri. Alpha-synuclein and cortico-striatal plasticity in animal models of Parkinson disease. 2022, 153-166. https://doi.org/10.1016/B978-0-12-819410-2.00008-4
    21. Milena Fais, Antonio Dore, Manuela Galioto, Grazia Galleri, Claudia Crosio, Ciro Iaccarino. Parkinson’s Disease-Related Genes and Lipid Alteration. International Journal of Molecular Sciences 2021, 22 (14) , 7630. https://doi.org/10.3390/ijms22147630
    22. Panagiota Mavroeidi, Maria Xilouri. Neurons and Glia Interplay in α-Synucleinopathies. International Journal of Molecular Sciences 2021, 22 (9) , 4994. https://doi.org/10.3390/ijms22094994
    23. Julliane Vasconcelos Joviano-Santos, Artur Santos-Miranda, Danilo Roman-Campos. Cardiac electrical remodeling and neurodegenerative diseases association. Life Sciences 2021, 267 , 118976. https://doi.org/10.1016/j.lfs.2020.118976
    24. Forrest Z. Bowling, Michael A. Frohman, Michael V. Airola. Structure and regulation of human phospholipase D. Advances in Biological Regulation 2021, 79 , 100783. https://doi.org/10.1016/j.jbior.2020.100783
    25. Amin A. Seleem. Immunohistochemical localization of alpha-synuclein in the retina of some nocturnal and diurnal animals. Biotechnic & Histochemistry 2020, 95 (5) , 360-372. https://doi.org/10.1080/10520295.2019.1703218
    26. Akio Mori, Yuzuru Imai, Nobutaka Hattori. Lipids: Key Players That Modulate α-Synuclein Toxicity and Neurodegeneration in Parkinson’s Disease. International Journal of Molecular Sciences 2020, 21 (9) , 3301. https://doi.org/10.3390/ijms21093301
    27. M.I. McDermott, Y. Wang, M.J.O. Wakelam, V.A. Bankaitis. Mammalian phospholipase D: Function, and therapeutics. Progress in Lipid Research 2020, 78 , 101018. https://doi.org/10.1016/j.plipres.2019.101018
    28. Simoneide S. Titze-de-Almeida, Cristina Soto-Sánchez, Eduardo Fernandez, James B. Koprich, Jonathan M. Brotchie, Ricardo Titze-de-Almeida. The Promise and Challenges of Developing miRNA-Based Therapeutics for Parkinson’s Disease. Cells 2020, 9 (4) , 841. https://doi.org/10.3390/cells9040841
    29. Surabhi Mehra, Shruti Sahay, Samir K. Maji. α-Synuclein misfolding and aggregation: Implications in Parkinson’s disease pathogenesis. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (10) , 890-908. https://doi.org/10.1016/j.bbapap.2019.03.001
    30. Irina Alecu, Steffany A. L. Bennett. Dysregulated Lipid Metabolism and Its Role in α-Synucleinopathy in Parkinson’s Disease. Frontiers in Neuroscience 2019, 13 https://doi.org/10.3389/fnins.2019.00328
    31. David Snead, David Eliezer. Intrinsically disordered proteins in synaptic vesicle trafficking and release. Journal of Biological Chemistry 2019, 294 (10) , 3325-3342. https://doi.org/10.1074/jbc.REV118.006493
    32. Ping-Yue Pan, Yingbo Zhu, Yuan Shen, Zhenyu Yue. Crosstalk between presynaptic trafficking and autophagy in Parkinson's disease. Neurobiology of Disease 2019, 122 , 64-71. https://doi.org/10.1016/j.nbd.2018.04.020
    33. Arti Parihar, Priyanka Parihar, Isha Solanki, Mordhwaj S. Parihar. Alpha Synuclein and Parkinson’s Disease. 2019, 1-14. https://doi.org/10.1007/978-981-13-0944-1_1
