ACS Publications. Most Trusted. Most Cited. Most Read
Rapid Release and Unusual Stability of Immunodominant Peptide 45−89 from Citrullinated Myelin Basic Protein
My Activity
    Article

    Rapid Release and Unusual Stability of Immunodominant Peptide 45−89 from Citrullinated Myelin Basic Protein
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Neurology and Center for Neuroimmunology, University of Alabama at Birmingham, Birmingham, Alabama 35233-7340, Neurology and Research Services, Birmingham Veterans Medical Center, Birmingham, Alabama 35233, and Department of Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario, Canada
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 1999, 38, 19, 6157–6163
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi982960s
    Published April 22, 1999
    Copyright © 1999 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Myelin basic protein (MBP) exists in a population of isoforms and isomers. The 18.5 kDa MBP-C1, the main human adult isoform, has 170 residues and is relatively unmodified, whereas the same isoform can be citrullinated on six arginine residues to create the MBP-C8 (MBP Cit6) isomer. MBP Cit6 dominates in MS brain, accounting for 45% rather than 25% of the population of MBP isomers. In the fulminant form of MS, known as Marburg's Disease, 18 of the 19 arginines in MBP are citrullinated (MBP Cit18). Citrullination of MBP could lead to instability of myelin or limited remyelination. In this investigation, the susceptibilities to degradation by cathepsin D of MBP Cit6 and MBP-C1, both from normal and MS brain tissue, and Marburg MBP Cit18 were compared. The pattern of digestion was similar, and no differences of corresponding isomers in normal and MS brain were noted. However, normal MBP Cit6 was degraded 10-fold more rapidly than MBP-C1, and MBP Cit18 was degraded even more rapidly. MBP peptide 45−89 was preserved regardless of isomer type or source. Its generation was directly related to the citrulline content of the MBP substrate being 4 times faster in normal MBP Cit6 and 35 times faster in Marburg MBP Cit18 than in normal MBP-C1. Peptide 45−89 from a citrullinated MBP exhibited more deamidation, and, regardless of source, showed an α-helix structure in a lipid mimetic environment. We postulate that the generation of MBP peptides, including those that are dominant and encephalitogenic, is directly related to deimination of arginine to citrulline in MBP.

    Copyright © 1999 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     This work was supported by a Merit Review Grant and by the Multiple Sclerosis Society of Canada (G.H., M.A.M.).

     Department of Neurology, University of Alabama at Birmingham.

    §

     Birmingham Veterans Medical Center.

     The Hospital for Sick Children.

    *

     To whom correspondence should be addressed:  Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233-7340. Telephone:  (205) 934-2402. Fax:  (205) 975-6030.

     Center for Neuroimmunology, University of Alabama at Birmingham.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 70 publications.

    1. Anddre Osmar Valdivia, Pratul K. Agarwal, Sanjoy K. Bhattacharya. Myelin Basic Protein Phospholipid Complexation Likely Competes with Deimination in Experimental Autoimmune Encephalomyelitis Mouse Model. ACS Omega 2020, 5 (25) , 15454-15467. https://doi.org/10.1021/acsomega.0c01590
    2. Abinaya Ganesan, Pooja Muralidharan, Lakshmi Narasimhan Ramya. The Fulcrum of Demyelination in Multiple Sclerosis. Current Protein & Peptide Science 2023, 24 (7) , 579-588. https://doi.org/10.2174/1389203724666230717124101
    3. Vebjørn Martinsen, Petri Kursula. Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids 2022, 54 (1) , 99-109. https://doi.org/10.1007/s00726-021-03111-7
    4. Anddre Osmar Valdivia, Sanjoy K. Bhattacharya. Lyso-Lipid-Induced Oligodendrocyte Maturation Underlies Restoration of Optic Nerve Function. eneuro 2022, 9 (1) , ENEURO.0429-21.2022. https://doi.org/10.1523/ENEURO.0429-21.2022
    5. Miranda M. Standiford, Ethan M. Grund, Charles L. Howe. Citrullinated myelin induces microglial TNFα and inhibits endogenous repair in the cuprizone model of demyelination. Journal of Neuroinflammation 2021, 18 (1) https://doi.org/10.1186/s12974-021-02360-3
    6. Haley E. Titus, Yanan Chen, Joseph R. Podojil, Andrew P. Robinson, Roumen Balabanov, Brian Popko, Stephen D. Miller. Pre-clinical and Clinical Implications of “Inside-Out” vs. “Outside-In” Paradigms in Multiple Sclerosis Etiopathogenesis. Frontiers in Cellular Neuroscience 2020, 14 https://doi.org/10.3389/fncel.2020.599717
    7. Mohammed Alghamdi, Doaa Alasmari, Amjad Assiri, Ehab Mattar, Abdullah A. Aljaddawi, Sana G. Alattas, Elrashdy M. Redwan. An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders. Journal of Immunology Research 2019, 2019 , 1-39. https://doi.org/10.1155/2019/7592851
    8. Wolfgang Faigle, Carolina Cruciani, Witold Wolski, Bernd Roschitzki, Marco Puthenparampil, Paula Tomas-Ojer, Carla Sellés-Moreno, Thomas Zeis, Ivan Jelcic, Nicole Schaeren-Wiemers, Mireia Sospedra, Roland Martin. Brain Citrullination Patterns and T Cell Reactivity of Cerebrospinal Fluid-Derived CD4+ T Cells in Multiple Sclerosis. Frontiers in Immunology 2019, 10 https://doi.org/10.3389/fimmu.2019.00540
    9. Andrew V. Caprariello, Peter K. Stys. Turned Inside Out: Will Myelin-Protective Therapies Become the Next-Generation Anti-Inflammatories?. DNA and Cell Biology 2019, 38 (3) , 219-222. https://doi.org/10.1089/dna.2018.4496
    10. Andrew V. Caprariello, James A. Rogers, Megan L. Morgan, Vahid Hoghooghi, Jason R. Plemel, Adam Koebel, Shigeki Tsutsui, Jeffrey F. Dunn, Lakshmi P. Kotra, Shalina S. Ousman, V. Wee Yong, Peter K. Stys. Biochemically altered myelin triggers autoimmune demyelination. Proceedings of the National Academy of Sciences 2018, 115 (21) , 5528-5533. https://doi.org/10.1073/pnas.1721115115
    11. Maxime Vande Vyver, Roel Beelen, Jacques De Keyser, Guy Nagels, Anne-Marie Van Binst, Christiaan Verborgh, Miguel D'haeseleer. Plasma citrulline levels are increased in patients with multiple sclerosis. Journal of the Neurological Sciences 2018, 387 , 174-178. https://doi.org/10.1016/j.jns.2018.02.025
    12. William R. Meador, John R. Rinker, Anthony P. Nicholas. Deimination in Multiple Sclerosis: The Bad, the Good, and the Ugly. 2017, 317-336. https://doi.org/10.1007/978-3-319-58244-3_18
    13. George Harauz. Turning White Matter “Inside-Out” by Hyper-deimination of Myelin Basic Protein (MBP). 2017, 337-389. https://doi.org/10.1007/978-3-319-58244-3_19
    14. Erin E. Witalison, Lorne J. Hofseth. Citrullination in Inflammatory-Driven Carcinogenesis of the Colon. 2017, 427-443. https://doi.org/10.1007/978-3-319-58244-3_22
    15. L.P. Kotra, J. Park. Therapeutic Approaches to MS and Other Neurodegenerative Diseases. 2017, 439-473. https://doi.org/10.1016/B978-0-12-409547-2.13766-7
    16. Ghislain Opdenakker, Paul Proost, Jo Van Damme. Microbiomic and Posttranslational Modifications as Preludes to Autoimmune Diseases. Trends in Molecular Medicine 2016, 22 (9) , 746-757. https://doi.org/10.1016/j.molmed.2016.07.002
    17. Lei Yang, Dewei Tan, Hua Piao. Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology. Neurochemical Research 2016, 41 (8) , 1845-1856. https://doi.org/10.1007/s11064-016-1920-2
    18. Kenrick A. Vassall, Vladimir V. Bamm, Andrew D. Jenkins, Caroline J. Velte, Daniel R. Kattnig, Joan M. Boggs, Dariush Hinderberger, George Harauz. Substitutions mimicking deimination and phosphorylation of 18.5-kDa myelin basic protein exert local structural effects that subtly influence its global folding. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (6) , 1262-1277. https://doi.org/10.1016/j.bbamem.2016.02.024
    19. Q Li, JJ Song, HY Zhang, K Fu, HB Lan, Y Deng. Dexamethasone therapy for preventing delayed encephalopathy after carbon monoxide poisoning. Biotechnic & Histochemistry 2015, 90 (8) , 561-567. https://doi.org/10.3109/10520295.2015.1019565
    20. Kenrick A. Vassall, Vladimir V. Bamm, George Harauz. MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochemical Journal 2015, 472 (1) , 17-32. https://doi.org/10.1042/BJ20150710
    21. Navin Chicooree, Richard D. Unwin, John R. Griffiths. The application of targeted mass spectrometry‐based strategies to the detection and localization of post‐translational modifications. Mass Spectrometry Reviews 2015, 34 (6) , 595-626. https://doi.org/10.1002/mas.21421
    22. F Pratesi, F Panza, I Paolini, F Petrelli, I Puxeddu, S Casigliani-Rabl, D Ancillotti, C Alcaro, P Rovero, P Migliorini. Fingerprinting of anti-citrullinated protein antibodies (ACPA): specificity, isotypes and subclasses. Lupus 2015, 24 (4-5) , 433-441. https://doi.org/10.1177/0961203314560005
    23. Yosef Dror, Michael Hopp. Hair for brain trade-off, a metabolic bypass for encephalization. SpringerPlus 2014, 3 (1) https://doi.org/10.1186/2193-1801-3-562
    24. Claire M. Bradford, Inês Ramos, Alison K. Cross, Gail Haddock, Stephen McQuaid, Anthony P. Nicholas, M. Nicola Woodroofe. Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. Journal of Neuroimmunology 2014, 273 (1-2) , 85-95. https://doi.org/10.1016/j.jneuroim.2014.05.007
    25. Jialiang Liang, Patrizia Casaccia. The Role of Protein Deimination in Epigenetics. 2014, 327-345. https://doi.org/10.1007/978-1-4614-8317-5_18
    26. Claire Bradford, Anthony P. Nicholas, Nicola Woodroofe, Alison K. Cross. Deimination in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. 2014, 165-185. https://doi.org/10.1007/978-1-4614-8317-5_10
    27. Mariusz Gogól. Citrullination – small change with a great consequence. Folia Biologica et Oecologica 2013, 9 , 17-25. https://doi.org/10.2478/fobio-2013-0003
    28. Shu Wang, Yanming Wang. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2013, 1829 (10) , 1126-1135. https://doi.org/10.1016/j.bbagrm.2013.07.003
    29. Lali V. Shanshiashvili, Irina V. Kalandadze, Jeremy J. Ramsden, David G. Mikeladze. Adhesive Properties and Inflammatory Potential of Citrullinated Myelin Basic Protein Peptide 45–89. Neurochemical Research 2012, 37 (9) , 1959-1966. https://doi.org/10.1007/s11064-012-0816-z
    30. Olivier Borel, Evelyne Gineyts, Cindy Bertholon, Patrick Garnero. Cathepsin K Preferentially Solubilizes Matured Bone Matrix. Calcified Tissue International 2012, 91 (1) , 32-39. https://doi.org/10.1007/s00223-012-9604-7
    31. Kim Henriksen, Claus Christiansen, Morten Asser Karsdal. Serological biochemical markers of surrogate efficacy and safety as a novel approach to drug repositioning. Drug Discovery Today 2011, 16 (21-22) , 967-975. https://doi.org/10.1016/j.drudis.2011.06.010
    32. Claire Margaret Bradford, Alison Kay Cross, Gail Haddock, Nicola Woodroofe, Basil Sharrack. Citrullination of Cns Proteins In the Pathogenesis of Multiple Sclerosis. Future Neurology 2011, 6 (4) , 521-530. https://doi.org/10.2217/fnl.11.30
    33. Suad M. Abdeen, Samuel O. Olusi. Peptidyl arginine deiminase: A novel immunohistochemical marker for liver fibrosis in patients with chronic hepatitis. Acta Histochemica 2010, 112 (6) , 592-603. https://doi.org/10.1016/j.acthis.2009.06.007
    34. Christina Stoeckle, Eva Tolosa. Antigen Processing and Presentation in Multiple Sclerosis. 2009, 149-172. https://doi.org/10.1007/400_2009_22
    35. Alexey A. Belogurov, Inna N. Kurkova, Alain Friboulet, Daniel Thomas, Viktor K. Misikov, Maria Yu. Zakharova, Sergey V. Suchkov, Sergey V. Kotov, Alexander I. Alehin, Bérangère Avalle, Ekaterina A. Souslova, Herbert C. Morse, Alexander G. Gabibov, Natalia A. Ponomarenko. Recognition and Degradation of Myelin Basic Protein Peptides by Serum Autoantibodies: Novel Biomarker for Multiple Sclerosis. The Journal of Immunology 2008, 180 (2) , 1258-1267. https://doi.org/10.4049/jimmunol.180.2.1258
    36. I. A. Scarisbrick. The Multiple Sclerosis Degradome: Enzymatic Cascades in Development and Progression of Central Nervous System Inflammatory Disease. 2008, 133-175. https://doi.org/10.1007/978-3-540-73677-6_6
    37. Maja Wållberg, Jonas Bergquist, Adnane Achour, Esther Breij, Robert A. Harris. Malondialdehyde modification of myelin oligodendrocyte glycoprotein leads to increased immunogenicity and encephalitogenicity. European Journal of Immunology 2007, 37 (7) , 1986-1995. https://doi.org/10.1002/eji.200636912
    38. M.‐C. Méchin, M. Sebbag, J. Arnaud, R. Nachat, C. Foulquier, V. Adoue, F. Coudane, H. Duplan, A.‐M. Schmitt, S. Chavanas, M. Guerrin, G. Serre, M. Simon. Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases. International Journal of Cosmetic Science 2007, 29 (3) , 147-168. https://doi.org/10.1111/j.1467-2494.2007.00377.x
    39. Anthony W. Purcell, James McCluskey, Jamie Rossjohn. More than one reason to rethink the use of peptides in vaccine design. Nature Reviews Drug Discovery 2007, 6 (5) , 404-414. https://doi.org/10.1038/nrd2224
    40. George Harauz, Abdiwahab A. Musse. A Tale of Two Citrullines—Structural and Functional Aspects of Myelin Basic Protein Deimination in Health and Disease. Neurochemical Research 2007, 32 (2) , 137-158. https://doi.org/10.1007/s11064-006-9108-9
    41. Abdiwahab A. Musse, George Harauz. Molecular “Negativity” May Underlie Multiple Sclerosis: Role of the Myelin Basic Protein Family in the Pathogenesis of MS. 2007, 149-172. https://doi.org/10.1016/S0074-7742(07)79007-4
    42. Tineke Cantaert, Leen De Rycke, Tim Bongartz, Eric L. Matteson, Paul P. Tak, Anthony P. Nicholas, Dominique Baeten. Citrullinated proteins in rheumatoid arthritis: Crucial … but not sufficient!. Arthritis & Rheumatism 2006, 54 (11) , 3381-3389. https://doi.org/10.1002/art.22206
    43. Cheryl A. D’Souza, Mario A. Moscarello. Differences in Susceptibility of MBP Charge Isomers to Digestion by Stromelysin-1 (MMP-3) and Release of an Immunodominant Epitope. Neurochemical Research 2006, 31 (8) , 1045-1054. https://doi.org/10.1007/s11064-006-9116-9
    44. Francesco Lolli, Paolo Rovero, Mario Chelli, Anna Maria Papini. Toward biomarkers in multiple sclerosis: new advances. Expert Review of Neurotherapeutics 2006, 6 (5) , 781-794. https://doi.org/10.1586/14737175.6.5.781
    45. Abdiwahab A. Musse, Joan M. Boggs, George Harauz. Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proceedings of the National Academy of Sciences 2006, 103 (12) , 4422-4427. https://doi.org/10.1073/pnas.0509158103
    46. Maria Claudia Alcaro, Anna Maria Papini. Contribution of peptides to multiple sclerosis research. Peptide Science 2006, 84 (4) , 349-367. https://doi.org/10.1002/bip.20498
    47. Anthony P. Nicholas, Thiagarajan Sambandam, Joshua D. Echols, Scott R. Barnum. Expression of citrullinated proteins in murine experimental autoimmune encephalomyelitis. The Journal of Comparative Neurology 2005, 486 (3) , 254-266. https://doi.org/10.1002/cne.20527
    48. Fabrizio G. Mastronardi, Mario A. Moscarello. Molecules affecting myelin stability: A novel hypothesis regarding the pathogenesis of multiple sclerosis. Journal of Neuroscience Research 2005, 80 (3) , 301-308. https://doi.org/10.1002/jnr.20420
    49. Stephen M Anderton. Post-translational modifications of self antigens: implications for autoimmunity. Current Opinion in Immunology 2004, 16 (6) , 753-758. https://doi.org/10.1016/j.coi.2004.09.001
    50. Stephen R. Thom, Veena M. Bhopale, Donald Fisher, Jie Zhang, Phyllis Gimotty. Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proceedings of the National Academy of Sciences 2004, 101 (37) , 13660-13665. https://doi.org/10.1073/pnas.0405642101
    51. Anthony P. Nicholas, Thiagarajan Sambandam, Joshua D. Echols, Wallace W. Tourtellotte. Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. Journal of Comparative Neurology 2004, 473 (1) , 128-136. https://doi.org/10.1002/cne.20102
    52. E R Vossenaar. Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Annals of the Rheumatic Diseases 2004, 63 (4) , 373-381. https://doi.org/10.1136/ard.2003.012211
    53. Erik R. Vossenaar, Albert J.W. Zendman, Walther J. van Venrooij, Ger J.M. Pruijn. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 2003, 25 (11) , 1106-1118. https://doi.org/10.1002/bies.10357
    54. Ian R. Bates, Joan M. Boggs, Jimmy B. Feix, George Harauz. Membrane-anchoring and Charge Effects in the Interaction of Myelin Basic Protein with Lipid Bilayers Studied by Site-directed Spin Labeling. Journal of Biological Chemistry 2003, 278 (31) , 29041-29047. https://doi.org/10.1074/jbc.M302766200
    55. J.K. Kim, F.G. Mastronardi, D.D. Wood, D.M. Lubman, R. Zand, M.A. Moscarello. Multiple Sclerosis. Molecular & Cellular Proteomics 2003, 2 (7) , 453-462. https://doi.org/10.1074/mcp.M200050-MCP200
    56. David S. Libich, Christopher M.D. Hill, Ian R. Bates, F. Ross Hallett, Souzan Armstrong, Aleksander Siemiarczuk, George Harauz. Interaction of the 18.5‐kD isoform of myelin basic protein with Ca 2+ ‐calmodulin: Effects of deimination assessed by intrinsic Trp fluorescence spectroscopy, dynamic light scattering, and circular dichroism. Protein Science 2003, 12 (7) , 1507-1521. https://doi.org/10.1110/ps.0303603
    57. Anthony P. Nicholas, Jeffrey L. King, Thiagarajan Sambandam, Joshua D. Echols, Kiran B. Gupta, Carey McInnis, John N. Whitaker. Immunohistochemical localization of citrullinated proteins in adult rat brain. Journal of Comparative Neurology 2003, 459 (3) , 251-266. https://doi.org/10.1002/cne.10607
    58. Ian R Bates, David S Libich, D.Denise Wood, Mario A Moscarello, George Harauz. An Arg/Lys→Gln mutant of recombinant murine myelin basic protein as a mimic of the deiminated form implicated in multiple sclerosis. Protein Expression and Purification 2002, 25 (2) , 330-341. https://doi.org/10.1016/S1046-5928(02)00017-7
    59. Christopher M Hill, Ian R Bates, Gisele F White, F Ross Hallett, G Harauz. Effects of the osmolyte trimethylamine-N-oxide on conformation, self-association, and two-dimensional crystallization of myelin basic protein. Journal of Structural Biology 2002, 139 (1) , 13-26. https://doi.org/10.1016/S1047-8477(02)00513-0
    60. M. A. Moscarello, L. Pritzker, F. G. Mastronardi, D. D. Wood. Peptidylarginine deiminase: a candidate factor in demyelinating disease. Journal of Neurochemistry 2002, 81 (2) , 335-343. https://doi.org/10.1046/j.1471-4159.2002.00834.x
    61. Anthony P. Nicholas, John N. Whitaker. Preparation of a monoclonal antibody to citrullinated epitopes: Its characterization and some applications to immunohistochemistry in human brain. Glia 2002, 37 (4) , 328-336. https://doi.org/10.1002/glia.10039
    62. Noboru Ishiyama, Ian R Bates, Christopher M Hill, D.Denise Wood, Philip Matharu, Nick J Viner, Mario A Moscarello, George Harauz. The Effects of Deimination of Myelin Basic Protein on Structures Formed by Its Interaction with Phosphoinositide- Containing Lipid Monolayers. Journal of Structural Biology 2001, 136 (1) , 30-45. https://doi.org/10.1006/jsbi.2001.4421
    63. J. de Seze, S. Dubucquoi, D. Lefranc, F. Virecoulon, I. Nuez, V. Dutoit, P. Vermersch, L. Prin. IgG reactivity against citrullinated myelin basic protein in multiple sclerosis. Journal of Neuroimmunology 2001, 117 (1-2) , 149-155. https://doi.org/10.1016/S0165-5728(01)00312-5
    64. Judith M. Greer, Bérangère Denis, Raymond A. Sobel, Elisabeth Trifilieff. Thiopalmitoylation of Myelin Proteolipid Protein Epitopes Enhances Immunogenicity and Encephalitogenicity. The Journal of Immunology 2001, 166 (11) , 6907-6913. https://doi.org/10.4049/jimmunol.166.11.6907
    65. Markus Knipp, Milan Vašák. A Colorimetric 96-Well Microtiter Plate Assay for the Determination of Enzymatically Formed Citrulline. Analytical Biochemistry 2000, 286 (2) , 257-264. https://doi.org/10.1006/abio.2000.4805
    66. Ian R. Bates, Philip Matharu, Noboru Ishiyama, Denis Rochon, D.Denise Wood, Eugenia Polverini, Mario A. Moscarello, Nick J. Viner, George Harauz. Characterization of a Recombinant Murine 18.5-kDa Myelin Basic Protein. Protein Expression and Purification 2000, 20 (2) , 285-299. https://doi.org/10.1006/prep.2000.1307
    67. Ligong Cao, Deming Sun, Tony Cruz, Mario A. Moscarello, Samuel K. Ludwin, John N. Whitaker. Inhibition of experimental allergic encephalomyelitis in the Lewis rat by paclitaxel. Journal of Neuroimmunology 2000, 108 (1-2) , 103-111. https://doi.org/10.1016/S0165-5728(00)00268-X
    68. Laura R Tranquill, Ligong Cao, Nicholas C Ling, Hubert Kalbacher, Roland M Martin, John N Whitaker. Enhanced T cell responsiveness to citrulline-containing myelin basic protein in multiple sclerosis patients. Multiple Sclerosis Journal 2000, 6 (4) , 220-225. https://doi.org/10.1177/135245850000600402
    69. M.A. Berg, G.A. Chasse, E. Deretey, A.K. Füzéry, B.M. Fung, D.Y.K. Fung, H. Henry-Riyad, A.C. Lin, M.L. Mak, A. Mantas, M. Patel, I.V. Repyakh, M. Staikova, S.J. Salpietro, Ting-Hua Tang, J.C. Vank, A. Perczel, G.I. Csonka, Ö. Farkas, L.L. Torday, Z. Székely, I.G. Csizmadia. Prospects in computational molecular medicine: a millennial mega-project on peptide folding. Journal of Molecular Structure: THEOCHEM 2000, 500 (1-3) , 5-58. https://doi.org/10.1016/S0166-1280(00)00448-6
    70. Daniel R. Beniac, D.Denise Wood, Nades Palaniyar, F.Peter Ottensmeyer, Mario A. Moscarello, George Harauz. Cryoelectron Microscopy of Protein–Lipid Complexes of Human Myelin Basic Protein Charge Isomers Differing in Degree of Citrullination. Journal of Structural Biology 2000, 129 (1) , 80-95. https://doi.org/10.1006/jsbi.1999.4200

    Biochemistry

    Cite this: Biochemistry 1999, 38, 19, 6157–6163
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi982960s
    Published April 22, 1999
    Copyright © 1999 American Chemical Society

    Article Views

    328

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.