ACS Publications. Most Trusted. Most Cited. Most Read
The Methyl-CpG Binding Transcriptional Repressor MeCP2 Stably Associates with Nucleosomal DNA
My Activity
    Article

    The Methyl-CpG Binding Transcriptional Repressor MeCP2 Stably Associates with Nucleosomal DNA
    Click to copy article linkArticle link copied!

    View Author Information
    Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Building 18T, Room 106, Bethesda, Maryland 20892-5431
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 1999, 38, 22, 7008–7018
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi990224y
    Published May 8, 1999
    Copyright © 1999 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We have investigated the interactions of the methyl-CpG binding transcriptional repressor MeCP2 with nucleosomal DNA. We find that MeCP2 forms discrete complexes with nucleosomal DNA associating with methyl-CpGs exposed in the major groove via the methyl-CpG-binding domain (MBD). In addition to the MBD, the carboxyl-terminal segment of MeCP2 facilitates binding both to naked DNA and to the nucleosome core. These observations provide a molecular mechanism by which MeCP2 can gain access to chromatin in order to target corepressor complexes that further modify chromatin structure.

    Copyright © 1999 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     S.P.C. is the recipient of a Wellcome Trust International Prize Fellowship.

    *

     To whom correspondence should be addressed. Tel:  301-402-2722. Fax:  301-402-1323. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 126 publications.

    1. Tae-Hee Lee. Physical Chemistry of Epigenetics: Single-Molecule Investigations. The Journal of Physical Chemistry B 2019, 123 (40) , 8351-8362. https://doi.org/10.1021/acs.jpcb.9b06214
    2. Rajarshi P. Ghosh, Tatiana Nikitina, Rachel A. Horowitz-Scherer, Lila M. Gierasch, Vladimir N. Uversky, Kristopher Hite, Jeffrey C. Hansen and Christopher L. Woodcock . Unique Physical Properties and Interactions of the Domains of Methylated DNA Binding Protein 2. Biochemistry 2010, 49 (20) , 4395-4410. https://doi.org/10.1021/bi9019753
    3. Chris-Tiann Roberts, Khatereh Saei Arezoumand, Ashraf Kadar Shahib, James R. Davie, Mojgan Rastegar. Epigenetics in rare neurological diseases. Frontiers in Cell and Developmental Biology 2024, 12 https://doi.org/10.3389/fcell.2024.1413248
    4. Yue Chai, Sharon Shui Ying Lee, Amelle Shillington, Xiaoli Du, Catalina Ka Man Fok, Kam Chun Yeung, Gavin Ka Yu Siu, Shiyang Yuan, Zhongyu Zheng, Hayley Wing Sum Tsang, Shen Gu, Yu Chen, Tao Ye, Jacque Pak Kan Ip. Non-canonical C-terminal variant of MeCP2 R344W exhibits enhanced degradation rate. IBRO Neuroscience Reports 2023, 15 , 218-224. https://doi.org/10.1016/j.ibneur.2023.09.007
    5. Fernando Rodriguez, Irina A. Yushenova, Daniel DiCorpo, Irina R. Arkhipova. Bacterial N4-methylcytosine as an epigenetic mark in eukaryotic DNA. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28471-w
    6. Ghanan Bin Akhtar, Marjorie Buist, Mojgan Rastegar. MeCP2 and transcriptional control of eukaryotic gene expression. European Journal of Cell Biology 2022, 101 (3) , 151237. https://doi.org/10.1016/j.ejcb.2022.151237
    7. Marjorie Buist, Nada El Tobgy, Danilo Shevkoplyas, Matthew Genung, Annan Ali Sher, Shervin Pejhan, Mojgan Rastegar. Differential Sensitivity of the Protein Translation Initiation Machinery and mTOR Signaling to MECP2 Gain- and Loss-of-Function Involves MeCP2 Isoform-Specific Homeostasis in the Brain. Cells 2022, 11 (9) , 1442. https://doi.org/10.3390/cells11091442
