ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Stability of Trimeric OmpF Porin:  The Contributions of the Latching Loop L2

View Author Information
Divisions of Microbiology, Structural Biology and Biophysical Chemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
Cite this: Biochemistry 1998, 37, 45, 15663–15670
Publication Date (Web):October 20, 1998
https://doi.org/10.1021/bi981215c
Copyright © 1998 American Chemical Society

    Article Views

    884

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    The channel-forming protein OmpF porin from Escherichia coli spans the bacterial outer membrane. Each of the three monomers comprises a hollow, 16-stranded β-barrel. These are associated to homotrimers which are unusually stable, due mostly to hydrophobic interactions between the β-barrels. In addition, a loop, L2 connects one subunit to its neighbor by latching into its channel. Residue E71 on loop 2 is integrated into an ionic network and forms salt bridges and hydrogen bonds with R100 and R132 on the channel wall in the adjacent subunit. To examine these contributions quantitatively, six single-site, two double, and one deletion mutant were constructed on the basis of the atomic coordinates of the protein. Differential scanning calorimetric analysis showed that the salt-bridge, E71-R100, contributes significantly to trimer stability:  the substitution E71Q causes a decrease of the transition temperature from 72 to 48 °C, with ΔHcal diminishing from 430 to 201 kcal mol-1. A nearby substitution in the loop, D74N, has lesser effects on thermal stability, while the deletion in L2 (Δ69−77) has an effect comparable to that of E71Q. X-ray structure analysis to 3.0 Å resolution revealed only local structural differences in the mutants except for the substitution R100A, where another residue, R132, is found to fill the gap left by the truncated side chain of A100. Functional assays in planar lipid bilayers show significantly increased cation selectivities if the charge distribution was affected.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by grants from the Swiss National Science Foundation to J.P.R. and T.S. and by support from EU-BIOTECH/BBW to J.P.R.

     Division of Microbiology.

    §

     Division of Structural Biology.

     Division of Biophysical Chemistry.

    *

     To whom correspondence should be addressed. E-mail:  [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Determination of ΔCp by monitoring pH dependent changes in the ΔHcal and Tm for wild-type, E71A, and E71Q mutants of OmpF are presented together with two figures and one table (6 pages). Ordering information is given on any current masthead page.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 81 publications.

    1. Jaewon Lee, Woon Ju Song. Folding of Circularly Permuted and Split Outer Membrane Protein F via Electrostatic Interactions with Terminal Residues. Biochemistry 2021, 60 (23) , 1787-1796. https://doi.org/10.1021/acs.biochem.1c00195
    2. Andrea Belluati, Ioana Craciun, Juan Liu, Cornelia G. Palivan. Nanoscale Enzymatic Compartments in Tandem Support Cascade Reactions in Vitro. Biomacromolecules 2018, 19 (10) , 4023-4033. https://doi.org/10.1021/acs.biomac.8b01019
    3. Neil Keegan, Helen Ridley, and Jeremy H. Lakey . Discovery of Biphasic Thermal Unfolding of OmpC with Implications for Surface Loop Stability. Biochemistry 2010, 49 (45) , 9715-9721. https://doi.org/10.1021/bi100877y
    4. Mikhail Pavlenok, Rashmi Ravindran Nair, R. Curtis Hendrickson, Michael Niederweis. The C‐terminus is essential for the stability of the mycobacterial channel protein MspA. Protein Science 2024, 33 (3) https://doi.org/10.1002/pro.4912
    5. Eriko Aoki, Edward Germany, Takuya Shiota. In Vitro Reconstruction of Bacterial β-Barrel Membrane Protein Assembly Using E. coli Microsomal (Mid-Density) Membrane. 2024, 65-81. https://doi.org/10.1007/978-1-0716-3734-0_5
    6. Rik Dhar, Alexander M. Bowman, Brunojoel Hatungimana, Joanna SG Slusky. Evolutionary Engineering a Larger Porin Using a Loop-to-Hairpin Mechanism. Journal of Molecular Biology 2023, 435 (22) , 168292. https://doi.org/10.1016/j.jmb.2023.168292
    7. Lauren A. Mayse, Liviu Movileanu. Gating of β-Barrel Protein Pores, Porins, and Channels: An Old Problem with New Facets. International Journal of Molecular Sciences 2023, 24 (15) , 12095. https://doi.org/10.3390/ijms241512095
    8. Nakajohn Thewasano, Edward M. Germany, Yuki Maruno, Yukari Nakajima, Takuya Shiota. Categorization of Escherichia coli outer membrane proteins by dependence on accessory proteins of the β-barrel assembly machinery complex. Journal of Biological Chemistry 2023, 299 (7) , 104821. https://doi.org/10.1016/j.jbc.2023.104821
    9. Trudy-Ann Grant, Mario López-Pérez, Jose Manuel Haro-Moreno, Salvador Almagro-Moreno, . Allelic diversity uncovers protein domains contributing to the emergence of antimicrobial resistance. PLOS Genetics 2023, 19 (3) , e1010490. https://doi.org/10.1371/journal.pgen.1010490
    10. George Necula, Mihaela Bacalum, Mihai Radu. Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with E. coli Outer Membrane—A Molecular Simulation Approach. International Journal of Molecular Sciences 2023, 24 (3) , 2005. https://doi.org/10.3390/ijms24032005
    11. Simen Hermansen, David Ryoo, Marcella Orwick-Rydmark, Athanasios Saragliadis, James C. Gumbart, Dirk Linke. The Role of Extracellular Loops in the Folding of Outer Membrane Protein X (OmpX) of Escherichia coli. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.918480
    12. Olga D. Novikova, Valentina A. Khomenko, Natalia Yu. Kim, Galina N. Likhatskaya, Lyudmila A. Romanenko, Ekaterina I. Aksenova, Marina S. Kunda, Natalia N. Ryzhova, Olga Yu. Portnyagina, Tamara F. Solov’eva, Olga L. Voronina. Porin from Marine Bacterium Marinomonas primoryensis KMM 3633T: Isolation, Physico-Chemical Properties, and Functional Activity. Molecules 2020, 25 (14) , 3131. https://doi.org/10.3390/molecules25143131
    13. Yu-Ming Tu, Woochul Song, Tingwei Ren, Yue-xiao Shen, Ratul Chowdhury, Prasangi Rajapaksha, Tyler E. Culp, Laxmicharan Samineni, Chao Lang, Alina Thokkadam, Drew Carson, Yuxuan Dai, Arwa Mukthar, Miaoci Zhang, Andrey Parshin, Janna N. Sloand, Scott H. Medina, Mariusz Grzelakowski, Dibakar Bhattacharya, William A. Phillip, Enrique D. Gomez, Robert J. Hickey, Yinai Wei, Manish Kumar. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nature Materials 2020, 19 (3) , 347-354. https://doi.org/10.1038/s41563-019-0577-z
    14. Maximilien Lopes-Rodrigues, David Zanuy, Carlos Alemán, Catherine Michaux, Eric A. Perpète. 3D structure of a Brucella melitensis porin: molecular modelling in lipid membranes. Journal of Biomolecular Structure and Dynamics 2019, 37 (15) , 3923-3935. https://doi.org/10.1080/07391102.2018.1529627
    15. Monisha Pathania, Silvia Acosta-Gutierrez, Satya Pratyusha Bhamidimarri, Arnaud Baslé, Mathias Winterhalter, Matteo Ceccarelli, Bert van den Berg. Unusual Constriction Zones in the Major Porins OmpU and OmpT from Vibrio cholerae. Structure 2018, 26 (5) , 708-721.e4. https://doi.org/10.1016/j.str.2018.03.010
    16. Maximilien Lopes-Rodrigues, Jordi Triguero, Juan Torras, Eric A. Perpète, Catherine Michaux, David Zanuy, Carlos Alemán. Influence of the surrounding environment in re-naturalized β-barrel membrane proteins. Biophysical Chemistry 2018, 234 , 6-15. https://doi.org/10.1016/j.bpc.2017.12.003
    17. T. Solov'eva, G. Likhatskaya, V. Khomenko, K. Guzev, N. Kim, E. Bystritskaya, O. Novikova, A. Stenkova, A. Rakin, M. Isaeva. The impact of length variations in the L2 loop on the structure and thermal stability of non-specific porins: The case of OmpCs from the Yersinia pseudotuberculosis complex. Biochimica et Biophysica Acta (BBA) - Biomembranes 2018, 1860 (2) , 515-525. https://doi.org/10.1016/j.bbamem.2017.10.014
    18. Hiba Shaban, Insing Na, Angelina A. Kislichkina, Svetlana V. Dentovskaya, Andrey P. Anisimov, Vladimir N. Uversky. Effect of natural polymorphism on structure and function of the Yersinia pestis outer membrane porin F (OmpF protein): a computational study. Journal of Biomolecular Structure and Dynamics 2017, 35 (12) , 2588-2603. https://doi.org/10.1080/07391102.2016.1224734
    19. Wei He, Martina Felderman, Angela C. Evans, Jia Geng, David Homan, Feliza Bourguet, Nicholas O. Fischer, Yuanpei Li, Kit S. Lam, Aleksandr Noy, Li Xing, R. Holland Cheng, Amy Rasley, Craig D. Blanchette, Kurt Kamrud, Nathaniel Wang, Heather Gouvis, Todd C. Peterson, Bolyn Hubby, Matthew A. Coleman. Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development. Journal of Biological Chemistry 2017, 292 (36) , 15121-15132. https://doi.org/10.1074/jbc.M117.784561
    20. Johannes Thoma, Noah Ritzmann, Dominik Wolf, Estefania Mulvihill, Sebastian Hiller, Daniel J. Müller. Maltoporin LamB Unfolds β Hairpins along Mechanical Stress-Dependent Unfolding Pathways. Structure 2017, 25 (7) , 1139-1144.e2. https://doi.org/10.1016/j.str.2017.05.010
    21. Paul A. Beales, Sanobar Khan, Stephen P. Muench, Lars J.C. Jeuken. Durable vesicles for reconstitution of membrane proteins in biotechnology. Biochemical Society Transactions 2017, 45 (1) , 15-26. https://doi.org/10.1042/BST20160019
    22. Hilde Vollan, Tone Tannæs, Gert Vriend, Geir Bukholm. In Silico Structure and Sequence Analysis of Bacterial Porins and Specific Diffusion Channels for Hydrophilic Molecules: Conservation, Multimericity and Multifunctionality. International Journal of Molecular Sciences 2016, 17 (4) , 599. https://doi.org/10.3390/ijms17040599
    23. Vincent Chaptal, Arnaud Kilburg, David Flot, Benjamin Wiseman, Nushin Aghajari, Jean-Michel Jault, Pierre Falson. Two different centered monoclinic crystals of the E. coli outer-membrane protein OmpF originate from the same building block. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (2) , 326-332. https://doi.org/10.1016/j.bbamem.2015.11.021
    24. Matthias Bieligmeyer, Franjo Artukovic, Stephan Nussberger, Thomas Hirth, Thomas Schiestel, Michaela Müller. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes. Beilstein Journal of Nanotechnology 2016, 7 , 881-892. https://doi.org/10.3762/bjnano.7.80
    25. Arvind Anand, Morgan LeDoyt, Carson Karanian, Amit Luthra, Mary Koszelak-Rosenblum, Michael G. Malkowski, Robbins Puthenveetil, Olga Vinogradova, Justin D. Radolf. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I. Journal of Biological Chemistry 2015, 290 (19) , 12313-12331. https://doi.org/10.1074/jbc.M114.629188
    26. Prapasiri Pongprayoon. How do the protonation states of E296 and D312 in OmpF and D299 and D315 in homologous OmpC affect protein structure and dynamics? Simulation studies. Computational Biology and Chemistry 2014, 53 , 226-234. https://doi.org/10.1016/j.compbiolchem.2014.10.006
    27. Victoria A. Feher, Arlo Randall, Pierre Baldi, Robin M. Bush, Luis M. de la Maza, Rommie E. Amaro, . A 3-Dimensional Trimeric β-Barrel Model for Chlamydia MOMP Contains Conserved and Novel Elements of Gram-Negative Bacterial Porins. PLoS ONE 2013, 8 (7) , e68934. https://doi.org/10.1371/journal.pone.0068934
    28. O. P. Vostrikova, M. P. Isaeva, G. N. Likhatskaya, O. D. Novikova, N. Yu. Kim, V. A. Khomenko, T. F. Solov’eva. OmpC-like porin from outer membrane of Yersinia enterocolitica: Molecular structure and functional activity. Biochemistry (Moscow) 2013, 78 (5) , 496-504. https://doi.org/10.1134/S0006297913050088
    29. Christof Kattner, Jan Zaucha, Frank Jaenecke, Ulrich Zachariae, Mikio Tanabe. Identification of a cation transport pathway in Neisseria meningitidis PorB. Proteins: Structure, Function, and Bioinformatics 2013, 81 (5) , 830-840. https://doi.org/10.1002/prot.24241
    30. Hiroko Tokunaga, Masafumi Furukawa, Tsutomu Arakawa, Masao Tokunaga. Channel forming outer membrane porin protein in halophile: Expressed as a soluble form in Escherichia coli. International Journal of Biological Macromolecules 2013, 54 , 44-50. https://doi.org/10.1016/j.ijbiomac.2012.11.029
    31. Conceição A.S.A. Minetti, Peter L. Privalov, David P. Remeta. Calorimetric Methods to Characterize the Forces Driving Macromolecular Association and Folding Processes. 2013, 139-177. https://doi.org/10.1002/9781118523063.ch7
    32. Bert van den Berg. Structural Basis for Outer Membrane Sugar Uptake in Pseudomonads. Journal of Biological Chemistry 2012, 287 (49) , 41044-41052. https://doi.org/10.1074/jbc.M112.408518
    33. Hammad Naveed, David Jimenez-Morales, Jun Tian, Volga Pasupuleti, Linda J. Kenney, Jie Liang. Engineered Oligomerization State of OmpF Protein through Computational Design Decouples Oligomer Dissociation from Unfolding. Journal of Molecular Biology 2012, 419 (1-2) , 89-101. https://doi.org/10.1016/j.jmb.2012.02.043
    34. Johannes Thoma, Serena Belegrinou, Peggy Rossbach, Mariusz Grzelakowski, Katarzyna Kita-Tokarczyk, Wolfgang Meier. Membrane protein distribution in composite polymer–lipid thin films. Chemical Communications 2012, 48 (70) , 8811. https://doi.org/10.1039/c2cc32851h
    35. Elena García-Giménez, Antonio Alcaraz, Vicente M. Aguilella. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity. Biochemistry Research International 2012, 2012 , 1-12. https://doi.org/10.1155/2012/245786
    36. Dennis Gessmann, Frauke Mager, Hammad Naveed, Thomas Arnold, Sara Weirich, Dirk Linke, Jie Liang, Stephan Nussberger. Improving the Resistance of a Eukaryotic β-Barrel Protein to Thermal and Chemical Perturbations. Journal of Molecular Biology 2011, 413 (1) , 150-161. https://doi.org/10.1016/j.jmb.2011.07.054
    37. T. F. Solov'eva, G. N. Likhatskaya, V. A. Khomenko, A. M. Stenkova, N. Y. Kim, O. Y. Portnyagina, O. D. Novikova, E. V. Trifonov, E. A. Nurminski, M. P. Isaeva. A Novel OmpY Porin From Yersinia Pseudotuberculosis : Structure, Channel-Forming Activity and Trimer Thermal Stability. Journal of Biomolecular Structure and Dynamics 2011, 28 (4) , 517-533. https://doi.org/10.1080/07391102.2011.10508592
    38. Maarten Vrouenraets, Henk Miedema. The ionization state of D37 in E. coli porin OmpF and the nature of conductance fluctuations in D37 mutants. European Biophysics Journal 2010, 39 (12) , 1563-1571. https://doi.org/10.1007/s00249-010-0613-z
    39. Beau Wager, Arnaud Baslé, Anne H. Delcour. Disulfide bond tethering of extracellular loops does not affect the closure of OmpF porin at acidic pH. Proteins: Structure, Function, and Bioinformatics 2010, 78 (14) , 2886-2894. https://doi.org/10.1002/prot.22807
    40. Georgia Kefala, Chihoon Ahn, Martin Krupa, Luis Esquivies, Innokentiy Maslennikov, Witek Kwiatkowski, Senyon Choe. Structures of the OmpF porin crystallized in the presence of foscholine‐12. Protein Science 2010, 19 (5) , 1117-1125. https://doi.org/10.1002/pro.369
    41. Balasundaresan Dhakshnamoorthy, Suchismita Raychaudhury, Lydia Blachowicz, Benoît Roux. Cation-selective Pathway of OmpF Porin Revealed by Anomalous X-ray Diffraction. Journal of Molecular Biology 2010, 396 (2) , 293-300. https://doi.org/10.1016/j.jmb.2009.11.042
    42. Soroosh Pezeshki, Catalin Chimerel, Andrey N. Bessonov, Mathias Winterhalter, Ulrich Kleinekathöfer. Understanding Ion Conductance on a Molecular Level: An All-Atom Modeling of the Bacterial Porin OmpF. Biophysical Journal 2009, 97 (7) , 1898-1906. https://doi.org/10.1016/j.bpj.2009.07.018
    43. Hammad Naveed, Ronald Jackups, Jie Liang. Predicting weakly stable regions, oligomerization state, and protein–protein interfaces in transmembrane domains of outer membrane proteins. Proceedings of the National Academy of Sciences 2009, 106 (31) , 12735-12740. https://doi.org/10.1073/pnas.0902169106
    44. Heedeok Hong, Nathan H. Joh, James U. Bowie, Lukas K. Tamm. Chapter 8 Methods for Measuring the Thermodynamic Stability of Membrane Proteins. 2009, 213-236. https://doi.org/10.1016/S0076-6879(08)04208-0
    45. Hubing Lou, Konstantinos Beis, James H. Naismith. Chapter 11 Bacterial Membrane Proteins. 2009, 269-297. https://doi.org/10.1016/S1063-5823(09)63011-8
    46. Lukas K. Tamm, Heedeok Hong. Folding of Membrane Proteins. 2008, 998-1031. https://doi.org/10.1002/9783527610754.sf10
    47. Simon Newstead, Jeanette Hobbs, Davina Jordan, Elisabeth P. Carpenter, So Iwata. Insights into outer membrane protein crystallization. Molecular Membrane Biology 2008, 25 (8) , 631-638. https://doi.org/10.1080/09687680802526574
    48. Guifeng Sun, Sukumar Pal, Annahita K. Sarcon, Soyoun Kim, Etsuko Sugawara, Hiroshi Nikaido, Melanie J. Cocco, Ellena M. Peterson, Luis M. de la Maza. Structural and Functional Analyses of the Major Outer Membrane Protein of Chlamydia trachomatis. Journal of Bacteriology 2007, 189 (17) , 6222-6235. https://doi.org/10.1128/JB.00552-07
    49. Arnaud Baslé, Gabriele Rummel, Paola Storici, Juerg P. Rosenbusch, Tilman Schirmer. Crystal Structure of Osmoporin OmpC from E. coli at 2.0 Å. Journal of Molecular Biology 2006, 362 (5) , 933-942. https://doi.org/10.1016/j.jmb.2006.08.002
    50. Conceição A.S.A. Minetti, David P. Remeta. Energetics of membrane protein folding and stability. Archives of Biochemistry and Biophysics 2006, 453 (1) , 32-53. https://doi.org/10.1016/j.abb.2006.03.023
    51. Ozana Onaca, Madhavan Nallani, Saskia Ihle, Alexander Schenk, Ulrich Schwaneberg. Functionalized nanocompartments (Synthosomes): Limitations and prospective applications in industrial biotechnology. Biotechnology Journal 2006, 1 (7-8) , 795-805. https://doi.org/10.1002/biot.200600050
    52. S. Sukumaran, K. Hauser, E. Maier, R. Benz, W. Mäntele. Structure–function correlation of outer membrane protein porin from Paracoccus denitrificans. Biopolymers 2006, 82 (4) , 344-348. https://doi.org/10.1002/bip.20422
    53. Gowtham V. Subbarao, Bert van den Berg. Crystal Structure of the Monomeric Porin OmpG. Journal of Molecular Biology 2006, 360 (4) , 750-759. https://doi.org/10.1016/j.jmb.2006.05.045
    54. Greg Runke, Elke Maier, William A.T. Summers, Denice C. Bay, Roland Benz, Deborah A. Court. Deletion Variants of Neurospora Mitochondrial Porin: Electrophysiological and Spectroscopic Analysis. Biophysical Journal 2006, 90 (9) , 3155-3164. https://doi.org/10.1529/biophysj.105.072520
    55. Virak Visudtiphole, Matthew B. Thomas, David A. Chalton, Jeremy H. Lakey. Refolding of Escherichia coli outer membrane protein F in detergent creates LPS-free trimers and asymmetric dimers. Biochemical Journal 2005, 392 (2) , 375-381. https://doi.org/10.1042/BJ20051257
    56. G. N. Likhatskaya, T. F. Solov'eva, O. D. Novikova, M. P. Issaeva, K. V. Gusev, I. B. Kryzhko, E. V. Trifonov, E. A. Nurminski. Homology Models of the Yersinia Pseudotuberculosis and Yersinia Pestis General Porins and Comparative Analysis of Their Functional and Antigenic Regions. Journal of Biomolecular Structure and Dynamics 2005, 23 (2) , 163-174. https://doi.org/10.1080/07391102.2005.10507056
    57. Robin E.J. Spelbrink, Annemieke Kolkman, Monique Slijper, J. Antoinette Killian, Ben de Kruijff. Detection and Identification of Stable Oligomeric Protein Complexes in Escherichi coli Inner Membranes. Journal of Biological Chemistry 2005, 280 (31) , 28742-28748. https://doi.org/10.1074/jbc.M501617200
    58. Hwangseo Park, Sangyoub Lee. Prediction of the mutation-induced change in thermodynamic stabilities of membrane proteins from free energy simulations. Biophysical Chemistry 2005, 114 (2-3) , 191-197. https://doi.org/10.1016/j.bpc.2004.12.006
    59. Stéphanie Vidal, Jérôme Bredin, Jean-Marie Pagès, Jacques Barbe. β-Lactam Screening by Specific Residues of the OmpF Eyelet. Journal of Medicinal Chemistry 2005, 48 (5) , 1395-1400. https://doi.org/10.1021/jm049652e
    60. Lukas K. Tamm, Heedeok Hong. Folding of Membrane Proteins. 2005, 998-1031. https://doi.org/10.1002/9783527619498.ch28
    61. Lukas K. Tamm, Heedeok Hong, Binyong Liang. Folding and assembly of β-barrel membrane proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes 2004, 1666 (1-2) , 250-263. https://doi.org/10.1016/j.bbamem.2004.06.011
    62. A. Arockiasamy, G.S. Murthy, M.R. Rukmini, N. Sundara Baalaji, Umesh Chandra Katpally, S. Krishnaswamy. Conformational epitope mapping of OmpC, a major cell surface antigen from Salmonella typhi. Journal of Structural Biology 2004, 148 (1) , 22-33. https://doi.org/10.1016/j.jsb.2004.03.011
    63. S. Sukumaran, C. Zscherp, W. Mäntele. Investigation of the thermal stability of porin from Paracoccus denitrificans by site‐directed mutagenesis and Fourier transform infrared spectroscopy. Biopolymers 2004, 74 (1-2) , 82-86. https://doi.org/10.1002/bip.20049
    64. Sameer Varma, Eric Jakobsson. Ionization States of Residues in OmpF and Mutants: Effects of Dielectric Constant and Interactions between Residues. Biophysical Journal 2004, 86 (2) , 690-704. https://doi.org/10.1016/S0006-3495(04)74148-X
    65. Sergey M. Grigoriev, Concepción Muro, Laurent M. Dejean, Maria Luisa Campo, Sonia Martinez-Caballero, Kathleen W. Kinnally. Electrophysiological Approaches to the Study of Protein Translocation in Mitochondria. 2004, 227-274. https://doi.org/10.1016/S0074-7696(04)38005-8
    66. Hiroshi Nikaido. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiology and Molecular Biology Reviews 2003, 67 (4) , 593-656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
    67. Ekaterina M. Nestorovich, Tatiana K. Rostovtseva, Sergey M. Bezrukov. Residue Ionization and Ion Transport through OmpF Channels. Biophysical Journal 2003, 85 (6) , 3718-3729. https://doi.org/10.1016/S0006-3495(03)74788-2
    68. Christian Heinz, Harald Engelhardt, Michael Niederweis. The Core of the Tetrameric Mycobacterial Porin MspA Is an Extremely Stable β-Sheet Domain. Journal of Biological Chemistry 2003, 278 (10) , 8678-8685. https://doi.org/10.1074/jbc.M212280200
    69. M.A. Arbing, J.W. Coulton. Planar lipid bilayer analyses of bacterial porins; the role of structure in defining function. 2003, 371-390. https://doi.org/10.1016/S0927-5193(03)80036-0
    70. María José Rodríguez‐Marañón, Robin M. Bush, Ellena M. Peterson, Tilman Schirmer, Luis M. de la Maza. Prediction of the membrane‐spanning β‐strands of the major outer membrane protein of Chlamydia. Protein Science 2002, 11 (7) , 1854-1861. https://doi.org/10.1110/ps.3650102
    71. Wonpil Im, Benoı̂t Roux. Ions and Counterions in a Biological Channel: A Molecular Dynamics Simulation of OmpF Porin from Escherichia coli in an Explicit Membrane with 1M KCl Aqueous Salt Solution. Journal of Molecular Biology 2002, 319 (5) , 1177-1197. https://doi.org/10.1016/S0022-2836(02)00380-7
    72. Jurg P. Rosenbusch. Stability of Membrane Proteins: Relevance for the Selection of Appropriate Methods for High-Resolution Structure Determinations. Journal of Structural Biology 2001, 136 (2) , 144-157. https://doi.org/10.1006/jsbi.2001.4431
    73. H.Ti Tien, Angelica L Ottova. The lipid bilayer concept and its experimental realization: from soap bubbles, kitchen sink, to bilayer lipid membranes. Journal of Membrane Science 2001, 189 (1) , 83-117. https://doi.org/10.1016/S0376-7388(01)00394-5
    74. Justin Lee, Birgit Klüsener, George Tsiamis, Conrad Stevens, Cécile Neyt, Anastasia P. Tampakaki, Nickolas J. Panopoulos, Joachim Nöller, Elmar W. Weiler, Guy R. Cornelis, John W. Mansfield, Thorsten Nürnberger. HrpZ Psph from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proceedings of the National Academy of Sciences 2001, 98 (1) , 289-294. https://doi.org/10.1073/pnas.98.1.289
    75. J.P. Rosenbusch, A. Lustig, M. Grabo, M. Zulauf, M. Regenass. Approaches to determining membrane protein structures to high resolution: do selections of subpopulations occur?. Micron 2001, 32 (1) , 75-90. https://doi.org/10.1016/S0968-4328(00)00021-4
    76. Andrew W. Kloser, Jared T. Reading, Tom McDermott, Rhesa Stidham, Rajeev Misra. Intragenic Suppressors of an OmpF Assembly Mutant and Assessment of the Roles of Various OmpF Residues in Assembly through Informational Suppressors. Journal of Bacteriology 2001, 183 (1) , 264-269. https://doi.org/10.1128/JB.183.1.264-269.2001
    77. A. Arockiasamy, S. Krishnaswamy. Homology Model of Surface Antigen OmpC From Salmonella typhi and its Functional Implications. Journal of Biomolecular Structure and Dynamics 2000, 18 (2) , 261-271. https://doi.org/10.1080/07391102.2000.10506664
    78. Ralf Koebnik, Kaspar P. Locher, Patrick Van Gelder. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Molecular Microbiology 2000, 37 (2) , 239-253. https://doi.org/10.1046/j.1365-2958.2000.01983.x
    79. Valérie Simonet, Monique Malléa, Jean-Marie Pagès. Substitutions in the Eyelet Region Disrupt Cefepime Diffusion through the Escherichia coli OmpF Channel. Antimicrobial Agents and Chemotherapy 2000, 44 (2) , 311-315. https://doi.org/10.1128/AAC.44.2.311-315.2000
    80. Ranjit K. Deka, Yong-Hwan Lee, Kayla E. Hagman, Dmitriy Shevchenko, Clifford A. Lingwood, Charles A. Hasemann, Michael V. Norgard, Justin D. Radolf. Physicochemical Evidence that Treponema pallidum TroA Is a Zinc-Containing Metalloprotein That Lacks Porin-Like Structure. Journal of Bacteriology 1999, 181 (14) , 4420-4423. https://doi.org/10.1128/JB.181.14.4420-4423.1999
    81. R Dutzler, G Rummel, S Albertí, S Hernández-Allés, PS Phale, JP Rosenbusch, VJ Benedí, T Schirmer. Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure 1999, 7 (4) , 425-434. https://doi.org/10.1016/S0969-2126(99)80055-0

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect