Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEAccelerated Publicat...Accelerated PublicationNEXT

Energetic Roles of Hydrogen Bonds at the Ureido Oxygen Binding Pocket in the Streptavidin−Biotin Complex

View Author Information
Department of Bioengineering, Box 357962, University of Washington, Seattle, Washington 98195
Cite this: Biochemistry 1998, 37, 21, 7657–7663
Publication Date (Web):May 8, 1998
https://doi.org/10.1021/bi9803123
Copyright © 1998 American Chemical Society

    Article Views

    1422

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The high-affinity streptavidin−biotin complex is characterized by an extensive hydrogen-bonding network. A study of hydrogen-bonding energetics at the ureido oxygen of biotin has been conducted with site-directed mutations at Asn 23, Ser 27, and Tyr 43. A new competitive biotin binding assay was developed to provide direct equilibrium measurements of the alterations in Kd. S27A, Y43F, Y43A, N23A, and N23E mutants display ΔΔG° at 37 °C relative to wild-type streptavidin of 2.9, 1.2, 2.6, 3.5, and 2.6 kcal/mol, respectively. The equilibrium-binding enthalpies for all of the mutants were measured by isothermal titration calorimetry, and the Y43A and N23A mutants display large decreases in the equilibrium binding enthalpy at 25 °C of 8.9 and 6.9 kcal/mol, respectively. The S27A and N23E mutants displayed small decreases in binding enthalpy of 1.6 and 0.9 kcal/mol relative to wild-type, while the Y43F mutant displayed a −2.6 kcal/mol increase in the binding enthalpy at 25 °C. At 37 °C, the Y43A and N23A mutants display decreases of 7.8 and 7.9 kcal/mol, respectively, while the S27A, N23E, and Y43F mutants displayed decreases of 4.9, 3.7, and 1.2 kcal/mol relative to wild-type. Kinetic analyses were also conducted to probe the contributions of the hydrogen bonds to the activation barrier. Wild-type streptavidin at 37 °C displays a koff of (4.1 ± 0.3) × 10-5 s-1, and the conservative Y43F, S27A, and N23A mutants displayed increases in koff to (20 ± 1) × 10-5 s-1, (660 ± 40) × 10-5 s-1, and (1030 ± 220) × 10-5 s-1, respectively. The Y43A and N23E mutants displayed 93-fold and 188-fold increases in koff, respectively. Activation energies and enthalpies for each of the mutants were determined by transition-state analysis of the dissociation rate temperature dependence. All of the mutants except Y43F display large reductions in the activation enthalpy. The Y43F mutant has a more positive activation enthalpy, and thus a more favorable activation entropy that underlies the overall reduction in the activation barrier. For the most conservative mutant at each ureido oxygen hydrogen-bonding position, bound-state alterations account for most of the energetic changes in a single transition-state model, suggesting that the ureido oxygen hydrogen-bonding interactions are broken in the dissociation transition state.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by Grant DK49655 from the National Institutes of Health.

     Current Address:  Pharmaceutics, Mail Stop 8-1-C, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320-1789.

    *

     To whom correspondence should be addressed. Phone:  (206) 685-8148. Fax:  (206) 685-8256. E-mail:  [email protected].

    Cited By

    This article is cited by 103 publications.

    1. Pratyush Tiwary . Molecular Determinants and Bottlenecks in the Dissociation Dynamics of Biotin–Streptavidin. The Journal of Physical Chemistry B 2017, 121 (48) , 10841-10849. https://doi.org/10.1021/acs.jpcb.7b09510
    2. Loren Baugh, Isolde Le Trong, Patrick S. Stayton, Ronald E. Stenkamp, and Terry P. Lybrand . A Streptavidin Binding Site Mutation Yields an Unexpected Result: An Ionized Asp128 Residue Is Not Essential for Strong Biotin Binding. Biochemistry 2016, 55 (37) , 5201-5203. https://doi.org/10.1021/acs.biochem.6b00698
