ACS Publications. Most Trusted. Most Cited. Most Read
Peptidomimetic Probes and Molecular Modeling Suggest That Alzheimer's γ-Secretase Is an Intramembrane-Cleaving Aspartyl Protease
My Activity
    Article

    Peptidomimetic Probes and Molecular Modeling Suggest That Alzheimer's γ-Secretase Is an Intramembrane-Cleaving Aspartyl Protease
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Pharmaceutical Sciences, University of Tennessee, Memphis, Tennessee 38163, and Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 1999, 38, 15, 4720–4727
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi982562p
    Published March 26, 1999
    Copyright © 1999 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The amyloid β-protein (Aβ), implicated in the pathogenesis of Alzheimer's disease (AD), is a proteolytic metabolite generated by the sequential action of β- and γ-secretases on the amyloid precursor protein (APP). The two main forms of Aβ are 40- and 42-amino acid C-terminal variants, Aβ40 and Aβ42. We recently described a difluoro ketone peptidomimetic (1) that blocks Aβ production at the γ-secretase level [Wolfe, M. S., et al. (1998) J. Med. Chem.41, 6−9]. Although designed to inhibit Aβ42 production, 1 also effectively blocked Aβ40 formation. Various amino acid changes in 1 still resulted in inhibition of Aβ40 and Aβ42 production, suggesting relatively loose sequence specificity by γ-secretase. The alcohol counterparts of selected difluoro ketones also lowered Aβ levels, indicating that the ketone carbonyl is not essential for activity and suggesting that these compounds inhibit an aspartyl protease. Selected compounds inhibited the aspartyl protease cathepsin D but not the cysteine protease calpain, corroborating previous suggestions that γ-secretase is an aspartyl protease with some properties similar to those of cathepsin D. Also, since the γ-secretase cleavage sites on APP are within the transmembrane region, we consider the hypothesis that this region binds to γ-secretase as an α-helix and discuss the implications of this model for the mechanism of certain forms of hereditary AD.

    Copyright © 1999 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     This work supported by NIH Grants NS 37537 (M.S.W.), HL 3536 (I.O.D.), and AG 12749 (D.J.S.) and a Faculty Development Grant from the University of Tennessee College of Pharmacy (M.S.W.).

    *

     To whom correspondence should be addressed. Telephone:  (901) 448-7533. Fax:  (901) 448-6828. E-mail:  [email protected].

     University of Tennessee.

    §

     Harvard Medical School and Brigham and Women's Hospital.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 250 publications.

    1. Sanjay Bhattarai, Sujan Devkota, Michael S. Wolfe. Design of Transmembrane Mimetic Structural Probes to Trap Different Stages of γ-Secretase–Substrate Interaction. Journal of Medicinal Chemistry 2021, 64 (20) , 15367-15378. https://doi.org/10.1021/acs.jmedchem.1c01395
    2. Sanjay Bhattarai, Sujan Devkota, Kathleen M. Meneely, Minli Xing, Justin T. Douglas, Michael S. Wolfe. Design of Substrate Transmembrane Mimetics as Structural Probes for γ-Secretase. Journal of the American Chemical Society 2020, 142 (7) , 3351-3355. https://doi.org/10.1021/jacs.9b13405
    3. Hester A. Beard, Marta Barniol-Xicota, Jian Yang, Steven H. L. Verhelst. Discovery of Cellular Roles of Intramembrane Proteases. ACS Chemical Biology 2019, 14 (11) , 2372-2388. https://doi.org/10.1021/acschembio.9b00404