    34. Guadalupe Vidal-Martinez, Barbara Yang, Javier Vargas-Medrano, Ruth G. Perez. Could α-Synuclein Modulation of Insulin and Dopamine Identify a Novel Link Between Parkinson’s Disease and Diabetes as Well as Potential Therapies?. Frontiers in Molecular Neuroscience 2018, 11 https://doi.org/10.3389/fnmol.2018.00465
    35. Hector R. Mendez-Gomez, Jasbir Singh, Craig Meyers, Weijun Chen, Oleg S. Gorbatyuk, Nicholas Muzyczka. The Lipase Activity of Phospholipase D2 is Responsible for Nigral Neurodegeneration in a Rat Model of Parkinson’s Disease. Neuroscience 2018, 377 , 174-183. https://doi.org/10.1016/j.neuroscience.2018.02.047
    36. Katrin Brockhaus, Michael R. R. Böhm, Harutyun Melkonyan, Solon Thanos. Age-related Beta-synuclein Alters the p53/Mdm2 Pathway and Induces the Apoptosis of Brain Microvascular Endothelial Cells In Vitro. Cell Transplantation 2018, 27 (5) , 796-813. https://doi.org/10.1177/0963689718755706
    37. Jacqueline Burré, Manu Sharma, Thomas C. Südhof. Cell Biology and Pathophysiology of α-Synuclein. Cold Spring Harbor Perspectives in Medicine 2018, 8 (3) , a024091. https://doi.org/10.1101/cshperspect.a024091
    38. Emeline Tanguy, Qili Wang, Nicolas Vitale. Role of Phospholipase D-Derived Phosphatidic Acid in Regulated Exocytosis and Neurological Disease. 2018, 115-130. https://doi.org/10.1007/164_2018_180
    39. Daniel Ysselstein, Benjamin Dehay, Isabel M. Costantino, George P. McCabe, Matthew P. Frosch, Julia M. George, Erwan Bezard, Jean-Christophe Rochet. Endosulfine-alpha inhibits membrane-induced α-synuclein aggregation and protects against α-synuclein neurotoxicity. Acta Neuropathologica Communications 2017, 5 (1) https://doi.org/10.1186/s40478-016-0403-7
    40. Oliver T. Phillipson. Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson’s disease. An integrated strategy for management. Ageing Research Reviews 2017, 40 , 149-167. https://doi.org/10.1016/j.arr.2017.09.006
    41. Brittany Butler, Danielle Sambo, Habibeh Khoshbouei. Alpha-synuclein modulates dopamine neurotransmission. Journal of Chemical Neuroanatomy 2017, 83-84 , 41-49. https://doi.org/10.1016/j.jchemneu.2016.06.001
    42. Briana R. de Miranda, J. Timothy Greenamyre. Etiology and Pathogenesis of Parkinson’s Disease. 2017, 1-26. https://doi.org/10.1039/9781782622888-00001
    43. Robin B. Chan, Adler J. Perotte, Bowen Zhou, Christopher Liong, Evan J. Shorr, Karen S. Marder, Un J. Kang, Cheryl H. Waters, Oren A. Levy, Yimeng Xu, Hong Bin Shim, Itsik Pe’er, Gilbert Di Paolo, Roy N. Alcalay, . Elevated GM3 plasma concentration in idiopathic Parkinson’s disease: A lipidomic analysis. PLOS ONE 2017, 12 (2) , e0172348. https://doi.org/10.1371/journal.pone.0172348
    44. Masato Hasegawa. Molecular Biology of Dementia with Lewy Bodies. 2017, 41-55. https://doi.org/10.1007/978-4-431-55948-1_4
    45. Chao Jia, Wei Liu. Prospective of SNCA in nervous system diseases. Ibrain 2017, 3 (1) , 10-16. https://doi.org/10.1002/j.2769-2795.2017.tb00012.x
    46. Natalia C. Prymaczok, Roland Riek, Juan Gerez. More than a Rumor Spreads in Parkinson's Disease. Frontiers in Human Neuroscience 2016, 10 https://doi.org/10.3389/fnhum.2016.00608
    47. Dezerae Cox, Emily Selig, Michael D.W. Griffin, John A. Carver, Heath Ecroyd. Small Heat-shock Proteins Prevent α-Synuclein Aggregation via Transient Interactions and Their Efficacy Is Affected by the Rate of Aggregation. Journal of Biological Chemistry 2016, 291 (43) , 22618-22629. https://doi.org/10.1074/jbc.M116.739250
    48. Trevor Tyson, Jennifer A. Steiner, Patrik Brundin. Sorting out release, uptake and processing of alpha‐synuclein during prion‐like spread of pathology. Journal of Neurochemistry 2016, 139 (S1) , 275-289. https://doi.org/10.1111/jnc.13449
    49. Ute Burkhardt, Jochen Klein. Ethanol Impairs Phospholipase D Signaling in Astrocytes. 2016, 325-335. https://doi.org/10.1016/B978-0-12-800773-0.00026-4
    50. Jacqueline Burré. The Synaptic Function of α-Synuclein. Journal of Parkinson's Disease 2015, 5 (4) , 699-713. https://doi.org/10.3233/JPD-150642
    51. Sarah Plum, Simone Steinbach, Laura Abel, Katrin Marcus, Stefan Helling, Caroline May. Proteomics in neurodegenerative diseases: Methods for obtaining a closer look at the neuronal proteome. PROTEOMICS – Clinical Applications 2015, 9 (9-10) , 848-871. https://doi.org/10.1002/prca.201400030
    52. Ruben Berrocal, Velmarini Vasquez, Sambasiva Rao KRS, Bharathi S Gadad, Rao KS. α-Synuclein Misfolding Versus Aggregation Relevance to Parkinson’s Disease: Critical Assessment and Modeling. Molecular Neurobiology 2015, 51 (3) , 1417-1431. https://doi.org/10.1007/s12035-014-8818-2
    53. Marco Emanuele, Evelina Chieregatti. Mechanisms of Alpha-Synuclein Action on Neurotransmission: Cell-Autonomous and Non-Cell Autonomous Role. Biomolecules 2015, 5 (2) , 865-892. https://doi.org/10.3390/biom5020865
    54. Shengli Xu, Piu Chan. Interaction between Neuromelanin and Alpha-Synuclein in Parkinson’s Disease. Biomolecules 2015, 5 (2) , 1122-1142. https://doi.org/10.3390/biom5021122
    55. Rosa Vaccaro, Mattia Toni, Arianna Casini, Giorgio Vivacqua, Shun Yu, Loredana D'este, Carla Cioni. Localization of α‐Synuclein in Teleost Central Nervous System: Immunohistochemical and Western Blot Evidence by 3D5 Monoclonal Antibody in the Common Carp, Cyprinus carpio. Journal of Comparative Neurology 2015, 523 (7) , 1095-1124. https://doi.org/10.1002/cne.23722
    56. Vladimir N. Uversky. Protein Misfolding in Lipid-Mimetic Environments. 2015, 33-66. https://doi.org/10.1007/978-3-319-17344-3_2
    57. David Snead, David Eliezer. Alpha-Synuclein Function and Dysfunction on Cellular Membranes. Experimental Neurobiology 2014, 23 (4) , 292-313. https://doi.org/10.5607/en.2014.23.4.292
    58. Ariadna Recasens, Benjamin Dehay. Alpha-synuclein spreading in Parkinson’s disease. Frontiers in Neuroanatomy 2014, 8 https://doi.org/10.3389/fnana.2014.00159
    59. Jonathan M Bleasel, Joanna H Wong, Glenda M Halliday, Woojin Scott Kim. Lipid dysfunction and pathogenesis of multiple system atrophy. Acta Neuropathologica Communications 2014, 2 (1) https://doi.org/10.1186/2051-5960-2-15
    60. Ronald C. Bruntz, Craig W. Lindsley, H. Alex Brown, . Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer. Pharmacological Reviews 2014, 66 (4) , 1033-1079. https://doi.org/10.1124/pr.114.009217
    61. Dezerae Cox, John A. Carver, Heath Ecroyd. Preventing α-synuclein aggregation: The role of the small heat-shock molecular chaperone proteins. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2014, 1842 (9) , 1830-1843. https://doi.org/10.1016/j.bbadis.2014.06.024
    62. Mathieu Bourdenx, Erwan Bezard, Benjamin Dehay. Lysosomes and α-synuclein form a dangerous duet leading to neuronal cell death. Frontiers in Neuroanatomy 2014, 8 https://doi.org/10.3389/fnana.2014.00083
    63. Mari H. Savolainen, Christopher T. Richie, Brandon K. Harvey, Pekka T. Männistö, Kathleen A. Maguire-Zeiss, Timo T. Myöhänen. The beneficial effect of a prolyl oligopeptidase inhibitor, KYP-2047, on alpha-synuclein clearance and autophagy in A30P transgenic mouse. Neurobiology of Disease 2014, 68 , 1-15. https://doi.org/10.1016/j.nbd.2014.04.003
    64. Bidisha Roy, George R. Jackson. Interactions between Tau and α-synuclein augment neurotoxicity in a Drosophila model of Parkinson's disease. Human Molecular Genetics 2014, 23 (11) , 3008-3023. https://doi.org/10.1093/hmg/ddu011
    65. Suzanne Scarlata, Urszula Golebiewska. Linking alpha-synuclein properties with oxidation: a hypothesis on a mechanism underling cellular aggregation. Journal of Bioenergetics and Biomembranes 2014, 46 (2) , 93-98. https://doi.org/10.1007/s10863-014-9540-5
    66. María-Begoña Cachón-González, Susan Z. Wang, Robin Ziegler, Seng H. Cheng, Timothy M. Cox. Reversibility of neuropathology in Tay–Sachs-related diseases. Human Molecular Genetics 2014, 23 (3) , 730-748. https://doi.org/10.1093/hmg/ddt459
    67. Tsunaki Hongu, Yasunori Kanaho. Mammalian Phospholipase D: Structure, Regulation, and Physiological Function of Phospholipase D and its Link to Pathology. 2014, 343-358. https://doi.org/10.1007/978-1-4939-0464-8_21
    68. Kina Höglund, Hugh Salter. Molecular biomarkers of neurodegeneration. Expert Review of Molecular Diagnostics 2013, 13 (8) , 845-861. https://doi.org/10.1586/14737159.2013.850033
    69. Jacob T. Bendor, Todd P. Logan, Robert H. Edwards. The Function of α-Synuclein. Neuron 2013, 79 (6) , 1044-1066. https://doi.org/10.1016/j.neuron.2013.09.004
    70. Avigdor Leftin, Constantin Job, Klaus Beyer, Michael F. Brown. Solid-State 13C NMR Reveals Annealing of Raft-Like Membranes Containing Cholesterol by the Intrinsically Disordered Protein α-Synuclein. Journal of Molecular Biology 2013, 425 (16) , 2973-2987. https://doi.org/10.1016/j.jmb.2013.04.002
    71. Blanca A. Silva, Leonid Breydo, Vladimir N. Uversky. Targeting the Chameleon: a Focused Look at α-Synuclein and Its Roles in Neurodegeneration. Molecular Neurobiology 2013, 47 (2) , 446-459. https://doi.org/10.1007/s12035-012-8334-1
    72. Vanessa C. Ducas, Elizabeth Rhoades. Quantifying Interactions of β-Synuclein and γ-Synuclein with Model Membranes. Journal of Molecular Biology 2012, 423 (4) , 528-539. https://doi.org/10.1016/j.jmb.2012.08.008
    73. Arianna Bellucci, Michela Zaltieri, Laura Navarria, Jessica Grigoletto, Cristina Missale, PierFranco Spano. From α-synuclein to synaptic dysfunctions: New insights into the pathophysiology of Parkinson's disease. Brain Research 2012, 1476 , 183-202. https://doi.org/10.1016/j.brainres.2012.04.014
    74. Blake Byers, Hsiao-lu Lee, Renee Reijo Pera. Modeling Parkinson’s Disease Using Induced Pluripotent Stem Cells. Current Neurology and Neuroscience Reports 2012, 12 (3) , 237-242. https://doi.org/10.1007/s11910-012-0270-y