    3. Evan M. Peck, Wenqi Liu, Graeme T. Spence, Scott K. Shaw, Anthony P. Davis, Harry Destecroix, and Bradley D. Smith . Rapid Macrocycle Threading by a Fluorescent Dye–Polymer Conjugate in Water with Nanomolar Affinity. Journal of the American Chemical Society 2015, 137 (27) , 8668-8671. https://doi.org/10.1021/jacs.5b03573
    4. Barbara Taskinen, Dominik Zauner, Soili I. Lehtonen, Masi Koskinen, Chloe Thomson, Niklas Kähkönen, Sampo Kukkurainen, Juha A. E. Määttä, Teemu O. Ihalainen, Markku S. Kulomaa, Hermann J. Gruber, and Vesa P. Hytönen . Switchavidin: Reversible Biotin–Avidin–Biotin Bridges with High Affinity and Specificity. Bioconjugate Chemistry 2014, 25 (12) , 2233-2243. https://doi.org/10.1021/bc500462w
    5. Lu Deng, Elena N. Kitova, John S. Klassen. Dissociation Kinetics of the Streptavidin–Biotin Interaction Measured Using Direct Electrospray Ionization Mass Spectrometry Analysis. Journal of the American Society for Mass Spectrometry 2013, 24 (1) , 49-56. https://doi.org/10.1007/s13361-012-0533-5
    6. Lu Deng, Aron Broom, Elena N. Kitova, Michele R. Richards, Ruixiang Blake Zheng, Glen K. Shoemaker, Elizabeth M. Meiering, and John S. Klassen . Kinetic Stability of the Streptavidin–Biotin Interaction Enhanced in the Gas Phase. Journal of the American Chemical Society 2012, 134 (40) , 16586-16596. https://doi.org/10.1021/ja305213z
    7. Loren Baugh, Isolde Le Trong, David S. Cerutti, Nital Mehta, Susanne Gülich, Patrick S. Stayton, Ronald E. Stenkamp, and Terry P. Lybrand . Second-Contact Shell Mutation Diminishes Streptavidin–Biotin Binding Affinity through Transmitted Effects on Equilibrium Dynamics. Biochemistry 2012, 51 (2) , 597-607. https://doi.org/10.1021/bi201221j
    8. D. Scott Wilbur, Steven I. Park, Ming-Kuan Chyan, Feng Wan, Donald K. Hamlin, Jaideep Shenoi, Yukang Lin, Shani M. Wilbur, Franz Buchegger, Anastasia Pantelias, John M. Pagel and Oliver W. Press . Design and Synthesis of Bis-Biotin-Containing Reagents for Applications Utilizing Monoclonal Antibody-Based Pretargeting Systems with Streptavidin Mutants. Bioconjugate Chemistry 2010, 21 (7) , 1225-1238. https://doi.org/10.1021/bc100030q
    9. Loren Baugh, Isolde Le Trong, David S. Cerutti, Susanne Gülich, Patrick S. Stayton, Ronald E. Stenkamp and Terry P. Lybrand . A Distal Point Mutation in the Streptavidin−Biotin Complex Preserves Structure but Diminishes Binding Affinity: Experimental Evidence of Electronic Polarization Effects?. Biochemistry 2010, 49 (22) , 4568-4570. https://doi.org/10.1021/bi1005392
    10. Tolulope A. Aweda, Heather E. Beck, Anna M. Wu, Liu H. Wei, Wolfgang A. Weber and Claude F. Meares . Rates and Equilibria for Probe Capture by an Antibody with Infinite Affinity. Bioconjugate Chemistry 2010, 21 (4) , 784-791. https://doi.org/10.1021/bc100046p
    11. Qingbin Li, Sergey Gusarov, Stephane Evoy and Andriy Kovalenko . Electronic Structure, Binding Energy, and Solvation Structure of the Streptavidin−Biotin Supramolecular Complex: ONIOM and 3D-RISM Study. The Journal of Physical Chemistry B 2009, 113 (29) , 9958-9967. https://doi.org/10.1021/jp902668c
    12. Jilin Tang,, Andreas Ebner,, Nicola Ilk,, Helga Lichtblau,, Carina Huber,, Rong Zhu,, Dietmar Pum,, Micheal Leitner,, Vassili Pastushenko,, Hermann J. Gruber,, Uwe B. Sleytr, and, Peter Hinterdorfer. High-Affinity Tags Fused to S-Layer Proteins Probed by Atomic Force Microscopy. Langmuir 2008, 24 (4) , 1324-1329. https://doi.org/10.1021/la702276k
    13. Jason DeChancie and, K. N. Houk. The Origins of Femtomolar Protein−Ligand Binding:  Hydrogen-Bond Cooperativity and Desolvation Energetics in the Biotin−(Strept)Avidin Binding Site. Journal of the American Chemical Society 2007, 129 (17) , 5419-5429. https://doi.org/10.1021/ja066950n
    14. Cesear Corona,, Bj K. Bryant, and, Jeffrey B. Arterburn. Synthesis of a Biotin-Derived Alkyne for Pd-Catalyzed Coupling Reactions. Organic Letters 2006, 8 (9) , 1883-1886. https://doi.org/10.1021/ol060458r
    15. Andreas Loosli,, Untung Edy Rusbandi,, Julieta Gradinaru,, Klaus Bernauer,, Carl Wilhelm Schlaepfer,, Michel Meyer,, Sylwester Mazurek,, Marjana Novic, and, Thomas R. Ward. (Strept)avidin as Host for Biotinylated Coordination Complexes:  Stability, Chiral Discrimination, and Cooperativity. Inorganic Chemistry 2006, 45 (2) , 660-668. https://doi.org/10.1021/ic051405t