    4. Michael S. Wolfe. Structure and Function of the γ-Secretase Complex. Biochemistry 2019, 58 (27) , 2953-2966. https://doi.org/10.1021/acs.biochem.9b00401
    5. Minh T. N. Nguyen, Tim Van Kersavond, and Steven H. L. Verhelst . Chemical Tools for the Study of Intramembrane Proteases. ACS Chemical Biology 2015, 10 (11) , 2423-2434. https://doi.org/10.1021/acschembio.5b00693
    6. Arghya Barman, Stephan Schürer, and Rajeev Prabhakar . Computational Modeling of Substrate Specificity and Catalysis of the β-Secretase (BACE1) Enzyme. Biochemistry 2011, 50 (20) , 4337-4349. https://doi.org/10.1021/bi200081h
    7. Anthony F. Kreft, Robert Martone and Alexander Porte. Recent Advances in the Identification of γ-Secretase Inhibitors To Clinically Test the Aβ Oligomer Hypothesis of Alzheimer’s Disease. Journal of Medicinal Chemistry 2009, 52 (20) , 6169-6188. https://doi.org/10.1021/jm900188z
    8. Michael S. Wolfe. Intramembrane Proteolysis. Chemical Reviews 2009, 109 (4) , 1599-1612. https://doi.org/10.1021/cr8004197
    9. Rajiv Singh, Arghya Barman and Rajeev Prabhakar. Computational Insights into Aspartyl Protease Activity of Presenilin 1 (PS1) Generating Alzheimer Amyloid β-Peptides (Aβ40 and Aβ42). The Journal of Physical Chemistry B 2009, 113 (10) , 2990-2999. https://doi.org/10.1021/jp811154w
    10. Michael S. Wolfe. The γ-Secretase Complex:  Membrane-Embedded Proteolytic Ensemble. Biochemistry 2006, 45 (26) , 7931-7939. https://doi.org/10.1021/bi060799c
    11. Patrick C. Fraering,, Wenjuan Ye,, Jean-Marc Strub,, Georgia Dolios,, Matthew J. LaVoie,, Beth L. Ostaszewski,, Alain van Dorsselaer,, Rong Wang,, Dennis J. Selkoe, and, Michael S. Wolfe. Purification and Characterization of the Human γ-Secretase Complex. Biochemistry 2004, 43 (30) , 9774-9789. https://doi.org/10.1021/bi0494976
    12. Frédéric Bihel,, Chittaranjan Das,, Michael J. Bowman, and, Michael S. Wolfe. Discovery of a Subnanomolar Helical d-Tridecapeptide Inhibitor of γ-Secretase. Journal of Medicinal Chemistry 2004, 47 (16) , 3931-3933. https://doi.org/10.1021/jm049788c
    13. Patrick C. Fraering,, Matthew J. LaVoie,, Wenjuan Ye,, Beth L. Ostaszewski,, W. Taylor Kimberly,, Dennis J. Selkoe, and, Michael S. Wolfe. Detergent-Dependent Dissociation of Active γ-Secretase Reveals an Interaction between Pen-2 and PS1-NTF and Offers a Model for Subunit Organization within the Complex. Biochemistry 2004, 43 (2) , 323-333. https://doi.org/10.1021/bi035748j
    14. Ben M. Dunn. Structure and Mechanism of the Pepsin-Like Family of Aspartic Peptidases. Chemical Reviews 2002, 102 (12) , 4431-4458. https://doi.org/10.1021/cr010167q
    15. Donmienne Leung,, Giovanni Abbenante, and, David P. Fairlie. Protease Inhibitors:  Current Status and Future Prospects. Journal of Medicinal Chemistry 2000, 43 (3) , 305-341. https://doi.org/10.1021/jm990412m
    16. Michael S. Wolfe. Amyloid-independent pathogenesis for Alzheimer’s disease: implications for drug design. Medicinal Chemistry Research 2024, 33 (8) , 1330-1338. https://doi.org/10.1007/s00044-024-03261-9
    17. Pradip Kumar Singh, Michael S. Donnenberg. High throughput and targeted screens for prepilin peptidase inhibitors do not identify common inhibitors of eukaryotic gamma-secretase. Expert Opinion on Drug Discovery 2023, 18 (5) , 563-573. https://doi.org/10.1080/17460441.2023.2203480
    18. Sedigheh Eskandari, Soraya Sajadimajd, Loghman Alaei, Zhaleh Soheilikhah, Hossein Derakhshankhah, Gholamreza Bahrami. Targeting Common Signaling Pathways for the Treatment of Stroke and Alzheimer’s: a Comprehensive Review. Neurotoxicity Research 2021, 39 (5) , 1589-1612. https://doi.org/10.1007/s12640-021-00381-7
    19. Ye Wang, Gunilla T. Westermark. The Amyloid Forming Peptides Islet Amyloid Polypeptide and Amyloid β Interact at the Molecular Level. International Journal of Molecular Sciences 2021, 22 (20) , 11153. https://doi.org/10.3390/ijms222011153
    20. Michael S. Wolfe. Targeting γ-secretase for familial Alzheimer’s disease. Medicinal Chemistry Research 2021, 30 (7) , 1321-1327. https://doi.org/10.1007/s00044-021-02744-3
    21. Eva Babusikova, Dusan Dobrota, Anthony J. Turner, Natalia N. Nalivaeva. Effect of Global Brain Ischemia on Amyloid Precursor Protein Metabolism and Expression of Amyloid-Degrading Enzymes in Rat Cortex: Role in Pathogenesis of Alzheimer’s Disease. Biochemistry (Moscow) 2021, 86 (6) , 680-692. https://doi.org/10.1134/S0006297921060067
    22. Е. Бабусикова, Д. Доброта, Э.Дж. Тернер, Н.Н. Наливаева. Влияние глобальной ишемии головного мозга на метаболизм белка-предшественника β-амилоида и экспрессию амилоид-деградирующих ферментов в коре головного мозга крыс: роль в патогенезе болезни Альцгеймера. Биохимия 2021, 86 (6) , 831-844. https://doi.org/10.31857/S0320972521060063
    23. Michael S. Wolfe. Probing Mechanisms and Therapeutic Potential of γ-Secretase in Alzheimer’s Disease. Molecules 2021, 26 (2) , 388. https://doi.org/10.3390/molecules26020388
    24. Michael S. Wolfe. Unraveling the complexity of γ-secretase. Seminars in Cell & Developmental Biology 2020, 105 , 3-11. https://doi.org/10.1016/j.semcdb.2020.01.005
    25. Tetsuo Cai, Taisuke Tomita. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Seminars in Cell & Developmental Biology 2020, 105 , 102-109. https://doi.org/10.1016/j.semcdb.2020.02.006
    26. Laine Lysyk, Raelynn Brassard, Nicolas Touret, M. Joanne Lemieux. PARL Protease: A Glimpse at Intramembrane Proteolysis in the Inner Mitochondrial Membrane. Journal of Molecular Biology 2020, 432 (18) , 5052-5062. https://doi.org/10.1016/j.jmb.2020.04.006
    27. Sara Suna Yücel, Marius K. Lemberg. Signal Peptide Peptidase-Type Proteases: Versatile Regulators with Functions Ranging from Limited Proteolysis to Protein Degradation. Journal of Molecular Biology 2020, 432 (18) , 5063-5078. https://doi.org/10.1016/j.jmb.2020.05.014
    28. Daniela Liccardo, Federica Marzano, Federica Carraturo, Marco Guida, Grazia Daniela Femminella, Leonardo Bencivenga, Jacopo Agrimi, Armida Addonizio, Imma Melino, Alessandra Valletta, Carlo Rengo, Nicola Ferrara, Giuseppe Rengo, Alessandro Cannavo. Potential Bidirectional Relationship Between Periodontitis and Alzheimer’s Disease. Frontiers in Physiology 2020, 11 https://doi.org/10.3389/fphys.2020.00683
    29. Michael S. Wolfe. Substrate-based chemical probes for Alzheimer’s γ-secretase. Medicinal Chemistry Research 2020, 29 (7) , 1122-1132. https://doi.org/10.1007/s00044-020-02565-w
    30. Ipsita Guha, Avishek Bhuniya, Divanshu Shukla, Ashok Patidar, Partha Nandi, Akata Saha, Shayani Dasgupta, Nilanjan Ganguly, Sweta Ghosh, Arathi Nair, Subrata Majumdar, Bhaskar Saha, Walter J. Storkus, Rathindranath Baral, Anamika Bose. Tumor Arrests DN2 to DN3 Pro T Cell Transition and Promotes Its Conversion to Thymic Dendritic Cells by Reciprocally Regulating Notch1 and Ikaros Signaling. Frontiers in Immunology 2020, 11 https://doi.org/10.3389/fimmu.2020.00898
