Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Role of the Isoprenyl Tail of Ubiquinone in Reaction with Respiratory Enzymes:  Studies with Bovine Heart Mitochondrial Complex I and Escherichiacolibo-Type Ubiquinol Oxidase

View Author Information
Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, Central Research Laboratory, Ishihara Sangyo Kaisha Ltd., Kusatsu, Shiga 525-0025, Japan, and Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Cite this: Biochemistry 1998, 37, 43, 15106–15113
Publication Date (Web):October 9, 1998
https://doi.org/10.1021/bi981193u
Copyright © 1998 American Chemical Society

    Article Views

    424

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The hydrophobic isoprene tail of ubiquinone-2 (Q2) exihibits binding specificity in redox reactions with bovine heart mitochondrial complex I (Ohshima, M., Miyoshi, H., Sakamoto, K., Takegami, K., Iwata, J., Kuwabara, K., Iwamura, H., and Yagi, T. (1998) Biochemistry37, 6436−6445) and the Escherichiacolibo-type ubiquinol oxidase (Sakamoto, K., Miyoshi, H., Takegami, K., Mogi, T., Anraku, Y., and Iwamura, H. (1996) J.Biol.Chem.271, 29897−29902). To identify the structural factor(s) of the diprenyl tail of Q2 governing the specific interaction with these enzymes, we synthesized a series of novel Q2 analogues in which only one of the structural factors of the diprenyl tail was systematically modified. In bovine complex I, the presence of the methyl branch and the π-electron system in the first isoprene unit are responsible for high-affinity binding of Q2 to the ubiquinone reduction site, which results in a low Km and kcat values of Q2 reduction. The position of the methyl group in the tail is strictly recognized by the enzyme. In contrast to complex I, in bo-type ubiquinol oxidase, either of the two π-electron systems in the tail is required for high-affinity binding of Q2H2 to the enzyme, while the presence of the methyl branch and the location of the π-electron systems are not strictly recognized by the enzyme. We concluded that the role of the ubiquinone tail is not simply the enhancement of the hydrophobicity of the molecule and that molecular recognition of the tail by the quinone redox site differs among the respiratory enzymes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported in part by Grants-in-Aid for JSPS Fellows (9307 to K.S.), Scientific Research (08660136 to H.M.), and Scientific Research on Priority Areas (08249106 (Molecular Biometallics) to T.M.) from the Ministry of Education, Science, Sports and Culture of Japan.

     Kyoto University.

    *

     To whom correspondence should be addressed. Fax:  +81-75-753-6408. Tel:  +81-75-753-6119. E-mail:  [email protected].

    §

     Ishihara Sangyo Kaisha Ltd.

     University of Tokyo.

    Cited By

    This article is cited by 35 publications.

    1. Sylvia K. Choi, Lici Schurig-Briccio, Ziqiao Ding, Sangjin Hong, Chang Sun, and Robert B. Gennis . Location of the Substrate Binding Site of the Cytochrome bo3 Ubiquinol Oxidase from Escherichia coli. Journal of the American Chemical Society 2017, 139 (24) , 8346-8354. https://doi.org/10.1021/jacs.7b03883
    2. Kenji Okuda, Masatoshi Murai, Shunsuke Aburaya, Wataru Aoki, and Hideto Miyoshi . Reduction of Synthetic Ubiquinone QT Catalyzed by Bovine Mitochondrial Complex I Is Decoupled from Proton Translocation. Biochemistry 2016, 55 (3) , 470-481. https://doi.org/10.1021/acs.biochem.5b01090
    3. Masatoshi Murai, Tetsuo Yamashita, Mai Senoh, Yuko Mashimo, Michihiko Kataoka, Hiroaki Kosaka, Akemi Matsuno-Yagi, Takao Yagi and Hideto Miyoshi . Characterization of the Ubiquinone Binding Site in the Alternative NADH-Quinone Oxidoreductase of Saccharomyces cerevisiae by Photoaffinity Labeling. Biochemistry 2010, 49 (13) , 2973-2980. https://doi.org/10.1021/bi100005j
    4. Martin S. King, Mark S. Sharpley and Judy Hirst . Reduction of Hydrophilic Ubiquinones by the Flavin in Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I) and Production of Reactive Oxygen Species. Biochemistry 2009, 48 (9) , 2053-2062. https://doi.org/10.1021/bi802282h
    5. Masatoshi Murai, Koji Sekiguchi, Takaaki Nishioka and Hideto Miyoshi. Characterization of the Inhibitor Binding Site in Mitochondrial NADH−Ubiquinone Oxidoreductase by Photoaffinity Labeling Using a Quinazoline-Type Inhibitor. Biochemistry 2009, 48 (4) , 688-698. https://doi.org/10.1021/bi8019977
    6. Guillermo Roura-Pérez,, Beatriz Quiróz,, Martha Aguilar-Martínez,, Carlos Frontana,, Alejandro Solano,, Ignacio González,, José Antonio Bautista-Martínez,, Jesús Jiménez-Barbero, and, Gabriel Cuevas. Remote Position Substituents as Modulators of Conformational and Reactive Properties of Quinones. Relevance of the π/π Intramolecular Interaction. The Journal of Organic Chemistry 2007, 72 (6) , 1883-1894. https://doi.org/10.1021/jo061576v
    7. Masatoshi Murai,, Naoya Ichimaru,, Masato Abe,, Takaaki Nishioka, and, Hideto Miyoshi. Mode of Inhibitory Action of Δlac-Acetogenins, a New Class of Inhibitors of Bovine Heart Mitochondrial Complex I. Biochemistry 2006, 45 (32) , 9778-9787. https://doi.org/10.1021/bi060713f
    8. Moe Ishikawa, Takahiro Masuya, Seina Kuroda, Shinpei Uno, Nicole L. Butler, Sara Foreman, Masatoshi Murai, Blanca Barquera, Hideto Miyoshi. The side chain of ubiquinone plays a critical role in Na+ translocation by the NADH-ubiquinone oxidoreductase (Na+-NQR) from Vibrio cholerae. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2022, 1863 (5) , 148547. https://doi.org/10.1016/j.bbabio.2022.148547
    9. . References. 2021, 243-287. https://doi.org/10.1016/B978-0-323-88445-7.16001-4
    10. Murilo Hoias Teixeira, Guilherme Menegon Arantes. Balanced internal hydration discriminates substrate binding to respiratory complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2019, 1860 (7) , 541-548. https://doi.org/10.1016/j.bbabio.2019.05.004
    11. Anna K.‐Y. Kwong, Annie T.‐G. Chiu, Mandy H.‐Y. Tsang, Kin‐Shing Lun, Richard J. T. Rodenburg, Jan Smeitink, Brian H.‐Y. Chung, Cheuk‐Wing Fung. A fatal case of COQ7 ‐associated primary coenzyme Q 10 deficiency. JIMD Reports 2019, 47 (1) , 23-29. https://doi.org/10.1002/jmd2.12032
    12. Shinpei Uno, Hironori Kimura, Masatoshi Murai, Hideto Miyoshi. Exploring the quinone/inhibitor-binding pocket in mitochondrial respiratory complex I by chemical biology approaches. Journal of Biological Chemistry 2019, 294 (2) , 679-696. https://doi.org/10.1074/jbc.RA118.006056
    13. Christoph Freyer, Henrik Stranneheim, Karin Naess, Arnaud Mourier, Andrea Felser, Camilla Maffezzini, Nicole Lesko, Helene Bruhn, Martin Engvall, Rolf Wibom, Michela Barbaro, Yvonne Hinze, Måns Magnusson, Robin Andeer, Rolf H Zetterström, Ulrika von Döbeln, Anna Wredenberg, Anna Wedell. Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4–dihydroxybensoic acid. Journal of Medical Genetics 2015, 52 (11) , 779-783. https://doi.org/10.1136/jmedgenet-2015-102986
    14. Anthony L. Moore, Tomoo Shiba, Luke Young, Shigeharu Harada, Kiyoshi Kita, Kikukatsu Ito. Unraveling the Heater: New Insights into the Structure of the Alternative Oxidase. Annual Review of Plant Biology 2013, 64 (1) , 637-663. https://doi.org/10.1146/annurev-arplant-042811-105432
    15. Heike Angerer, Hamid R. Nasiri, Vanessa Niedergesäß, Stefan Kerscher, Harald Schwalbe, Ulrich Brandt. Tracing the tail of ubiquinone in mitochondrial complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2012, 1817 (10) , 1776-1784. https://doi.org/10.1016/j.bbabio.2012.03.021
    16. Lai Lai Yap, Myat T. Lin, Hanlin Ouyang, Rimma I. Samoilova, Sergei A. Dikanov, Robert B. Gennis. The quinone-binding sites of the cytochrome bo3 ubiquinol oxidase from Escherichia coli. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2010, 1797 (12) , 1924-1932. https://doi.org/10.1016/j.bbabio.2010.04.011
    17. Maja A. Tocilescu, Volker Zickermann, Klaus Zwicker, Ulrich Brandt. Quinone binding and reduction by respiratory complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2010, 1797 (12) , 1883-1890. https://doi.org/10.1016/j.bbabio.2010.05.009
    18. Maja A. Tocilescu, Uta Fendel, Klaus Zwicker, Stefan Dröse, Stefan Kerscher, Ulrich Brandt. The role of a conserved tyrosine in the 49-kDa subunit of complex I for ubiquinone binding and reduction. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2010, 1797 (6-7) , 625-632. https://doi.org/10.1016/j.bbabio.2010.01.029
    19. Zhichao Pei, Tobias Gustavsson, Robert Roth, Torbjörn Frejd, Cecilia Hägerhäll. Photolabile ubiquinone analogues for identification and characterization of quinone binding sites in proteins. Bioorganic & Medicinal Chemistry 2010, 18 (10) , 3457-3466. https://doi.org/10.1016/j.bmc.2010.03.075
    20. Andrew M. James, Helena M. Cochemé, Masatoshi Murai, Hideto Miyoshi, Michael P. Murphy. Complementation of coenzyme Q‐deficient yeast by coenzyme Q analogues requires the isoprenoid side chain. The FEBS Journal 2010, 277 (9) , 2067-2082. https://doi.org/10.1111/j.1742-4658.2010.07622.x
    21. Yasutoshi Kido, Kimitoshi Sakamoto, Kosuke Nakamura, Michiyo Harada, Takashi Suzuki, Yoshisada Yabu, Hiroyuki Saimoto, Fumiyuki Yamakura, Daijiro Ohmori, Anthony Moore, Shigeharu Harada, Kiyoshi Kita. Purification and kinetic characterization of recombinant alternative oxidase from Trypanosoma brucei brucei. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2010, 1797 (4) , 443-450. https://doi.org/10.1016/j.bbabio.2009.12.021
    22. Koji Sekiguchi, Masatoshi Murai, Hideto Miyoshi. Exploring the binding site of acetogenin in the ND1 subunit of bovine mitochondrial complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2009, 1787 (9) , 1106-1111. https://doi.org/10.1016/j.bbabio.2009.02.016
    23. Sophie A. Weiss, Lars J.C. Jeuken. Electrodes modified with lipid membranes to study quinone oxidoreductases. Biochemical Society Transactions 2009, 37 (4) , 707-712. https://doi.org/10.1042/BST0370707
    24. Hamid Reza Nasiri, Robin Panisch, M. Gregor Madej, Jan W. Bats, C. Roy D. Lancaster, Harald Schwalbe. The correlation of cathodic peak potentials of vitamin K3 derivatives and their calculated electron affinities. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2009, 1787 (6) , 601-608. https://doi.org/10.1016/j.bbabio.2009.02.013
    25. Tatsushi Mogi, Hideaki Ui, Kazuro Shiomi, Satoshi Ōmura, Hideto Miyoshi, Kiyoshi Kita. Antibiotics LL-Z1272 identified as novel inhibitors discriminating bacterial and mitochondrial quinol oxidases. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2009, 1787 (2) , 129-133. https://doi.org/10.1016/j.bbabio.2008.11.016
    26. Sophie A. Weiss, Richard J. Bushby, Stephen D. Evans, Peter J. F. Henderson, Lars J. C. Jeuken. Characterization of cytochrome bo 3 activity in a native-like surface-tethered membrane. Biochemical Journal 2009, 417 (2) , 555-560. https://doi.org/10.1042/BJ20081345
    27. T. Mogi, H. Miyoshi. Properties of Cytochrome bd Plastoquinol Oxidase from the Cyanobacterium Synechocystis sp. PCC 6803. Journal of Biochemistry 2009, 145 (3) , 395-401. https://doi.org/10.1093/jb/mvn179
    28. L. Gille, T. Rosenau, A.V. Kozlov, W. Gregor. Ubiquinone and tocopherol: Dissimilar siblings. Biochemical Pharmacology 2008, 76 (3) , 289-302. https://doi.org/10.1016/j.bcp.2008.04.003
    29. Steven Sherwood, Judy Hirst. Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism?. Biochemical Journal 2006, 400 (3) , 541-550. https://doi.org/10.1042/BJ20060766
    30. Yushi Matsumoto, Eiro Muneyuki, Daisuke Fujita, Kimitoshi Sakamoto, Hideto Miyoshi, Masasuke Yoshida, Tatsushi Mogi. Kinetic Mechanism of Quinol Oxidation by Cytochrome bd Studied with Ubiquinone-2 Analogs. The Journal of Biochemistry 2006, 139 (4) , 779-788. https://doi.org/10.1093/jb/mvj087
    31. Aldo Andreani, Massimiliano Granaiola, Alberto Leoni, Alessandra Locatelli, Rita Morigi, Mirella Rambaldi, Maurizio Recanatini, Giorgio Lenaz, Romana Fato, Christian Bergamini. Effects of new ubiquinone-imidazo[2,1-b]thiazoles on mitochondrial complex I (NADH-ubiquinone reductase) and on mitochondrial permeability transition pore. Bioorganic & Medicinal Chemistry 2004, 12 (21) , 5525-5532. https://doi.org/10.1016/j.bmc.2004.08.012
    32. Tom S. Chan, John X. Wilson, Peter J. O'Brien. Coenzyme Q Cytoprotective Mechanisms. 2004, 89-104. https://doi.org/10.1016/S0076-6879(04)82006-8
    33. Shiro Yamashoji. Coenzyme Q 1 ‐Catalyzed Luminol Chemiluminescent Assay for Rapid Antimicrobial Susceptibility Testing of Mycobacterium bovis. Microbiology and Immunology 2003, 47 (3) , 191-198. https://doi.org/10.1111/j.1348-0421.2003.tb03386.x
    34. I. L. Sun, L. E. Sun, E. E. Sun, F. L. Crane, R. Willis. Effect of analogs with modified prenyl side chains on growth of serum deficient HL60 cells. BioFactors 2003, 18 (1-4) , 307-314. https://doi.org/10.1002/biof.5520180235
    35. Hiromi Yabunaka, Atsushi Kenmochi, Yasushi Nakatogawa, Kimitoshi Sakamoto, Hideto Miyoshi. Hybrid ubiquinone: novel inhibitor of mitochondrial complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2002, 1556 (2-3) , 106-112. https://doi.org/10.1016/S0005-2728(02)00341-9