    16. Myriem Skander,, Nicolas Humbert,, Jérôme Collot,, Julieta Gradinaru,, Gérard Klein,, Andreas Loosli,, Jérôme Sauser,, Andrea Zocchi,, François Gilardoni, and, Thomas R. Ward. Artificial Metalloenzymes:  (Strept)avidin as Host for Enantioselective Hydrogenation by Achiral Biotinylated Rhodium−Diphosphine Complexes. Journal of the American Chemical Society 2004, 126 (44) , 14411-14418. https://doi.org/10.1021/ja0476718
    17. Y. N. Antonenko,, T. I. Rokitskaya,, E. A. Kotova,, G. O. Reznik,, T. Sano, and, C. R. Cantor. Effect of Streptavidins with Varying Biotin Binding Affinities on the Properties of Biotinylated Gramicidin Channels. Biochemistry 2004, 43 (15) , 4575-4582. https://doi.org/10.1021/bi034984r
    18. Kjell E. Nelson,, Lara Gamble,, Linda S. Jung,, Maximiliane S. Boeckl,, Esmaeel Naeemi,, Stephen L. Golledge,, Tomikazu Sasaki,, David G. Castner,, Charles T. Campbell, and, Patrick S. Stayton. Surface Characterization of Mixed Self-Assembled Monolayers Designed for Streptavidin Immobilization. Langmuir 2001, 17 (9) , 2807-2816. https://doi.org/10.1021/la001111e
    19. Linda S. Jung,, Kjell E. Nelson,, P. S. Stayton, and, Charles T. Campbell. Binding and Dissociation Kinetics of Wild-Type and Mutant Streptavidins on Mixed Biotin-Containing Alkylthiolate Monolayers. Langmuir 2000, 16 (24) , 9421-9432. https://doi.org/10.1021/la000144r
    20. Mark J. Snider,, Stefan Gaunitz,, Caroline Ridgway,, Steven A. Short, and, Richard Wolfenden. Temperature Effects on the Catalytic Efficiency, Rate Enhancement, and Transition State Affinity of Cytidine Deaminase, and the Thermodynamic Consequences for Catalysis of Removing a Substrate “Anchor”. Biochemistry 2000, 39 (32) , 9746-9753. https://doi.org/10.1021/bi000914y
    21. Sandy Koppenol,, Lisa A. Klumb,, Viola Vogel, and, Patrick S. Stayton. Effects of Interfacial Binding Kinetics on Two-Dimensional Streptavidin Crystallization. Langmuir 1999, 15 (21) , 7125-7129. https://doi.org/10.1021/la9901130
    22. Víctor H. Pérez-Luna,, Michael J. O'Brien,, Kimberly A. Opperman,, Philip D. Hampton,, Gabriel P. López,, Lisa A. Klumb, and, Patrick S. Stayton. Molecular Recognition between Genetically Engineered Streptavidin and Surface-Bound Biotin. Journal of the American Chemical Society 1999, 121 (27) , 6469-6478. https://doi.org/10.1021/ja983984p
    23. Qi Wang, Sophie Jermyn, David Quashie, Sarah Elizabeth Gatti, Jaideep Katuri, Jamel Ali. Magnetically actuated swimming and rolling erythrocyte-based biohybrid micromotors. RSC Advances 2023, 13 (44) , 30951-30958. https://doi.org/10.1039/D3RA05844A
    24. Kevin E. Knockenhauer, Robert A. Copeland. The importance of binding kinetics and drug–target residence time in pharmacology. British Journal of Pharmacology 2023, 176 https://doi.org/10.1111/bph.16104
    25. Brandon K. Ashley, Jianye Sui, Mehdi Javanmard, Umer Hassan. Functionalization of hybrid surface microparticles for in vitro cellular antigen classification. Analytical and Bioanalytical Chemistry 2021, 413 (2) , 555-564. https://doi.org/10.1007/s00216-020-03026-4
    26. Robert Ohlendorf, Agata Wiśniowska, Mitul Desai, Ali Barandov, Adrian L. Slusarczyk, Nan Li, Alan Jasanoff. Target-responsive vasoactive probes for ultrasensitive molecular imaging. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16118-7
    27. Jesse M. Marangoni, Sau-Ching Wu, Dawson Fogen, Sui-Lam Wong, Kenneth K. S. Ng. Engineering a disulfide-gated switch in streptavidin enables reversible binding without sacrificing binding affinity. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-69357-5
    28. Yalong Cong, Kaifang Huang, Yuchen Li, Susu Zhong, John Z. H. Zhang, Lili Duan. Entropic effect and residue specific entropic contribution to the cooperativity in streptavidin–biotin binding. Nanoscale 2020, 12 (13) , 7134-7145. https://doi.org/10.1039/C9NR08380D
    29. Nidhi Jatana, David B. Ascher, Douglas E.V. Pires, Rajesh S. Gokhale, Lipi Thukral. Human LC3 and GABARAP subfamily members achieve functional specificity via specific structural modulations. Autophagy 2020, 16 (2) , 239-255. https://doi.org/10.1080/15548627.2019.1606636
    30. Doreen Niether, Mona Sarter, Bernd W. Koenig, Jörg Fitter, Andreas M. Stadler, Simone Wiegand. Thermophoresis: The Case of Streptavidin and Biotin. Polymers 2020, 12 (2) , 376. https://doi.org/10.3390/polym12020376
    31. Vesa P. Hytönen. (Strept)avidin as a template for ligands other than biotin: An overview. 2020, 21-28. https://doi.org/10.1016/bs.mie.2019.10.029
    32. Keleabetswe L. Mpye, Samantha Gildenhuys, Salerwe Mosebi, . The effects of temperature on streptavidin-biotin binding using affinity isothermal titration calorimetry. AIMS Biophysics 2020, 7 (4) , 236-247. https://doi.org/10.3934/biophy.2020018
    33. Roberto F. Delgadillo, Timothy C. Mueser, Kathia Zaleta-Rivera, Katie A. Carnes, José González-Valdez, Lawrence J. Parkhurst, . Detailed characterization of the solution kinetics and thermodynamics of biotin, biocytin and HABA binding to avidin and streptavidin. PLOS ONE 2019, 14 (2) , e0204194. https://doi.org/10.1371/journal.pone.0204194
    34. Roberta D'Agata, Pasquale Palladino, Giuseppe Spoto. Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation. Beilstein Journal of Nanotechnology 2017, 8 , 1-11. https://doi.org/10.3762/bjnano.8.1
    35. Fengjiao Liu, John Z. H. Zhang, Ye Mei. The origin of the cooperativity in the streptavidin-biotin system: A computational investigation through molecular dynamics simulations. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep27190
    36. Ruiqiong Guo, Kristen Gaffney, Zhongyu Yang, Miyeon Kim, Suttipun Sungsuwan, Xuefei Huang, Wayne L Hubbell, Heedeok Hong. Steric trapping reveals a cooperativity network in the intramembrane protease GlpG. Nature Chemical Biology 2016, 12 (5) , 353-360. https://doi.org/10.1038/nchembio.2048
    37. Eun-Kyung Lim, Panki Bae, Haeran Kim, Juyeon Jung. A leucine zipper pair-based lipid vesicle for image-guided therapy in breast cancer. Chemical Communications 2016, 52 (13) , 2687-2690. https://doi.org/10.1039/C5CC08659K
    38. Carol Jurchenko, Khalid S. Salaita. Lighting Up the Force: Investigating Mechanisms of Mechanotransduction Using Fluorescent Tension Probes. Molecular and Cellular Biology 2015, 35 (15) , 2570-2582. https://doi.org/10.1128/MCB.00195-15
    39. Tai‐Chih Kuo, Ching‐Wei Tsai, Peng‐Chen Lee, Wen‐Yih Chen. Revisiting the streptavidin–biotin binding by using an aptamer and displacement isothermal calorimetry titration. Journal of Molecular Recognition 2015, 28 (3) , 125-128. https://doi.org/10.1002/jmr.2366
    40. Mounir A Koussa, Ken Halvorsen, Andrew Ward, Wesley P Wong. DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis. Nature Methods 2015, 12 (2) , 123-126. https://doi.org/10.1038/nmeth.3209
    41. Katri Kurppa, Vesa P. Hytönen, Tiina Nakari-Setälä, Markku S. Kulomaa, Markus B. Linder. Molecular engineering of avidin and hydrophobin for functional self-assembling interfaces. Colloids and Surfaces B: Biointerfaces 2014, 120 , 102-109. https://doi.org/10.1016/j.colsurfb.2014.05.010
    42. Carol Jurchenko, Yuan Chang, Yoshie Narui, Yun Zhang, Khalid S. Salaita. Integrin-Generated Forces Lead to Streptavidin-Biotin Unbinding in Cellular Adhesions. Biophysical Journal 2014, 106 (7) , 1436-1446. https://doi.org/10.1016/j.bpj.2014.01.049
    43. Juan Zeng, Xiangyu Jia, John Z. H. Zhang, Ye Mei. The F130L mutation in streptavidin reduces its binding affinity to biotin through electronic polarization effect. Journal of Computational Chemistry 2013, 34 (31) , 2677-2686. https://doi.org/10.1002/jcc.23421
    44. Barbara Taskinen, Joanna Zmurko, Markus Ojanen, Sampo Kukkurainen, Marimuthu Parthiban, Juha A. E. Määttä, Jenni Leppiniemi, Janne Jänis, Mataleena Parikka, Hannu Turpeinen, Mika Rämet, Marko Pesu, Mark S. Johnson, Markku S. Kulomaa, Tomi T. Airenne, Vesa P. Hytönen, . Zebavidin - An Avidin-Like Protein from Zebrafish. PLoS ONE 2013, 8 (10) , e77207. https://doi.org/10.1371/journal.pone.0077207