    75. Nicola J. Platt, Suzana Gispert, Georg Auburger, Stephanie J. Cragg, . Striatal Dopamine Transmission Is Subtly Modified in Human A53Tα-Synuclein Overexpressing Mice. PLoS ONE 2012, 7 (5) , e36397. https://doi.org/10.1371/journal.pone.0036397
    76. Igor Dikiy, David Eliezer. Folding and misfolding of alpha-synuclein on membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2012, 1818 (4) , 1013-1018. https://doi.org/10.1016/j.bbamem.2011.09.008
    77. Leonid Breydo, Jessica W. Wu, Vladimir N. Uversky. α-Synuclein misfolding and Parkinson's disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2012, 1822 (2) , 261-285. https://doi.org/10.1016/j.bbadis.2011.10.002
    78. X. Peng, M. A. Frohman. Mammalian phospholipase D physiological and pathological roles. Acta Physiologica 2012, 204 (2) , 219-226. https://doi.org/10.1111/j.1748-1716.2011.02298.x
    79. Wookjin Shin, Jongsun Kim. The Effects of Recombinant Synucleins and Insulin-like Growth Factor 1 on Cancer Cell Migration. Journal of Bacteriology and Virology 2012, 42 (2) , 133. https://doi.org/10.4167/jbv.2012.42.2.133
    80. Arianna Bellucci, Laura Navarria, Michela Zaltieri, Cristina Missale, PierFranco Spano. Alpha-synuclein synaptic pathology and its implications in the development of novel therapeutic approaches to cure Parkinson's disease. Brain Research 2012, 1432 , 95-113. https://doi.org/10.1016/j.brainres.2011.11.031
    81. Furong Cheng, Giorgio Vivacqua, Shun Yu. The role of alpha-synuclein in neurotransmission and synaptic plasticity. Journal of Chemical Neuroanatomy 2011, 42 (4) , 242-248. https://doi.org/10.1016/j.jchemneu.2010.12.001
    82. O. A. Buneeva, A. E. Medvedev. Mitochondrial dysfunction in Parkinson’s disease. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 2011, 5 (4) , 313-336. https://doi.org/10.1134/S1990750811040032
    83. Lalida Rojanathammanee, Eric J Murphy, Colin K Combs. Expression of mutant alpha-synuclein modulates microglial phenotype in vitro. Journal of Neuroinflammation 2011, 8 (1) https://doi.org/10.1186/1742-2094-8-44
    84. Xabier Elcoroaristizabal Martín, Fernando Gómez Busto, M.C. González Fernández, y Marian M. de Pancorbo. Papel de la genética en la etiología de las sinucleinopatías. Revista Española de Geriatría y Gerontología 2011, 46 , 3-11. https://doi.org/10.1016/j.regg.2011.10.002
    85. Beatriz Alvarez-Castelao, José G. Castaño. Synphilin-1 inhibits alpha-synuclein degradation by the proteasome. Cellular and Molecular Life Sciences 2011, 68 (15) , 2643-2654. https://doi.org/10.1007/s00018-010-0592-3
    86. Vladimir N. Uversky. Intrinsically Disordered Chaperones and Neurodegeneration. 2011, 1-63. https://doi.org/10.1002/9781118063903.ch1
    87. Michael Fiske, Michael White, Stephanie Valtierra, Sara Herrera, Keith Solvang, Alina Konnikova, Shubhik DebBurman. Familial Parkinson's Disease Mutant E46K α -Synuclein Localizes to Membranous Structures, Forms Aggregates, and Induces Toxicity in Yeast Models. ISRN Neurology 2011, 2011 , 1-14. https://doi.org/10.5402/2011/521847