    31. Michael S. Wolfe. Substrate recognition and processing by γ-secretase. Biochimica et Biophysica Acta (BBA) - Biomembranes 2020, 1862 (1) , 183016. https://doi.org/10.1016/j.bbamem.2019.07.004
    32. Koji Matsuhisa, Atsushi Saito, Longjie Cai, Masayuki Kaneko, Takumi Okamoto, Fumika Sakaue, Rie Asada, Fumihiko Urano, Kanta Yanagida, Masayasu Okochi, Yukitsuka Kudo, Masaki Matsumoto, Keiichi I. Nakayama, Kazunori Imaizumi. Production of BBF2H7‐derived small peptide fragments via endoplasmic reticulum stress‐dependent regulated intramembrane proteolysis. The FASEB Journal 2020, 34 (1) , 865-880. https://doi.org/10.1096/fj.201901748R
    33. Sandra Paschkowsky, Jacqueline Melissa Hsiao, Jason C. Young, Lisa Marie Munter. The discovery of proteases and intramembrane proteolysis. Biochemistry and Cell Biology 2019, 97 (3) , 265-269. https://doi.org/10.1139/bcb-2018-0186
    34. Anna G. Vorobyeva, Aleister J. Saunders. Amyloid-β interrupts canonical Sonic hedgehog signaling by distorting primary cilia structure. Cilia 2018, 7 (1) https://doi.org/10.1186/s13630-018-0059-y
    35. Sandra Paschkowsky, Felix Oestereich, Lisa Marie Munter. Embedded in the Membrane: How Lipids Confer Activity and Specificity to Intramembrane Proteases. The Journal of Membrane Biology 2018, 251 (3) , 369-378. https://doi.org/10.1007/s00232-017-0008-5
    36. Prabu Manoharan, Nanda Ghoshal. Computational Modeling of Gamma-Secretase Inhibitors as Anti-Alzheimer Agents. 2018, 283-303. https://doi.org/10.1007/978-1-4939-7404-7_12
    37. Douglas S. Johnson, Yue-Ming Li, Martin Pettersson, Peter H. St George-Hyslop. Structural and Chemical Biology of Presenilin Complexes. Cold Spring Harbor Perspectives in Medicine 2017, 7 (12) , a024067. https://doi.org/10.1101/cshperspect.a024067
    38. Kai Gu, Qi Li, Hongzhi Lin, Jie Zhu, Jun Mo, Siyu He, Xin Lu, Xueyang Jiang, Haopeng Sun. Gamma secretase inhibitors: a patent review (2013 - 2015). Expert Opinion on Therapeutic Patents 2017, 27 (7) , 851-866. https://doi.org/10.1080/13543776.2017.1313231
    39. Shaowu Cheng, Willayat Y. Wani, David A. Hottman, Angela Jeong, Dongfeng Cao, Kyle J. LeBlanc, Paul Saftig, Jianhua Zhang, Ling Li. Haplodeficiency of Cathepsin D does not affect cerebral amyloidosis and autophagy in APP / PS 1 transgenic mice. Journal of Neurochemistry 2017, 142 (2) , 297-304. https://doi.org/10.1111/jnc.14048
    40. Christoph Becker-Pauly, Claus U. Pietrzik. The Metalloprotease Meprin β Is an Alternative β-Secretase of APP. Frontiers in Molecular Neuroscience 2017, 9 https://doi.org/10.3389/fnmol.2016.00159
    41. A.O. Adeniji, P.W. Adams, V.V. Mody. Amyloid β Hypothesis in the Development of Therapeutic Agents for Alzheimer’s Disease. 2017, 109-143. https://doi.org/10.1016/B978-0-12-802810-0.00007-6
    42. Akhlaq A. Farooqui. Potential Treatments for Alzheimer’s Disease. 2017, 279-330. https://doi.org/10.1016/B978-0-12-809937-7.00008-2
    43. Howard Friel, Sally Frautschy. Primary Prevention of Alzheimer’s Disease. 2017, 39-59. https://doi.org/10.1016/B978-0-12-812259-4.00003-5
    44. Eric Karran, Bart De Strooper. The amyloid cascade hypothesis: are we poised for success or failure?. Journal of Neurochemistry 2016, 139 (S2) , 237-252. https://doi.org/10.1111/jnc.13632
    45. Eliane V. Wolf, Steven H.L. Verhelst. Inhibitors of rhomboid proteases. Biochimie 2016, 122 , 38-47. https://doi.org/10.1016/j.biochi.2015.07.007
    46. M.S. Wolfe. Aspartic Proteases of Alzheimer’s Disease: β- and γ-Secretases. 2016, 661-669. https://doi.org/10.1016/B978-0-12-394447-4.10077-X
    47. D.J. Selkoe. The Complex Pathways to Mechanism-Based Therapeutics in Alzheimer’s Disease. 2016, 1-22. https://doi.org/10.1016/B978-0-12-802173-6.00001-0
    48. J.-Y. Hur, N. Gertsik, D.S. Johnson, Y.-M. Li. γ-Secretase Inhibitors: From Chemical Probes to Drug Development. 2016, 63-76. https://doi.org/10.1016/B978-0-12-802173-6.00004-6
    49. T.E. Golde, C.B. Lessard, Y. Ran. Therapeutic Targeting of Aβ42. 2016, 77-96. https://doi.org/10.1016/B978-0-12-802173-6.00005-8
    50. M.S. Wolfe. Aspartic Proteases of Alzheimer's Disease: β- and γ--Secretases. 2016, 950-959. https://doi.org/10.1016/B978-0-12-821618-7.10077-X
    51. Thomas J. Paul, Arghya Barman, Mehmet Ozbil, Ram Prasad Bora, Tingting Zhang, Gaurav Sharma, Zachary Hoffmann, Rajeev Prabhakar. Mechanisms of peptide hydrolysis by aspartyl and metalloproteases. Physical Chemistry Chemical Physics 2016, 18 (36) , 24790-24801. https://doi.org/10.1039/C6CP02097F
    52. B. Alshehri, D. G. D'Souza, J. Y. Lee, S. Petratos, S. J. Richardson. The Diversity of Mechanisms Influenced by Transthyretin in Neurobiology: Development, Disease and Endocrine Disruption. Journal of Neuroendocrinology 2015, 27 (5) , 303-323. https://doi.org/10.1111/jne.12271
    53. Bart De Strooper, Lucía Chávez Gutiérrez. Learning by Failing: Ideas and Concepts to Tackle γ-Secretases in Alzheimer's Disease and Beyond. Annual Review of Pharmacology and Toxicology 2015, 55 (1) , 419-437. https://doi.org/10.1146/annurev-pharmtox-010814-124309
    54. Dennis J. Selkoe. Alzheimer Disease. 2015, 753-768. https://doi.org/10.1016/B978-0-12-410529-4.00067-X
    55. Lishu Duan, Bula J Bhattacharyya, Abdelhak Belmadani, Liuliu Pan, Richard J Miller, John A Kessler. Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Molecular Neurodegeneration 2014, 9 (1) , 3. https://doi.org/10.1186/1750-1326-9-3
    56. Michael S. Wolfe. Toward the structure of presenilin/γ-secretase and presenilin homologs. Biochimica et Biophysica Acta (BBA) - Biomembranes 2013, 1828 (12) , 2886-2897. https://doi.org/10.1016/j.bbamem.2013.04.015
    57. Sai-Sai Xie, Xiao-Bing Wang, Jiang-Yan Li, Lei Yang, Ling-Yi Kong. Design, synthesis and evaluation of novel tacrine–coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease. European Journal of Medicinal Chemistry 2013, 64 , 540-553. https://doi.org/10.1016/j.ejmech.2013.03.051
    58. Michael S. Wolfe. Presenilin-1. 2013, 273-278. https://doi.org/10.1016/B978-0-12-382219-2.00065-X
    59. Ramesh JL Kandimalla, Willayat Yousuf Wani, Binukumar BK, Kiran Dip Gill. siRNA against presenilin 1 (PS1) down regulates amyloid β42 production in IMR-32 cells. Journal of Biomedical Science 2012, 19 (1) https://doi.org/10.1186/1423-0127-19-2
    60. Michael S. Wolfe. γ-Secretase as a Target for Alzheimer’s Disease. 2012, 127-153. https://doi.org/10.1016/B978-0-12-394816-8.00004-0
    61. Raphaëlle Pardossi‐Piquard, Frédéric Checler. The physiology of the β‐amyloid precursor protein intracellular domain AICD. Journal of Neurochemistry 2012, 120 (s1) , 109-124. https://doi.org/10.1111/j.1471-4159.2011.07475.x
    62. Michael S. Wolfe. γ‐Secretase inhibitors and modulators for Alzheimer’s disease. Journal of Neurochemistry 2012, 120 (s1) , 89-98. https://doi.org/10.1111/j.1471-4159.2011.07501.x
    63. Rudy J. Castellani, Michael W. Marlatt, Akihiko Nunomura, Paula I. Moreira, Hyoung‐Gon Lee, Gemma Casadesus, Xiongwei Zhu, George Perry, Mark A. Smith. Thinking Outside the Box in Alzheimer Disease Treatment. 2011https://doi.org/10.1002/9780470571224.pse457
    64. Marius K. Lemberg. Intramembrane Proteolysis in Regulated Protein Trafficking. Traffic 2011, 12 (9) , 1109-1118. https://doi.org/10.1111/j.1600-0854.2011.01219.x
    65. Niamh X Cawley, Guida Portela-Gomes, Hong Lou, Y Peng Loh. Yapsin 1 immunoreactivity in α-cells of human pancreatic islets: implications for the processing of human proglucagon by mammalian aspartic proteases. Journal of Endocrinology 2011, 210 (2) , 181-187. https://doi.org/10.1530/JOE-11-0121
    66. Jasjeet Kaur Sahni, Sihem Doggui, Javed Ali, Sanjula Baboota, Lé Dao, Charles Ramassamy. Neurotherapeutic applications of nanoparticles in Alzheimer's disease. Journal of Controlled Release 2011, 152 (2) , 208-231. https://doi.org/10.1016/j.jconrel.2010.11.033
    67. Akira Kobata. Glycobiology in the Field of Gerontology (Glycogerontology). 2011, 411-429. https://doi.org/10.1007/978-1-4419-7877-6_21
    68. Neil D. Rawlings. Peptidase inhibitors in the MEROPS database. Biochimie 2010, 92 (11) , 1463-1483. https://doi.org/10.1016/j.biochi.2010.04.013
    69. Christopher L. Hamblett, Sanjiv Shah, Richard Heidebrecht, Benito Munoz. γ‐Secretase Inhibition: An Overview of Development of Inhibitors for the Treatment of Alzheimer's Disease. 2010, 353-390. https://doi.org/10.1002/9783527630943.ch13
    70. Michael S. Wolfe. Structure, mechanism and inhibition of γ-secretase and presenilin-like proteases. Biological Chemistry 2010, 391 (8) https://doi.org/10.1515/bc.2010.086
    71. Elizabeth A. Heilig, Weiming Xia, Jie Shen, Raymond J. Kelleher. A Presenilin-1 Mutation Identified in Familial Alzheimer Disease with Cotton Wool Plaques Causes a Nearly Complete Loss of γ-Secretase Activity. Journal of Biological Chemistry 2010, 285 (29) , 22350-22359. https://doi.org/10.1074/jbc.M110.116962
    72. Jason M. Butler, Daniel J. Nolan, Eva L. Vertes, Barbara Varnum-Finney, Hideki Kobayashi, Andrea T. Hooper, Marco Seandel, Koji Shido, Ian A. White, Mariko Kobayashi, Larry Witte, Chad May, Carrie Shawber, Yuki Kimura, Jan Kitajewski, Zev Rosenwaks, Irwin D. Bernstein, Shahin Rafii. Endothelial Cells Are Essential for the Self-Renewal and Repopulation of Notch-Dependent Hematopoietic Stem Cells. Cell Stem Cell 2010, 6 (3) , 251-264. https://doi.org/10.1016/j.stem.2010.02.001
    73. Athena Chalaris, Jessica Gewiese, Krzysztof Paliga, Lina Fleig, Alex Schneede, Karsten Krieger, Stefan Rose-John, Jürgen Scheller. ADAM17-mediated shedding of the IL6R induces cleavage of the membrane stub by γ-secretase. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2010, 1803 (2) , 234-245. https://doi.org/10.1016/j.bbamcr.2009.12.001
    74. Yury G. Kaminsky, Michael W. Marlatt, Mark A. Smith, Elena A. Kosenko. Subcellular and metabolic examination of amyloid-β peptides in Alzheimer disease pathogenesis: Evidence for Aβ25–35. Experimental Neurology 2010, 221 (1) , 26-37. https://doi.org/10.1016/j.expneurol.2009.09.005
    75. Ha-Na Woo, Jong-Sung Park, A-Ryeong Gwon, Thiruma V. Arumugam, Dong-Gyu Jo. Alzheimer’s disease and Notch signaling. Biochemical and Biophysical Research Communications 2009, 390 (4) , 1093-1097. https://doi.org/10.1016/j.bbrc.2009.10.093
    76. Michael S. Wolfe. γ-Secretase in biology and medicine. Seminars in Cell & Developmental Biology 2009, 20 (2) , 219-224. https://doi.org/10.1016/j.semcdb.2008.12.011
    77. Rajeev Prabhakar. Computational Insights into the Development of Novel Therapeutic Strategies for Alzheimer’s Disease. Future Medicinal Chemistry 2009, 1 (1) , 119-135. https://doi.org/10.4155/fmc.09.10
    78. M. Katharine Holloway, Peter Hunt, Georgia B. McGaughey. Structure and modeling in the design of β‐ and γ‐secretase inhibitors. Drug Development Research 2009, 70 (2) , 70-93. https://doi.org/10.1002/ddr.20291
    79. Florian M. Gebhardt, Peter R. Dodd. Metabolic Abnormalities in Alzheimer Disease. 2009, 483-530. https://doi.org/10.1007/978-0-387-79112-8_22
    80. Yif'at Biran, Colin L. Masters, Kevin J. Barnham, Ashley I. Bush, Paul A. Adlard. Pharmacotherapeutic targets in Alzheimer's disease. Journal of Cellular and Molecular Medicine 2009, 13 (1) , 61-86. https://doi.org/10.1111/j.1582-4934.2008.00595.x
    81. Donald B Carter, Edwige Dunn, Adele M Pauley, Denise D McKinley, Timothy J Fleck, Brenda R Ellerbrook, Nancy C Stratman, Xiangdong Zhou, Carol S Himes, Jeffrey S Nye, Alfredo Tomasselli, Riqiang Yan. Changes in γ-secretase activity and specificity caused by the introduction of consensus aspartyl protease active motif in Presenilin 1. Molecular Neurodegeneration 2008, 3 (1) https://doi.org/10.1186/1750-1326-3-6
    82. Irfan Y. Tamboli, Kai Prager, Dietmar R. Thal, Karin M. Thelen, Ilse Dewachter, Claus U. Pietrzik, Peter St. George-Hyslop, Sangram S. Sisodia, Bart De Strooper, Michael T. Heneka, Mikhail A. Filippov, Ulrike Müller, Fred van Leuven, Dieter Lütjohann, Jochen Walter. Loss of γ-Secretase Function Impairs Endocytosis of Lipoprotein Particles and Membrane Cholesterol Homeostasis. The Journal of Neuroscience 2008, 28 (46) , 12097-12106. https://doi.org/10.1523/JNEUROSCI.2635-08.2008
    83. Jianxin Tan, Guozhang Mao, Mei‐Zhen Cui, Shin‐Chung Kang, Bruce Lamb, Boon‐Seng Wong, Man‐Sun Sy, Xuemin Xu. Effects of γ‐secretase cleavage‐region mutations on APP processing and Aβ formation: interpretation with sequential cleavage and α‐helical model. Journal of Neurochemistry 2008, 107 (3) , 722-733. https://doi.org/10.1111/j.1471-4159.2008.05643.x
    84. Jiho Jang, Seung Yup Ku, Jung Eun Kim, Kyunghee Choi, Yoon Young Kim, Hee Sun Kim, Sun Kyung Oh, Eun Ju Lee, Hyun-Jai Cho, Young Hwan Song, Sang Hun Lee, Suk Ho Lee, Chang Suk Suh, Seok Hyun Kim, Shin Yong Moon, Young Min Choi. Notch Inhibition Promotes Human Embryonic Stem Cell-Derived Cardiac Mesoderm Differentiation. Stem Cells 2008, 26 (11) , 2782-2790. https://doi.org/10.1634/stemcells.2007-1053
    85. Catherine R. Burton, Jere E. Meredith, Donna M. Barten, Margi E. Goldstein, Carol M. Krause, Cathy J. Kieras, Lisa Sisk, Lawrence G. Iben, Craig Polson, Mark W. Thompson, Xu-Alan Lin, Jason Corsa, Tracey Fiedler, Maria Pierdomenico, Yang Cao, Arthur H. Roach, Joseph L. Cantone, Michael J. Ford, Dieter M. Drexler, Richard E. Olson, Michael G. Yang, Carl P. Bergstrom, Kate E. McElhone, Joanne J. Bronson, John E. Macor, Yuval Blat, Robert H. Grafstrom, Andrew M. Stern, Dietmar A. Seiffert, Robert Zaczek, Charles F. Albright, Jeremy H. Toyn. The Amyloid-β Rise and γ-Secretase Inhibitor Potency Depend on the Level of Substrate Expression. Journal of Biological Chemistry 2008, 283 (34) , 22992-23003. https://doi.org/10.1074/jbc.M804175200
    86. Michael S. Wolfe. Inhibition and Modulation of γ-Secretase for Alzheimer's Disease. Neurotherapeutics 2008, 5 (3) , 391-398. https://doi.org/10.1016/j.nurt.2008.05.010
    87. Eva Czirr, Barbara A. Cottrell, Stefanie Leuchtenberger, Thomas Kukar, Thomas B. Ladd, Hermann Esselmann, Sabine Paul, Robert Schubenel, Justin W. Torpey, Claus U. Pietrzik, Todd E. Golde, Jens Wiltfang, Karlheinz Baumann, Edward H. Koo, Sascha Weggen. Independent Generation of Aβ42 and Aβ38 Peptide Species by γ-Secretase. Journal of Biological Chemistry 2008, 283 (25) , 17049-17054. https://doi.org/10.1074/jbc.M802912200
    88. Michael S. Wolfe. Intramembrane Proteolysis. 2008, 1-13. https://doi.org/10.1002/9780470048672.wecb258
    89. Kayo Koide, Koreaki Ito, Yoshinori Akiyama. Substrate Recognition and Binding by RseP, an Escherichia coli Intramembrane Protease. Journal of Biological Chemistry 2008, 283 (15) , 9562-9570. https://doi.org/10.1074/jbc.M709984200
    90. Dennis J. Selkoe. Biochemistry and Molecular Biology of Amyloid β‐Protein and the Mechanism of Alzheimer's Disease. 2008, 245-260. https://doi.org/10.1016/S0072-9752(07)01223-7
    91. Marius K. Lemberg, Matthew Freeman. Cutting Proteins within Lipid Bilayers: Rhomboid Structure and Mechanism. Molecular Cell 2007, 28 (6) , 930-940. https://doi.org/10.1016/j.molcel.2007.12.003
    92. Hanna Laudon, Bengt Winblad, Jan Näslund. The Alzheimer's disease-associated γ-secretase complex: Functional domains in the presenilin 1 protein. Physiology & Behavior 2007, 92 (1-2) , 115-120. https://doi.org/10.1016/j.physbeh.2007.05.037
    93. Dariusz Plewczynski, Marcin Hoffmann, Marcin von Grotthuss, Lukasz Knizewski, Leszek Rychewski, Krystian Eitner, Krzysztof Ginalski. Modelling of potentially promising SARS protease inhibitors. Journal of Physics: Condensed Matter 2007, 19 (28) , 285207. https://doi.org/10.1088/0953-8984/19/28/285207
    94. Rudy J Castellani, Xiongwei Zhu, Hyoung-gon Lee, Paula I Moreira, George Perry, Mark A Smith. Neuropathology and treatment of Alzheimer disease: did we lose the forest for the trees?. Expert Review of Neurotherapeutics 2007, 7 (5) , 473-485. https://doi.org/10.1586/14737175.7.5.473
    95. Guojun Zhao, Jianxin Tan, Guozhang Mao, Mei‐Zhen Cui, Xuemin Xu. The same γ‐secretase accounts for the multiple intramembrane cleavages of APP. Journal of Neurochemistry 2007, 100 (5) , 1234-1246. https://doi.org/10.1111/j.1471-4159.2006.04302.x
    96. Michael S Wolfe. When loss is gain: reduced presenilin proteolytic function leads to increased Aβ42/Aβ40. EMBO reports 2007, 8 (2) , 136-140. https://doi.org/10.1038/sj.embor.7400896
    97. Yung-Feng Liao, Bo-Jeng Wang, Wen-Ming Hsu, Hsinyu Lee, Chia-Yin Liao, Shin-Ying Wu, Hui-Ting Cheng, Ming-Kuan Hu. Unnatural Amino Acid-Substituted (Hydroxyethyl)urea Peptidomimetics Inhibit γ-Secretase and Promote the Neuronal Differentiation of Neuroblastoma Cells. Molecular Pharmacology 2007, 71 (2) , 588-601. https://doi.org/10.1124/mol.106.024299
    98. Jie Shen, Raymond J. Kelleher. The presenilin hypothesis of Alzheimer's disease: Evidence for a loss-of-function pathogenic mechanism. Proceedings of the National Academy of Sciences 2007, 104 (2) , 403-409. https://doi.org/10.1073/pnas.0608332104
    99. Tomoko Wakabayashi, Takeshi Iwatsubo, Bart De Strooper. The Biology of the Presenilin Complexes. 2007, 35-58. https://doi.org/10.1007/978-0-387-35135-3_3
    100. Michael S. Wolfe. γ-Secretase as a Target for Alzheimer's Disease. 2007, 125-140. https://doi.org/10.1007/978-0-387-71522-3_8
    Load more citations

    Biochemistry

    Cite this: Biochemistry 1999, 38, 15, 4720–4727
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi982562p
    Published March 26, 1999
    Copyright © 1999 American Chemical Society

    Article Views

    857

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.