    45. Sau-Ching Wu, Sui-Lam Wong, . Structure-Guided Design of an Engineered Streptavidin with Reusability to Purify Streptavidin-Binding Peptide Tagged Proteins or Biotinylated Proteins. PLoS ONE 2013, 8 (7) , e69530. https://doi.org/10.1371/journal.pone.0069530
    46. Isolde Le Trong, Vano Chu, Yi Xing, Terry P. Lybrand, Patrick S. Stayton, Ronald E. Stenkamp. Structural consequences of cutting a binding loop: two circularly permuted variants of streptavidin. Acta Crystallographica Section D Biological Crystallography 2013, 69 (6) , 968-977. https://doi.org/10.1107/S0907444913003855
    47. Tai‐Chih Kuo, Peng‐Chen Lee, Ching‐Wei Tsai, Wen‐Yih Chen. Salt bridge exchange binding mechanism between streptavidin and its DNA aptamer – thermodynamics and spectroscopic evidences. Journal of Molecular Recognition 2013, 26 (3) , 149-159. https://doi.org/10.1002/jmr.2260
    48. Kok Hong Lim, Heng Huang, Arnd Pralle, Sheldon Park. Stable, high‐affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnology and Bioengineering 2013, 110 (1) , 57-67. https://doi.org/10.1002/bit.24605
    49. Veronika Zarnitsyna, Cheng Zhu. T cell triggering: insights from 2D kinetics analysis of molecular interactions. Physical Biology 2012, 9 (4) , 045005. https://doi.org/10.1088/1478-3975/9/4/045005
    50. Jenni Leppiniemi, Toni Grönroos, Juha A. E. Määttä, Mark S. Johnson, Markku S. Kulomaa, Vesa P. Hytönen, Tomi T. Airenne, . Structure of Bradavidin – C-Terminal Residues Act as Intrinsic Ligands. PLoS ONE 2012, 7 (5) , e35962. https://doi.org/10.1371/journal.pone.0035962
    51. Barbara Niederhauser, Joonas Siivonen, Juha A. Määttä, Janne Jänis, Markku S. Kulomaa, Vesa P. Hytönen. DNA family shuffling within the chicken avidin protein family – A shortcut to more powerful protein tools. Journal of Biotechnology 2012, 157 (1) , 38-49. https://doi.org/10.1016/j.jbiotec.2011.10.014
    52. Steven I. Park, Jaideep Shenoi, Shani M. Frayo, Donald K. Hamlin, Yukang Lin, D. Scott Wilbur, Patrick S. Stayton, Nural Orgun, Mark Hylarides, Franz Buchegger, Aimee L. Kenoyer, Amanda Axtman, Ajay K. Gopal, Damian J. Green, John M. Pagel, Oliver W. Press. Pretargeted Radioimmunotherapy Using Genetically Engineered Antibody-Streptavidin Fusion Proteins for Treatment of Non-Hodgkin Lymphoma. Clinical Cancer Research 2011, 17 (23) , 7373-7382. https://doi.org/10.1158/1078-0432.CCR-11-1204
    53. Maria L. B. Magalhães, Clarissa Melo Czekster, Rong Guan, Vladimir N. Malashkevich, Steven C. Almo, Matthew Levy. Evolved streptavidin mutants reveal key role of loop residue in high‐affinity binding. Protein Science 2011, 20 (7) , 1145-1154. https://doi.org/10.1002/pro.642
    54. Tingyi Li, Xiaoming Qu, Guanlei Xie, Jincheng Mao. [Cu(acac) 2 ]⋅ H 2 O‐Catalyzed Sonogashira‐Type Couplings of Aryl Halides and Terminal Alkynes . Chemistry – An Asian Journal 2011, 6 (6) , 1325-1330. https://doi.org/10.1002/asia.201000923
    55. Jenni Leppiniemi, Juha A. E. Määttä, Henrik Hammaren, Mikko Soikkeli, Mikko Laitaoja, Janne Jänis, Markku S. Kulomaa, Vesa P. Hytönen, . Bifunctional Avidin with Covalently Modifiable Ligand Binding Site. PLoS ONE 2011, 6 (1) , e16576. https://doi.org/10.1371/journal.pone.0016576
    56. Michael Busby, Lukas Kurt Josef Stadler, Paul Ko Ferrigno, Jason J. Davis. Optimisation of a multivalent Strep tag for protein detection. Biophysical Chemistry 2010, 152 (1-3) , 170-177. https://doi.org/10.1016/j.bpc.2010.09.005
    57. Qinglin Sheng, Jian Wang, Jianbin Zheng, Ziqin Xu, Hongfang Zhang. Ultrasensitive electrical biosensing of syphilis DNA using target-guided formation of polyaniline based on enzyme-catalyzed polymerization. Biosensors and Bioelectronics 2010, 25 (9) , 2071-2077. https://doi.org/10.1016/j.bios.2010.02.002
    58. Claire E Chivers, Estelle Crozat, Calvin Chu, Vincent T Moy, David J Sherratt, Mark Howarth. A streptavidin variant with slower biotin dissociation and increased mechanostability. Nature Methods 2010, 7 (5) , 391-393. https://doi.org/10.1038/nmeth.1450
    59. Andrea M. Armani. Single Molecule Detection Using Optical Microcavities. 2010, 253-273. https://doi.org/10.1007/978-1-4419-1744-7_11
    60. Juha AE Määttä, Satu H Helppolainen, Vesa P Hytönen, Mark S Johnson, Markku S Kulomaa, Tomi T Airenne, Henri R Nordlund. Structural and functional characteristics of xenavidin, the first frog avidin from Xenopus tropicalis. BMC Structural Biology 2009, 9 (1) https://doi.org/10.1186/1472-6807-9-63
    61. Oscar Björnham, Jeanna Bugaytsova, Thomas Borén, Staffan Schedin. Dynamic force spectroscopy of the Helicobacter pylori BabA–Lewis b Binding. Biophysical Chemistry 2009, 143 (1-2) , 102-105. https://doi.org/10.1016/j.bpc.2009.03.007
    62. Jarosław J. Panek, Thomas R. Ward, Aneta Jezierska, Marjana Novič. Effects of tryptophan residue fluorination on streptavidin stability and biotin–streptavidin interactions via molecular dynamics simulations. Journal of Molecular Modeling 2009, 15 (3) , 257-266. https://doi.org/10.1007/s00894-008-0382-0
    63. Matthew Levy, Andrew D. Ellington. Directed Evolution of Streptavidin Variants Using In Vitro Compartmentalization. Chemistry & Biology 2008, 15 (9) , 979-989. https://doi.org/10.1016/j.chembiol.2008.07.017
    64. Satu H. Helppolainen, Juha A.E. Määttä, Katrin K. Halling, J. Peter Slotte, Vesa P. Hytönen, Janne Jänis, Pirjo Vainiotalo, Markku S. Kulomaa, Henri R. Nordlund. Bradavidin II from Bradyrhizobium japonicum: A new avidin-like biotin-binding protein. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2008, 1784 (7-8) , 1002-1010. https://doi.org/10.1016/j.bbapap.2008.04.010
    65. Juha A. E. Määttä, Tomi T. Airenne, Henri R. Nordlund, Janne Jänis, Tiina A. Paldanius, Pirjo Vainiotalo, Mark S. Johnson, Markku S. Kulomaa, Vesa P. Hytönen. Rational Modification of Ligand‐Binding Preference of Avidin by Circular Permutation and Mutagenesis. ChemBioChem 2008, 9 (7) , 1124-1135. https://doi.org/10.1002/cbic.200700671
    66. Emily B. Walton, Sunyoung Lee, Krystyn J. Van Vliet. Extending Bell's Model: How Force Transducer Stiffness Alters Measured Unbinding Forces and Kinetics of Molecular Complexes. Biophysical Journal 2008, 94 (7) , 2621-2630. https://doi.org/10.1529/biophysj.107.114454
    67. Qingbin Li, Sergey Gusarov, Andriy Kovalenko. Molecular Dynamics Study of Streptavidin Binding to Surface-Immobilized Biotin. 2008, 767-770. https://doi.org/10.1109/ISCSCT.2008.375
    68. Vesa P Hytönen, Juha AE Määttä, Einari A Niskanen, Juhani Huuskonen, Kaisa J Helttunen, Katrin K Halling, Henri R Nordlund, Kari Rissanen, Mark S Johnson, Tiina A Salminen, Markku S Kulomaa, Olli H Laitinen, Tomi T Airenne. Structure and characterization of a novel chicken biotin-binding protein A (BBP-A). BMC Structural Biology 2007, 7 (1) https://doi.org/10.1186/1472-6807-7-8
    69. Annie Schwartz, Emmanuel Margeat, A. Rachid Rahmouni, Marc Boudvillain. Transcription Termination Factor Rho Can Displace Streptavidin from Biotinylated RNA. Journal of Biological Chemistry 2007, 282 (43) , 31469-31476. https://doi.org/10.1074/jbc.M706935200
    70. Fang Jia, Tiffani D. Shelton, Michael R. Lewis. Preparation, Characterization, and Biological Evaluation of a Streptavidin-Chimeric T84.66 Conjugate for Antibody Pretargeting. Cancer Biotherapy and Radiopharmaceuticals 2007, 22 (5) , 654-664. https://doi.org/10.1089/cbr.2007.343-S
    71. Satu H. Helppolainen, Kirsi P. Nurminen, Juha A. E. Määttä, Katrin K. Halling, J. Peter Slotte, Tuulia Huhtala, Timo Liimatainen, Seppo Ylä-Herttuala, Kari J. Airenne, Ale Närvänen, Janne Jänis, Pirjo Vainiotalo, Jarkko Valjakka, Markku S. Kulomaa, Henri R. Nordlund. Rhizavidin from Rhizobium etli : the first natural dimer in the avidin protein family. Biochemical Journal 2007, 405 (3) , 397-405. https://doi.org/10.1042/BJ20070076
    72. Debarati M. Tagore, K. Ingrid Sprinz, Andrew D. Hamilton. Duplex DNA as a Self-Assembling Template for the Identification of Bidentate Protein-Binding Agents. Supramolecular Chemistry 2007, 19 (1-2) , 129-136. https://doi.org/10.1080/10610270600990253
    73. Esben Thormann, Per Lyngs Hansen, Adam Cohen Simonsen, Ole G. Mouritsen. Dynamic force spectroscopy on soft molecular systems: Improved analysis of unbinding spectra with varying linker compliance. Colloids and Surfaces B: Biointerfaces 2006, 53 (2) , 149-156. https://doi.org/10.1016/j.colsurfb.2006.08.015
    74. Manon J. W. Ludden, Mária Péter, David N. Reinhoudt, Jurriaan Huskens. Attachment of Streptavidin to β‐Cyclodextrin Molecular Printboards via Orthogonal Host–Guest and Protein–Ligand Interactions. Small 2006, 2 (10) , 1192-1202. https://doi.org/10.1002/smll.200600147
    75. Mark Howarth, Daniel J-F Chinnapen, Kimberly Gerrow, Pieter C Dorrestein, Melanie R Grandy, Neil L Kelleher, Alaa El-Husseini, Alice Y Ting. A monovalent streptavidin with a single femtomolar biotin binding site. Nature Methods 2006, 3 (4) , 267-273. https://doi.org/10.1038/nmeth861
    76. Isolde Le Trong, Nicolas Humbert, Thomas R. Ward, Ronald E. Stenkamp. Crystallographic Analysis of a Full-length Streptavidin with Its C-terminal Polypeptide Bound in the Biotin Binding Site. Journal of Molecular Biology 2006, 356 (3) , 738-745. https://doi.org/10.1016/j.jmb.2005.11.086
    77. Henri R. Nordlund, Vesa P. Hytönen, Jarno Hörhä, Juha A. E. Määttä, Daniel J. White, Katrin Halling, Eevaleena J. Porkka, J. Peter Slotte, Olli H. Laitinen, Markku S. Kulomaa. Tetravalent single-chain avidin: from subunits to protein domains via circularly permuted avidins. Biochemical Journal 2005, 392 (3) , 485-491. https://doi.org/10.1042/BJ20051038
    78. Vesa P Hytönen, Juha AE Määttä, Heidi Kidron, Katrin K Halling, Jarno Hörhä, Tuomas Kulomaa, Thomas KM Nyholm, Mark S Johnson, Tiina A Salminen, Markku S Kulomaa, Tomi T Airenne. Avidin related protein 2 shows unique structural and functional features among the avidin protein family. BMC Biotechnology 2005, 5 (1) https://doi.org/10.1186/1472-6750-5-28
    79. Vesa P. Hytönen, Henri R. Nordlund, Jarno Hörhä, Thomas K. M. Nyholm, David E. Hyre, Tuomas Kulomaa, Eevaleena J. Porkka, Ari T. Marttila, Patrick S. Stayton, Olli H. Laitinen, Markku S. Kulomaa. Dual‐affinity avidin molecules. Proteins: Structure, Function, and Bioinformatics 2005, 61 (3) , 597-607. https://doi.org/10.1002/prot.20604
    80. K. Ingrid Sprinz, Debarati M. Tagore, Andrew D. Hamilton. Self-assembly of bivalent protein-binding agents based on oligonucleotide-linked organic fragments. Bioorganic & Medicinal Chemistry Letters 2005, 15 (17) , 3908-3911. https://doi.org/10.1016/j.bmcl.2005.05.094
    81. Xipeng Liu, Jianhua Liu. Signal Peptide does not Inhibit Binding of Biotin to Streptavidin. Biotechnology Letters 2005, 27 (15) , 1067-1073. https://doi.org/10.1007/s10529-005-8451-2
    82. Thomas R. Ward. Artificial Metalloenzymes for Enantioselective Catalysis Based on the Noncovalent Incorporation of Organometallic Moieties in a Host Protein. Chemistry – A European Journal 2005, 11 (13) , 3798-3804. https://doi.org/10.1002/chem.200401232
    83. Henri R. Nordlund, Vesa P. Hytönen, Olli H. Laitinen, Markku S. Kulomaa. Novel Avidin-like Protein from a Root Nodule Symbiotic Bacterium, Bradyrhizobium japonicum. Journal of Biological Chemistry 2005, 280 (14) , 13250-13255. https://doi.org/10.1074/jbc.M414336200
    84. Vesa P. Hytönen, Juha A.E. Määttä, Thomas K.M. Nyholm, Oded Livnah, Yael Eisenberg-Domovich, David Hyre, Henri R. Nordlund, Jarno Hörhä, Einari A. Niskanen, Tiina Paldanius, Tuomas Kulomaa, Eevaleena J. Porkka, Patrick S. Stayton, Olli H. Laitinen, Markku S. Kulomaa. Design and Construction of Highly Stable, Protease-resistant Chimeric Avidins. Journal of Biological Chemistry 2005, 280 (11) , 10228-10233. https://doi.org/10.1074/jbc.M414196200
    85. Brian Albarran, Richard To, Patrick S. Stayton. A TAT–streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells. Protein Engineering, Design and Selection 2005, 18 (3) , 147-152. https://doi.org/10.1093/protein/gzi014