    88. Susan A. Austin, Lalida Rojanathammanee, Mikhail Y. Golovko, Eric J. Murphy, Colin K. Combs. Lack of Alpha-Synuclein Modulates Microglial Phenotype In Vitro. Neurochemical Research 2011, 36 (6) , 994-1004. https://doi.org/10.1007/s11064-011-0439-9
    89. Sabina Anwar, Owen Peters, Steven Millership, Natalia Ninkina, Natalie Doig, Natalie Connor-Robson, Sarah Threlfell, Gurdeep Kooner, Robert M. Deacon, David M. Bannerman, J. Paul Bolam, Sreeganga S. Chandra, Stephanie J. Cragg, Richard Wade-Martins, Vladimir L. Buchman. Functional Alterations to the Nigrostriatal System in Mice Lacking All Three Members of the Synuclein Family. The Journal of Neuroscience 2011, 31 (20) , 7264-7274. https://doi.org/10.1523/JNEUROSCI.6194-10.2011
    90. Vladimir N. Uversky. Intrinsically disordered proteins may escape unwanted interactions via functional misfolding. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814 (5) , 693-712. https://doi.org/10.1016/j.bbapap.2011.03.010
    91. O.A. Buneeva, A.E. Medvedev. Mitochondrial disfunction in Parkinson's disease. Biomeditsinskaya Khimiya 2011, 57 (3) , 246-281. https://doi.org/10.18097/pbmc20115703246
    92. Oleg S Gorbatyuk, Shoudong Li, Frederic Nha Nguyen, Fredric P Manfredsson, Galina Kondrikova, Layla F Sullivan, Craig Meyers, Weijun Chen, Ronald J Mandel, Nicholas Muzyczka. α-Synuclein Expression in Rat Substantia Nigra Suppresses Phospholipase D2 Toxicity and Nigral Neurodegeneration. Molecular Therapy 2010, 18 (10) , 1758-1768. https://doi.org/10.1038/mt.2010.137
    93. Kwang Soo Kim, Ji-Young Park, Ilo Jou, Sang Myun Park. Regulation of Weibel-Palade Body Exocytosis by α-Synuclein in Endothelial Cells. Journal of Biological Chemistry 2010, 285 (28) , 21416-21425. https://doi.org/10.1074/jbc.M110.103499
    94. Diane Latawiec, Fernando Herrera, Alpan Bek, Valeria Losasso, Michela Candotti, Federico Benetti, Elvio Carlino, Agata Kranjc, Marco Lazzarino, Stefano Gustincich, Paolo Carloni, Giuseppe Legname, . Modulation of Alpha-Synuclein Aggregation by Dopamine Analogs. PLoS ONE 2010, 5 (2) , e9234. https://doi.org/10.1371/journal.pone.0009234
    95. Wenhua Zhang, Xiaobo Wan, Yueyun Hong, Weiqi Li, Xuemin Wang. Plant Phospholipase D. 2010, 39-62. https://doi.org/10.1007/978-3-642-03873-0_3
    96. Ian Martin, Valina L. Dawson, Ted M. Dawson. The impact of genetic research on our understanding of Parkinson’s disease. 2010, 21-41. https://doi.org/10.1016/S0079-6123(10)83002-X
    97. . References. 2009, 265-312. https://doi.org/10.1201/9781420078930.bmatt
    98. Johanna Mansfeld, Renate Ulbrich-Hofmann. Modulation of phospholipase D activity in vitro. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2009, 1791 (9) , 913-926. https://doi.org/10.1016/j.bbalip.2009.03.003
    99. Yasunori Kanaho, Yuji Funakoshi, Hiroshi Hasegawa. Phospholipase D signalling and its involvement in neurite outgrowth. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2009, 1791 (9) , 898-904. https://doi.org/10.1016/j.bbalip.2009.03.010
    100. Christian Riebeling, Andrew J. Morris, Dennis Shields. Phospholipase D in the Golgi apparatus. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2009, 1791 (9) , 876-880. https://doi.org/10.1016/j.bbalip.2009.04.003
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect