Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Tryptophan B27 in the Relaxin-like Factor (RLF) Is Crucial for RLF Receptor-Binding

View Author Information
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, South Carolina 29425
Cite this: Biochemistry 1999, 38, 10, 3073–3078
Publication Date (Web):February 17, 1999
https://doi.org/10.1021/bi982687u
Copyright © 1999 American Chemical Society

    Article Views

    130

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The relaxin-like factor (RLF) is a circulating hormone that is synthesized in the gonads of mammals and released into the bloodstream. The distribution of its receptor and a trace of cross-reactivity to relaxin receptors implied that this relatively new factor is more relaxin- than insulin-like. The chemical synthesis of RLF analogues with specific modifications in positions B27 and B25, or the truncated form des(B27−31)RLF, clearly indicate that the intact indole ring in position B27 is crucial for high RLF receptor-binding. Receptor-binding was reduced by 2 orders of magnitude for Leu(B27)RLF (3%), Ala(B27)RLF (2.1%), and des(B27−31)RLF (0.4%), whereas slightly better binding was observed for His(B27)RLF (7.5%), Phe(B27)RLF (21%), D-Trp(B27) (26%), and the oxindole(B27)RLF (41%). On the basis of these observation it seems that an aromatic ring system in the β- or γ-position is required for binding. Structure prediction of the C-terminal region of the B chain indicated a possible type I or type III turn for residues C−G−G−P−R (B22−26) preceding the tryptophan. Exchanging Pro(B25) for d-Pro within the turn caused a severe structural rearrangement at the C terminus and a 96% drop in activity. It appears that the steric effect of l-Pro(B25) is important for the proper positioning of Trp(B27).

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by NIH Grant GM 48893-9.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    This article is cited by 54 publications.

    1. Erika E. Büllesbach, Mathias A. S. Hass, Malene R. Jensen, D. Flemming Hansen, Søren M. Kristensen, Christian Schwabe and Jens J. Led . Solution Structure of a Conformationally Restricted Fully Active Derivative of the Human Relaxin-like Factor. Biochemistry 2008, 47 (50) , 13308-13317. https://doi.org/10.1021/bi801412w
    2. Virag Sharma, Thomas Lehmann, Heiko Stuckas, Liane Funke, Michael Hiller, . Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular descent is the ancestral condition in placental mammals. PLOS Biology 2018, 16 (6) , e2005293. https://doi.org/10.1371/journal.pbio.2005293
    3. M.L. Halls. Insulin-Like Peptide 3 (INSL3) ☆. 2017https://doi.org/10.1016/B978-0-12-801238-3.99369-3
    4. L. H. C. Assis, D. Crespo, R. D. V. S. Morais, L. R. França, J. Bogerd, R. W. Schulz. INSL3 stimulates spermatogonial differentiation in testis of adult zebrafish (Danio rerio). Cell and Tissue Research 2016, 363 (2) , 579-588. https://doi.org/10.1007/s00441-015-2213-9
    5. C. Mamoulakis, I. Georgiou, F. Dimitriadis, P. Tsounapi, I. Giannakis, A. Chatzikyriakidou, S. Antypas, F. Sofras, A. Takenaka, N. Sofikitis. Genetic analysis of the human Insulin-like 3 gene: absence of mutations in a Greek paediatric cohort with testicular maldescent. Andrologia 2014, 46 (9) , 986-996. https://doi.org/10.1111/and.12184
    6. Linda J. Chan, John D. Wade, Frances Separovic, Ross A. D. Bathgate, Mohammed Akhter Hossain. The Importance of Tryptophan B28 in H2 Relaxin for RXFP2 Binding and Activation. International Journal of Peptide Research and Therapeutics 2013, 19 (1) , 55-60. https://doi.org/10.1007/s10989-012-9332-x
    7. Mohammed Akhter Hossain, K. Johan Rosengren, Chrishan S. Samuel, Fazel Shabanpoor, Linda J. Chan, Ross A.D. Bathgate, John D. Wade. The Minimal Active Structure of Human Relaxin-2. Journal of Biological Chemistry 2011, 286 (43) , 37555-37565. https://doi.org/10.1074/jbc.M111.282194
    8. Fazel Shabanpoor, Suode Zhang, Richard A. Hughes, Mohammed Akhter Hossain, Sharon Layfield, Tania Ferraro, Ross A. D. Bathgate, Frances Separovic, John D. Wade. Design and development of analogues of dimers of insulin‐like peptide 3 B‐chain as high‐affinity antagonists of the RXFP2 receptor. Peptide Science 2011, 96 (1) , 81-87. https://doi.org/10.1002/bip.21484
    9. Jian RUAN, Wei-Dong DU. Male infertility and gene defects. Hereditas (Beijing) 2010, 32 (5) , 411-422. https://doi.org/10.3724/SP.J.1005.2010.00411
    10. Kostas K. Barlos, Dimitrios Gatos, Zoe Vasileiou, Kleomenis Barlos. An optimized chemical synthesis of human relaxin‐2. Journal of Peptide Science 2010, 16 (4) , 200-211. https://doi.org/10.1002/psc.1221
    11. Fazel Shabanpoor, Richard A. Hughes, Suode Zhang, Ross A. D. Bathgate, Sharon Layfield, Mohammed Akhter Hossain, Geoffrey W. Tregear, Frances Separovic, John D. Wade. Effect of helix-promoting strategies on the biological activity of novel analogues of the B-chain of INSL3. Amino Acids 2010, 38 (1) , 121-131. https://doi.org/10.1007/s00726-008-0219-2
    12. Fazel Shabanpoor, Richard Hughes, Frances Separovic, John Wade. The Chemistry and Biology of Insulin-Like Peptide 3, a Novel Member of the Insulin Superfamily. 2009, 159-168. https://doi.org/10.1201/9781420061161-c7
    13. Christian Schwabe, Erika E. Büllesbach. The “Hot Wires” of the Relaxin‐Like Factor (Insl3). Annals of the New York Academy of Sciences 2009, 1160 (1) , 93-98. https://doi.org/10.1111/j.1749-6632.2008.03779.x
    14. Mohammed Akhter Hossain, Ross A. D. Bathgate, Geoffery Tregear, John D. Wade. De Novo Design and Synthesis of Cyclic and Linear Peptides to Mimic the Binding Cassette of Human Relaxin. Annals of the New York Academy of Sciences 2009, 1160 (1) , 16-19. https://doi.org/10.1111/j.1749-6632.2009.03840.x
    15. Geoffrey W. Tregear, Ross A. D. Bathgate, Mohammed Akhter Hossain, Feng Lin, Suode Zhang, Fazel Shabanpoor, Daniel J. Scott, Sherie Ma, Andrew L. Gundlach, Chrishan S. Samuel, John D. Wade. Structure and Activity in the Relaxin Family of Peptides. Annals of the New York Academy of Sciences 2009, 1160 (1) , 5-10. https://doi.org/10.1111/j.1749-6632.2009.03955.x
    16. Pierre De Meyts, Lisbeth Gauguin, Angela Manegold Svendsen, Mazen Sarhan, Louise Knudsen, Jane Nøhr, Vladislav V. Kiselyov. Structural Basis of Allosteric Ligand–Receptor Interactions in the Insulin/Relaxin Peptide Family. Annals of the New York Academy of Sciences 2009, 1160 (1) , 45-53. https://doi.org/10.1111/j.1749-6632.2009.03837.x
    17. Michelle Halls. Insulin-Like Peptide 3 (INSL3). 2009, 1-9. https://doi.org/10.1016/B978-008055232-3.64020-6
    18. Fazel Shabanpoor, Frances Separovic, John D. Wade. Chapter 1 The Human Insulin Superfamily of Polypeptide Hormones. 2009, 1-31. https://doi.org/10.1016/S0083-6729(08)00601-8
    19. Jae-Il Park, Jenia Semyonov, Wei Yi, Chia Lin Chang, Sheau Yu Teddy Hsu. Regulation of Receptor Signaling by Relaxin A Chain Motifs. Journal of Biological Chemistry 2008, 283 (46) , 32099-32109. https://doi.org/10.1074/jbc.M806817200
    20. Linda M. Haugaard-Jönsson, Mohammed Akhter Hossain, Norelle L. Daly, Ross A.D. Bathgate, John D. Wade, David J. Craik, K. Johan Rosengren. Structure of the R3/I5 Chimeric Relaxin Peptide, a Selective GPCR135 and GPCR142 Agonist. Journal of Biological Chemistry 2008, 283 (35) , 23811-23818. https://doi.org/10.1074/jbc.M800489200
    21. Chester Kuei, Steven Sutton, Pascal Bonaventure, Cindy Pudiak, Jonathan Shelton, Jessica Zhu, Diane Nepomuceno, Jiejun Wu, Jingcai Chen, Fredrik Kamme, Mark Seierstad, Michael D. Hack, Ross A.D. Bathgate, Mohammed Akhter Hossain, John D. Wade, John Atack, Timothy W. Lovenberg, Changlu Liu. R3(BΔ23–27)R/I5 Chimeric Peptide, a Selective Antagonist for GPCR135 and GPCR142 over Relaxin Receptor LGR7. Journal of Biological Chemistry 2007, 282 (35) , 25425-25435. https://doi.org/10.1074/jbc.M701416200
    22. Daniel J. Scott, Tracey N. Wilkinson, Suode Zhang, Tania Ferraro, John D. Wade, Geoffrey W. Tregear, Ross A. D. Bathgate. Defining the LGR8 Residues Involved in Binding Insulin-Like Peptide 3. Molecular Endocrinology 2007, 21 (7) , 1699-1712. https://doi.org/10.1210/me.2007-0097
    23. Fazel Shabanpoor, Ross A. D. Bathgate, Mohammed Akhter Hossain, Eleni Giannakis, John D. Wade, Richard A. Hughes. Design, synthesis and pharmacological evaluation of cyclic mimetics of the insulin‐like peptide 3 (INSL3) B‐chain. Journal of Peptide Science 2007, 13 (2) , 113-120. https://doi.org/10.1002/psc.807
    24. Erika E. Büllesbach, Christian Schwabe. The Mode of Interaction of the Relaxin-like Factor (RLF) with the Leucine-rich Repeat G Protein-activated Receptor 8. Journal of Biological Chemistry 2006, 281 (36) , 26136-26143. https://doi.org/10.1074/jbc.M601414200
    25. K. Johan Rosengren, Suode Zhang, Feng Lin, Norelle L. Daly, Daniel J. Scott, Richard A. Hughes, Ross A.D. Bathgate, David J. Craik, John D. Wade. Solution Structure and Characterization of the LGR8 Receptor Binding Surface of Insulin-like Peptide 3. Journal of Biological Chemistry 2006, 281 (38) , 28287-28295. https://doi.org/10.1074/jbc.M603829200
    26. Mark P. Del Borgo, Richard A. Hughes, Ross A.D. Bathgate, Feng Lin, Kazu Kawamura, John D. Wade. Analogs of Insulin-like Peptide 3 (INSL3) B-chain Are LGR8 Antagonists in Vitro and in Vivo. Journal of Biological Chemistry 2006, 281 (19) , 13068-13074. https://doi.org/10.1074/jbc.M600472200
    27. Ross A. Bathgate, Richard Ivell, Barbara M. Sanborn, O. David Sherwood, Roger J. Summers. International Union of Pharmacology LVII: Recommendations for the Nomenclature of Receptors for Relaxin Family Peptides. Pharmacological Reviews 2006, 58 (1) , 7-31. https://doi.org/10.1124/pr.58.1.9
    28. K. Johan Rosengren, Feng Lin, Ross A.D. Bathgate, Geoffrey W. Tregear, Norelle L. Daly, John D. Wade, David J. Craik. Solution Structure and Novel Insights into the Determinants of the Receptor Specificity of Human Relaxin-3. Journal of Biological Chemistry 2006, 281 (9) , 5845-5851. https://doi.org/10.1074/jbc.M511210200
    29. Michelle L. Halls, Courtney P. Bond, Satoko Sudo, Jin Kumagai, Tania Ferraro, Sharon Layfield, Ross A. D. Bathgate, Roger J. Summers. Multiple Binding Sites Revealed by Interaction of Relaxin Family Peptides with Native and Chimeric Relaxin Family Peptide Receptors 1 and 2 (LGR7 and LGR8). Journal of Pharmacology and Experimental Therapeutics 2005, 313 (2) , 677-687. https://doi.org/10.1124/jpet.104.080655
    30. CHANGLU LIU, PASCAL BONAVENTURE, STEVEN W. SUTTON, JINGCAI CHEN, CHESTER KUEI, DIANE NEPOMUCENO, TIMOTHY W. LOVENBERG. Recent Progress in Relaxin-3-Related Research. Annals of the New York Academy of Sciences 2005, 1041 (1) , 47-60. https://doi.org/10.1196/annals.1282.009
    31. Erika E. Büllesbach, Christian Schwabe. LGR8 Signal Activation by the Relaxin-like Factor. Journal of Biological Chemistry 2005, 280 (15) , 14586-14590. https://doi.org/10.1074/jbc.M414443200
    32. NV Bogatcheva, AI Agoulnik. INSL3/LGR8 role in testicular descent and cryptorchidism. Reproductive BioMedicine Online 2005, 10 (1) , 49-54. https://doi.org/10.1016/S1472-6483(10)60803-6
    33. Changlu Liu, Jingcai Chen, Chester Kuei, Steven Sutton, Diane Nepomuceno, Pascal Bonaventure, Timothy W. Lovenberg. Relaxin-3/Insulin-Like Peptide 5 Chimeric Peptide, a Selective Ligand for G Protein-Coupled Receptor (GPCR)135 and GPCR142 over Leucine-Rich Repeat-Containing G Protein-Coupled Receptor 7. Molecular Pharmacology 2005, 67 (1) , 231-240. https://doi.org/10.1124/mol.104.006700
    34. Sabine Hombach-Klonisch, Jennifer Schön, Astrid Kehlen, Steffen Blottner, Thomas Klonisch. Seasonal Expression of INSL3 and Lgr8/Insl3 Receptor Transcripts Indicates Variable Differentiation of Leydig Cells in the Roe Deer Testis. Biology of Reproduction 2004, 71 (4) , 1079-1087. https://doi.org/10.1095/biolreprod.103.024752
    35. Ibrahim M. Adham, Alexander I. Agoulnik. Insulin‐like 3 signalling in testicular descent. International Journal of Andrology 2004, 27 (5) , 257-265. https://doi.org/10.1111/j.1365-2605.2004.00481.x
    36. Ping Fu, Ross A. D. Bathgate, Geoffrey W. Tregear, John D. Wade. Insulin 3: From chemical synthesis to biological function. International Journal of Peptide Research and Therapeutics 2003, 10 (5-6) , 387-391. https://doi.org/10.1007/s10989-004-2388-5
    37. Anne Truong, Natalia V. Bogatcheva, Claude Schelling, Gaudenz Dolf, Alexander I. Agoulnik. Isolation and Expression Analysis of the Canine Insulin-Like Factor 3 Gene1. Biology of Reproduction 2003, 69 (5) , 1658-1664. https://doi.org/10.1095/biolreprod.103.019166
    38. Ping Fu, Ross A. D. Bathgate, Geoffrey W. Tregear, John D. Wade. Insulin 3: From chemical synthesis to biological function. Letters in Peptide Science 2003, 10 (5-6) , 387-391. https://doi.org/10.1007/BF02442568
    39. Yean Yeow Tan, Nicola F Dawson, Andrew R Kompa, Courtney P Bond, Antonia Claasz, John D Wade, Geoffrey W Tregear, Roger J Summers. Structural requirements for the interaction of sheep insulin-like factor 3 with relaxin receptors in rat atria. European Journal of Pharmacology 2002, 457 (2-3) , 153-160. https://doi.org/10.1016/S0014-2999(02)02662-6
    40. Thomas Klonisch, Christine Froehlich, Frank Tetens, Bernd Fischer, Sabine Hombach-Klonisch. Molecular Remodeling of Members of the Relaxin Family During Primate Evolution. Molecular Biology and Evolution 2001, 18 (3) , 393-403. https://doi.org/10.1093/oxfordjournals.molbev.a003815
    41. Thomas Klonisch, Johannes Kauffold, Klaus Steger, Martin Bergmann, Rudolf Leiser, Bernd Fischer, Sabine Hombach-Klonisch. Canine Relaxin-Like Factor: Unique Molecular Structure and Differential Expression Within Reproductive Tissues of the Dog. Biology of Reproduction 2001, 64 (2) , 442-450. https://doi.org/10.1095/biolreprod64.2.442
    42. Kathryn J. Smith, Ross A. Bathgate, Antonia A. Claasz, Nicola F. Dawson, Laszlo Otvos, Geoffrey W. Tregear, John D. Wade. Chemical synthesis and relaxin activity of rat Insulin 3. 2001, 251-252. https://doi.org/10.1007/978-94-017-2877-5_42
    43. Ross A. D. Bathgate, Nicole Moniac, Bettina Bartlick, Antonia Claasz, Nicola Dawson, Yean-Yeow Tan, John D. Wade, Geoffrey W. Tregear, Richard Ivell. The Relaxin-Like Factor (Insulin 3) is highly expressed in the ruminant ovary: A putative ruminant relaxin?. 2001, 349-356. https://doi.org/10.1007/978-94-017-2877-5_57
    44. E.E. Büllesbach, C. Schwabe. Synthesis and conformational analysis of the insulin‐like 4 gene product. The Journal of Peptide Research 2001, 57 (1) , 77-83. https://doi.org/10.1034/j.1399-3011.2001.00832.x
    45. Pasi Koskimies, Helena Virtanen, Magdalena Lindström, Marko Kaleva, Matti Poutanen, Ilpo Huhtaniemi, Jorma Toppari. A Common Polymorphism in the Human Relaxin-Like Factor (RLF) Gene: No Relationship with Cryptorchidism. Pediatric Research 2000, 47 (4) , 538-541. https://doi.org/10.1203/00006450-200004000-00020
    46. Ibrahim M Adham, Judith M.A Emmen, Wolfgang Engel. The role of the testicular factor INSL3 in establishing the gonadal position. Molecular and Cellular Endocrinology 2000, 160 (1-2) , 11-16. https://doi.org/10.1016/S0303-7207(99)00188-4
    47. Sabine Hombach-Klonisch, Johannes Kauffold, Tanja Rautenberg, Klaus Steger, Frank Tetens, Bernd Fischer, Thomas Klonisch. Relaxin-like factor (RLF) mRNA expression in the fallow deer. Molecular and Cellular Endocrinology 2000, 159 (1-2) , 147-158. https://doi.org/10.1016/S0303-7207(99)00190-2
    48. Sheau Yu Hsu. Cloning of Two Novel Mammalian Paralogs of Relaxin/Insulin Family Proteins and Their Expression in Testis and Kidney. Molecular Endocrinology 1999, 13 (12) , 2163-2174. https://doi.org/10.1210/mend.13.12.0388
    49. Erika E. Büllesbach, Christian Schwabe. Specific, High Affinity Relaxin-like Factor Receptors. Journal of Biological Chemistry 1999, 274 (32) , 22354-22358. https://doi.org/10.1074/jbc.274.32.22354
    50. Changlu Liu, Timothy W. Lovenberg. Relaxin-3, INSL5, and Their Receptors. , 213-237. https://doi.org/10.1007/400_2007_055
    51. Christian Schwabe, Erika E. Büllesbach. Relaxin, the Relaxin-Like Factor and Their Receptors. , 14-25. https://doi.org/10.1007/978-0-387-74672-2_2
    52. Alexander I. Agoulnik. Relaxin and Related Peptides in Male Reproduction. , 49-64. https://doi.org/10.1007/978-0-387-74672-2_5
    53. Alexander I. Agoulnik, Shu Feng. The Genetics of Cryptorchidism. , 185-198. https://doi.org/10.1007/978-1-59745-176-5_11
    54. Richard Ivell, Ross A. D. Bathgate. Insulin-Like Peptide 3 in Leydig Cells. , 279-289. https://doi.org/10.1007/978-1-59745-453-7_19