    86. Chao Yu, Miroslav Malesevic, Günther Jahreis, Mike Schutkowski, Gunter Fischer, Cordelia Schiene‐Fischer. Architektur von Protein‐Ligand‐Bindungsstellen durch templatassistierte intramolekulare Peptid‐Peptid‐Interaktionen. Angewandte Chemie 2005, 117 (9) , 1432-1437. https://doi.org/10.1002/ange.200460991
    87. Chao Yu, Miroslav Malesevic, Günther Jahreis, Mike Schutkowski, Gunter Fischer, Cordelia Schiene‐Fischer. The Architecture of Protein–Ligand Binding Sites Revealed through Template‐Assisted Intramolecular Peptide–Peptide Interactions. Angewandte Chemie International Edition 2005, 44 (9) , 1408-1412. https://doi.org/10.1002/anie.200460991
    88. Anders Holmberg, Anna Blomstergren, Olof Nord, Morten Lukacs, Joakim Lundeberg, Mathias Uhlén. The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. ELECTROPHORESIS 2005, 26 (3) , 501-510. https://doi.org/10.1002/elps.200410070
    89. Nicolas Humbert, Andrea Zocchi, Thomas R. Ward. Electrophoretic behavior of streptavidin complexed to a biotinylated probe: A functional screening assay for biotin-binding proteins. ELECTROPHORESIS 2005, 26 (1) , 47-52. https://doi.org/10.1002/elps.200406148
    90. Sara K. Avrantinis, Ryan L. Stafford, Xia Tian, Gregory A. Weiss. Dissecting the Streptavidin-Biotin Interaction by Phage-Displayed Shotgun Scanning. ChemBioChem 2002, 3 (12) , 1229-1234. https://doi.org/10.1002/1439-7633(20021202)3:12<1229::AID-CBIC1229>3.0.CO;2-X
    91. Kuo-Kuang Wen, Xiaoyi Yao, Peter A. Rubenstein. GTP-Yeast Actin. Journal of Biological Chemistry 2002, 277 (43) , 41101-41109. https://doi.org/10.1074/jbc.M204025200
    92. Calum S Neish, Ian L Martin, Robert M Henderson, J Michael Edwardson. Direct visualization of ligand‐protein interactions using atomic force microscopy. British Journal of Pharmacology 2002, 135 (8) , 1943-1950. https://doi.org/10.1038/sj.bjp.0704660
    93. Mohammad Hassan Qureshi, Jonathan C. Yeung, Sau-Ching Wu, Sui-Lam Wong. Development and Characterization of a Series of Soluble Tetrameric and Monomeric Streptavidin Muteins with Differential Biotin Binding Affinities. Journal of Biological Chemistry 2001, 276 (49) , 46422-46428. https://doi.org/10.1074/jbc.M107398200
    94. Andrew J. Dingley, Florence Cordier, Stephan Grzesiek. An introduction to hydrogen bond scalar couplings. Concepts in Magnetic Resonance 2001, 13 (2) , 103-127. https://doi.org/10.1002/1099-0534(2001)13:2<103::AID-CMR1001>3.0.CO;2-M
    95. John Clarkson, David N. Batchelder, D. Alastair Smith. UV resonance Raman study of streptavidin binding of biotin and 2‐iminobiotin: Comparison with avidin. Biopolymers 2001, 62 (6) , 307-314. https://doi.org/10.1002/bip.10003
    96. Olivier Ploux. Biotin. 2000https://doi.org/10.1201/9780203909621.ch11
    97. Patrick S Stayton, Allan S Hoffman, Niren Murthy, Chantal Lackey, Charles Cheung, Philip Tan, Lisa A Klumb, Ashutosh Chilkoti, F.Scott Wilbur, Oliver W Press. Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics. Journal of Controlled Release 2000, 65 (1-2) , 203-220. https://doi.org/10.1016/S0168-3659(99)00236-9
    98. David E. Hyre, Patrick S. Stayton, Isolde Le Trong, Stefanie Freitag, Ronald E. Stenkamp. Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin—biotin system. Protein Science 2000, 9 (5) , 878-885. https://doi.org/10.1110/ps.9.5.878
    99. Patrick S Stayton, Stefanie Freitag, Lisa A Klumb, Ashutosh Chilkoti, Vano Chu, Julie E Penzotti, Richard To, David Hyre, Isolde Le Trong, Terry P Lybrand, Ronald E Stenkamp. Streptavidin–biotin binding energetics. Biomolecular Engineering 1999, 16 (1-4) , 39-44. https://doi.org/10.1016/S1050-3862(99)00042-X
    100. William R Schief, Todd Edwards, Wolfgang Frey, Sandy Koppenol, Patrick S Stayton, Viola Vogel. Two-dimensional crystallization of streptavidin: in pursuit of the molecular origins of structure, morphology, and thermodynamics. Biomolecular Engineering 1999, 16 (1-4) , 29-38. https://doi.org/10.1016/S1389-0344(99)00056-8
    Load all citations