    8. Gamze Ayaz, Gizem Turan, Çağla Ece Olgun, Gizem Kars, Burcu Karakaya, Kerim Yavuz, Öykü Deniz Demiralay, Tolga Can, Mesut Muyan, Pelin Yaşar. A prelude to the proximity interaction mapping of CXXC5. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-97060-6
    9. Jiao Wang, Yushuo Xiao, Chengyu Liu, Yixue Huang, Robert B. Petersen, Ling Zheng, Kun Huang. Emerging physiological and pathological roles of MeCP2 in non-neurological systems. Archives of Biochemistry and Biophysics 2021, 700 , 108768. https://doi.org/10.1016/j.abb.2021.108768
    10. Eric E. Smeets. RETT SYNDROME. 2021, 791-806. https://doi.org/10.1002/9781119432692.ch49
    11. Katrina V. Good, John B. Vincent, Juan Ausió. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Frontiers in Genetics 2021, 12 https://doi.org/10.3389/fgene.2021.620859
    12. Bipin Raj Shekhar, Dhanjit Kumar Das. Induced pluripotent stem cells for modeling of Rett Syndrome. 2021, 171-216. https://doi.org/10.1016/B978-0-323-85764-2.00014-4
    13. Wooje Lee, Jeeho Kim, Jung-Mi Yun, Takbum Ohn, Qizhi Gong. MeCP2 regulates gene expression through recognition of H3K27me3. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16907-0
    14. Deivid Carvalho Rodrigues, Marat Mufteev, James Ellis. Regulation, diversity and function of MECP2 exon and 3′UTR isoforms. Human Molecular Genetics 2020, 29 (R1) , R89-R99. https://doi.org/10.1093/hmg/ddaa154
    15. Marwa Ben Jdila, Chahnez Charfi Triki, Rania Ghorbel, Wafa Bouchalla, Sihem Ben Ncir, Fatma Kamoun, Faiza Fakhfakh. Unusual double mutation in MECP2 and CDKL5 genes in Rett-like syndrome: Correlation with phenotype and genes expression. Clinica Chimica Acta 2020, 508 , 287-294. https://doi.org/10.1016/j.cca.2020.05.037
    16. D. Hettiarachchi, N. F. Neththikumara, B. A. P. S. Pathirana, V. H. W. Dissanayake. Variant Profile of MECP2 Gene in Sri Lankan Patients with Rett Syndrome. Journal of Autism and Developmental Disorders 2020, 50 (1) , 118-126. https://doi.org/10.1007/s10803-019-04230-7
    17. Holly A. Robinson, Lucas Pozzo-Miller. The role of MeCP2 in learning and memory. Learning & Memory 2019, 26 (9) , 343-350. https://doi.org/10.1101/lm.048876.118
    18. Neeti Vashi, Monica J. Justice. Treating Rett syndrome: from mouse models to human therapies. Mammalian Genome 2019, 30 (5-6) , 90-110. https://doi.org/10.1007/s00335-019-09793-5
    19. Luke B. Hesson, Antonia L. Pritchard. Genetics and Epigenetics: A Historical Overview. 2019, 1-46. https://doi.org/10.1007/978-981-13-8958-0_1
    20. Stephanie M. Kyle, Neeti Vashi, Monica J. Justice. Rett syndrome: a neurological disorder with metabolic components. Open Biology 2018, 8 (2) https://doi.org/10.1098/rsob.170216
    21. Myungsik Yoo, Cassiano Carromeu, Ohyoon Kwon, Alysson Muotri, Melitta Schachner. The L1 adhesion molecule normalizes neuritogenesis in Rett syndrome-derived neural precursor cells. Biochemical and Biophysical Research Communications 2017, 494 (3-4) , 504-510. https://doi.org/10.1016/j.bbrc.2017.10.073
    22. Alexia Martínez de Paz, Juan Ausió. MeCP2, A Modulator of Neuronal Chromatin Organization Involved in Rett Syndrome. 2017, 3-21. https://doi.org/10.1007/978-3-319-53889-1_1
    23. Caitlyn Riedmann, Yvonne N. Fondufe-Mittendorf. Comparative analysis of linker histone H1, MeCP2, and HMGD1 on nucleosome stability and target site accessibility. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep33186
    24. Rafael Claveria-Gimeno, Olga Abian, Adrian Velazquez-Campoy, Juan Ausió. MeCP2… Nature’s Wonder Protein or Medicine’s Most Feared One?. Current Genetic Medicine Reports 2016, 4 (4) , 180-194. https://doi.org/10.1007/s40142-016-0107-0
    25. H. Tomas Rube, Wooje Lee, Miroslav Hejna, Huaiyang Chen, Dag H. Yasui, John F. Hess, Janine M. LaSalle, Jun S. Song, Qizhi Gong. Sequence features accurately predict genome-wide MeCP2 binding in vivo. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms11025
    26. Laura Bianciardi, Marco Fichera, Pinella Failla, Chiara Di Marco, Detelina Grozeva, Maria Antonietta Mencarelli, Ottavia Spiga, Francesca Mari, Ilaria Meloni, Lucy Raymond, Alessandra Renieri, Corrado Romano, Francesca Ariani. MECP2 missense mutations outside the canonical MBD and TRD domains in males with intellectual disability. Journal of Human Genetics 2016, 61 (2) , 95-101. https://doi.org/10.1038/jhg.2015.118
    27. Wan Y. Leong, Zhi H. Lim, Vladimir Korzh, Thomas Pietri, Eyleen L. K. Goh. Methyl-CpG Binding Protein 2 (Mecp2) Regulates Sensory Function Through Sema5b and Robo2. Frontiers in Cellular Neuroscience 2015, 9 https://doi.org/10.3389/fncel.2015.00481
    28. Nicole Nüsgen, Wolfgang Goering, Albertas Dauksa, Arijit Biswas, Muhammad Ahmer Jamil, Ioanna Dimitriou, Amit Sharma, Heike Singer, Rolf Fimmers, Holger Fröhlich, Johannes Oldenburg, Antanas Gulbinas, Wolfgang A Schulz, Osman El-Maarri. Inter-locus as well as intra-locus heterogeneity in LINE-1 promoter methylation in common human cancers suggests selective demethylation pressure at specific CpGs. Clinical Epigenetics 2015, 7 (1) https://doi.org/10.1186/s13148-015-0051-y
    29. Marwa Kharrat, Ines Hsairi, Nourhene Fendri-Kriaa, Houda Kenoun, Houda Ben Othmen, Afif Ben Mahmoud, Rania Ghorbel, Imen Abid, Chahnez Triki, Faiza Fakhfakh. A Novel Mutation p.A59P in N-Terminal Domain of Methyl-CpG–Binding Protein 2 Confers Phenotypic Variability in 3 Cases of Tunisian Rett Patients. Journal of Child Neurology 2015, 30 (13) , 1715-1721. https://doi.org/10.1177/0883073815578529
    30. Tugba G. Kucukkal, Emil Alexov. Structural, Dynamical, and Energetical Consequences of Rett Syndrome Mutation R133C in MeCP2. Computational and Mathematical Methods in Medicine 2015, 2015 , 1-9. https://doi.org/10.1155/2015/746157
    31. Elisa Bellini, Giulio Pavesi, Isabella Barbiero, Anna Bergo, Chetan Chandola, Mohammad S. Nawaz, Laura Rusconi, Gilda Stefanelli, Marta Strollo, Maria M. Valente, Charlotte Kilstrup-Nielsen, Nicoletta Landsberger. MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis?. Frontiers in Cellular Neuroscience 2014, 8 https://doi.org/10.3389/fncel.2014.00236
    32. Hao Deng, Wen Zheng, Zhi Song. Genetics, Molecular Biology, and Phenotypes of X-Linked Epilepsy. Molecular Neurobiology 2014, 49 (3) , 1166-1180. https://doi.org/10.1007/s12035-013-8589-1
    33. Tugba Kucukkal, Ye Yang, Susan Chapman, Weiguo Cao, Emil Alexov. Computational and Experimental Approaches to Reveal the Effects of Single Nucleotide Polymorphisms with Respect to Disease Diagnostics. International Journal of Molecular Sciences 2014, 15 (6) , 9670-9717. https://doi.org/10.3390/ijms15069670
    34. Dag H. Yasui, Michael L. Gonzales, Justin O. Aflatooni, Florence K. Crary, Daniel J. Hu, Bryant J. Gavino, Mari S. Golub, John B. Vincent, N. Carolyn Schanen, Carl O. Olson, Mojgan Rastegar, Janine M. Lasalle. Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome. Human Molecular Genetics 2014, 23 (9) , 2447-2458. https://doi.org/10.1093/hmg/ddt640
    35. D. P. Stuss, M. Cheema, M. K. Ng, A. Martinez de Paz, B. Williamson, K. Missiaen, J. D. Cosman, D. McPhee, M. Esteller, M. Hendzel, K. Delaney, J. Ausio. Impaired in vivo binding of MeCP2 to chromatin in the absence of its DNA methyl-binding domain. Nucleic Acids Research 2013, 41 (9) , 4888-4900. https://doi.org/10.1093/nar/gkt213
    36. Clayton K. Collings, Peter J. Waddell, John N. Anderson. Effects of DNA methylation on nucleosome stability. Nucleic Acids Research 2013, 41 (5) , 2918-2931. https://doi.org/10.1093/nar/gks893
    37. Annette Becker, Lena Allmann, Maria Hofstätter, Valentina Casà, Patrick Weber, Anne Lehmkuhl, Henry D. Herce, M. Cristina Cardoso, . Direct Homo- and Hetero-Interactions of MeCP2 and MBD2. PLoS ONE 2013, 8 (1) , e53730. https://doi.org/10.1371/journal.pone.0053730
    38. Simona Dumitriu, Enriko Klootwijk, Naomi Issler, Horia Stanescu, Robert Kleta, Maria Puiu. Mutation analysis of the MECP2 gene in Romanian females with Rett syndrome. Romanian Review of Laboratory Medicine 2013, 21 (4) https://doi.org/10.2478/rrlm-2013-0038
    39. Don-Marc Franchini, Kerstin-Maike Schmitz, Svend K. Petersen-Mahrt. 5-Methylcytosine DNA Demethylation: More Than Losing a Methyl Group. Annual Review of Genetics 2012, 46 (1) , 419-441. https://doi.org/10.1146/annurev-genet-110711-155451
    40. Marian Mellén, Pinar Ayata, Scott Dewell, Skirmantas Kriaucionis, Nathaniel Heintz. MeCP2 Binds to 5hmC Enriched within Active Genes and Accessible Chromatin in the Nervous System. Cell 2012, 151 (7) , 1417-1430. https://doi.org/10.1016/j.cell.2012.11.022
    41. Bianca Bertulat, Maria Luigia De Bonis, Floriana Della Ragione, Anne Lehmkuhl, Manuela Milden, Christian Storm, K. Laurence Jost, Simona Scala, Brian Hendrich, Maurizio D’Esposito, M. Cristina Cardoso, . MeCP2 Dependent Heterochromatin Reorganization during Neural Differentiation of a Novel Mecp2-Deficient Embryonic Stem Cell Reporter Line. PLoS ONE 2012, 7 (10) , e47848. https://doi.org/10.1371/journal.pone.0047848
    42. Loredana Zocchi, Paolo Sassone-Corsi. SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 2012, 7 (7) , 695-700. https://doi.org/10.4161/epi.20733
    43. Anita A. Thambirajah, Marlee K. Ng, Lindsay J. Frehlick, Andra Li, Jason J. Serpa, Evgeniy V. Petrotchenko, Begonia Silva-Moreno, Kristal K. Missiaen, Christoph H. Borchers, J. Adam Hall, Ryan Mackie, Frank Lutz, Brent E. Gowen, Michael Hendzel, Philippe T. Georgel, Juan Ausió. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain. Nucleic Acids Research 2012, 40 (7) , 2884-2897. https://doi.org/10.1093/nar/gkr1066
    44. Jennifer N. Sanmann, G. Bradley Schaefer, Bruce A. Buehler, Warren G. Sanger. Algorithmic Approach for Methyl-CpG Binding Protein 2 ( MECP2 ) Gene Testing in Patients With Neurodevelopmental Disabilities. Journal of Child Neurology 2012, 27 (3) , 346-354. https://doi.org/10.1177/0883073811424796
    45. Dan Su, Young May Cha, Anne E. West. Mutation of MeCP2 alters transcriptional regulation of select immediate-early genes. Epigenetics 2012, 7 (2) , 146-154. https://doi.org/10.4161/epi.7.2.18907
    46. Rose-Mary N. Boustany, Mohamad K. El-Bitar. Degenerative Disorders Primarily of Gray Matter. 2012, 518-543. https://doi.org/10.1016/B978-1-4377-0435-8.00041-X
    47. Noopur Agarwal, Annette Becker, K. Laurence Jost, Sebastian Haase, Basant K. Thakur, Alessandro Brero, Tanja Hardt, Shinichi Kudo, Heinrich Leonhardt, M. Cristina Cardoso. MeCP2 Rett mutations affect large scale chromatin organization. Human Molecular Genetics 2011, 20 (21) , 4187-4195. https://doi.org/10.1093/hmg/ddr346
    48. Chenghua Yang, Mark J. van der Woerd, Uma M. Muthurajan, Jeffrey C. Hansen, Karolin Luger. Biophysical analysis and small-angle X-ray scattering-derived structures of MeCP2–nucleosome complexes. Nucleic Acids Research 2011, 39 (10) , 4122-4135. https://doi.org/10.1093/nar/gkr005
    49. Mariko ARIYOSHI, Masahiro SHIRAKAWA. Structural Basis for Recognition of Methylated DNA in Epigenetic Regulation. Seibutsu Butsuri 2011, 51 (3) , 124-127. https://doi.org/10.2142/biophys.51.124
    50. Jeffrey C. Hansen, Rajarshi P. Ghosh, Christopher L. Woodcock. Binding of the Rett syndrome protein, MeCP2, to methylated and unmethylated DNA and chromatin. IUBMB Life 2010, 62 (10) , 732-738. https://doi.org/10.1002/iub.386
    51. Eric E. Smeets, Connie T. R. M. Schrander‐Stumpel. Rett Syndrome. 2010, 677-691. https://doi.org/10.1002/9780470893159.ch45
    52. Heng Zhang, Joe Ogas. An Epigenetic Perspective on Developmental Regulation of Seed Genes. Molecular Plant 2009, 2 (4) , 610-627. https://doi.org/10.1093/mp/ssp027
    53. Anita A. Thambirajah, James H. Eubanks, Juan Ausió. MeCP2 post-translational regulation through PEST domains: two novel hypotheses. BioEssays 2009, 31 (5) , 561-569. https://doi.org/10.1002/bies.200800220
    54. Nurit Ballas, Daniel T Lioy, Christopher Grunseich, Gail Mandel. Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nature Neuroscience 2009, 12 (3) , 311-317. https://doi.org/10.1038/nn.2275
    55. Mário Campos, Cláudia Bueno Abdalla, Adriana Vaz dos Santos, Cristiane Pinheiro Pestana, Jussara Mendonça dos Santos, Cíntia Barros Santos-Rebouças, Márcia Mattos Gonçalves Pimentel. A MECP2 mutation in a highly conserved aminoacid causing mental retardation in a male. Brain and Development 2009, 31 (2) , 176-178. https://doi.org/10.1016/j.braindev.2008.07.001
    56. Kristopher C. Hite, Valerie H. Adams, Jeffrey C. Hansen. Recent advances in MeCP2 structure and functionThis paper is one of a selection of papers published in this Special Issue, entitled 29th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal’s usual peer review process.. Biochemistry and Cell Biology 2009, 87 (1) , 219-227. https://doi.org/10.1139/O08-115
    57. J. Singh, A. Saxena, J. Christodoulou, D. Ravine. MECP2 genomic structure and function: insights from ENCODE. Nucleic Acids Research 2008, 36 (19) , 6035-6047. https://doi.org/10.1093/nar/gkn591
    58. Jordanka Zlatanova, Corrine Seebart, Miroslav Tomschik. The linker-protein network: control of nucleosomal DNA accessibility. Trends in Biochemical Sciences 2008, 33 (6) , 247-253. https://doi.org/10.1016/j.tibs.2008.04.001
    59. Toyotaka Ishibashi, Anita A. Thambirajah, Juan Ausió. MeCP2 preferentially binds to methylated linker DNA in the absence of the terminal tail of histone H3 and independently of histone acetylation. FEBS Letters 2008, 582 (7) , 1157-1162. https://doi.org/10.1016/j.febslet.2008.03.005
    60. Asmita Kumar, Sachin Kamboj, Barbara M. Malone, Shinichi Kudo, Jeffery L. Twiss, Kirk J. Czymmek, Janine M. LaSalle, N. Carolyn Schanen. Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo. Journal of Cell Science 2008, 121 (7) , 1128-1137. https://doi.org/10.1242/jcs.016865
    61. Tatiana Nikitina, Rajarshi P. Ghosh, Rachel A. Horowitz-Scherer, Jeffrey C. Hansen, Sergei A. Grigoryev, Christopher L. Woodcock. MeCP2-Chromatin Interactions Include the Formation of Chromatosome-like Structures and Are Altered in Mutations Causing Rett Syndrome. Journal of Biological Chemistry 2007, 282 (38) , 28237-28245. https://doi.org/10.1074/jbc.M704304200
    62. Valerie H. Adams, Steven J. McBryant, Paul A. Wade, Christopher L. Woodcock, Jeffrey C. Hansen. Intrinsic Disorder and Autonomous Domain Function in the Multifunctional Nuclear Protein, MeCP2. Journal of Biological Chemistry 2007, 282 (20) , 15057-15064. https://doi.org/10.1074/jbc.M700855200
    63. Rhoswyn Griffiths, Adrian Whitehouse. Herpesvirus Saimiri Episomal Persistence Is Maintained via Interaction between Open Reading Frame 73 and the Cellular Chromosome-Associated Protein MeCP2. Journal of Virology 2007, 81 (8) , 4021-4032. https://doi.org/10.1128/JVI.02171-06
    64. Tatiana Nikitina, Xi Shi, Rajarshi P. Ghosh, Rachel A. Horowitz-Scherer, Jeffrey C. Hansen, Christopher L. Woodcock. Multiple Modes of Interaction between the Methylated DNA Binding Protein MeCP2 and Chromatin. Molecular and Cellular Biology 2007, 27 (3) , 864-877. https://doi.org/10.1128/MCB.01593-06
    65. Mei-rong Li, Hong Pan, Xin-Hua Bao, Yu-Zhi Zhang, Xi-Ru Wu. MECP2 and CDKL5 gene mutation analysis in Chinese patients with Rett syndrome. Journal of Human Genetics 2007, 52 (1) , 38-47. https://doi.org/10.1007/s10038-006-0079-0
    66. Zhaolan Zhou, Elizabeth J. Hong, Sonia Cohen, Wen-ning Zhao, Hsin-yi Henry Ho, Lauren Schmidt, Wen G. Chen, Yingxi Lin, Erin Savner, Eric C. Griffith, Linda Hu, Judith A.J. Steen, Charles J. Weitz, Michael E. Greenberg. Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation. Neuron 2006, 52 (2) , 255-269. https://doi.org/10.1016/j.neuron.2006.09.037
    67. Mehrnaz Fatemi, Paul A. Wade. MBD family proteins: reading the epigenetic code. Journal of Cell Science 2006, 119 (15) , 3033-3037. https://doi.org/10.1242/jcs.03099
    68. Thierry Bienvenu, Jamel Chelly. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nature Reviews Genetics 2006, 7 (6) , 415-426. https://doi.org/10.1038/nrg1878
    69. Uta Francke. Mechanisms of Disease: neurogenetics of MeCP2 deficiency. Nature Clinical Practice Neurology 2006, 2 (4) , 212-221. https://doi.org/10.1038/ncpneuro0148
    70. Steven J. McBryant, Valerie H. Adams, Jeffrey C. Hansen. Chromatin architectural proteins. Chromosome Research 2006, 14 (1) , 39-51. https://doi.org/10.1007/s10577-006-1025-x
    71. C. Philippe, L. Villard, N. De Roux, M. Raynaud, J.P. Bonnefond, L. Pasquier, G. Lesca, J. Mancini, P. Jonveaux, A. Moncla, J. Chelly, T. Bienvenu. Spectrum and distribution of MECP2 mutations in 424 Rett syndrome patients: a molecular update. European Journal of Medical Genetics 2006, 49 (1) , 9-18. https://doi.org/10.1016/j.ejmg.2005.04.003
    72. Peter Huppke, Jutta Gärtner. Molecular Diagnosis of Rett Syndrome. Journal of Child Neurology 2005, 20 (9) , 732-736. https://doi.org/10.1177/08830738050200090601
    73. Huda Y. Zoghbi. MeCP2 Dysfunction in Humans and Mice. Journal of Child Neurology 2005, 20 (9) , 736-740. https://doi.org/10.1177/08830738050200090701
    74. Jordanka Zlatanova. MeCP2: the chromatin connection and beyond. Biochemistry and Cell Biology 2005, 83 (3) , 251-262. https://doi.org/10.1139/o05-048
    75. Paul A Wade. SWItching off methylated DNA. Nature Genetics 2005, 37 (3) , 212-213. https://doi.org/10.1038/ng0305-212
    76. E. Smeets, P. Terhal, P. Casaer, A. Peters, A. Midro, E. Schollen, K. van Roozendaal, U. Moog, G. Matthijs, J. Herbergs, H. Smeets, L. Curfs, C. Schrander‐Stumpel, J.P. Fryns. Rett syndrome in females with CTS hot spot deletions: A disorder profile. American Journal of Medical Genetics Part A 2005, 132A (2) , 117-120. https://doi.org/10.1002/ajmg.a.30410
    77. Eric E. Smeets, Connie T. R. M. Schrander‐Stumpel. R ett Syndrome. 2005https://doi.org/10.1002/0471695998.mgs038
    78. Peter H. Lapchak, Michael Melter, Soumitro Pal, Jesse A. Flaxenburg, Christopher Geehan, Markus H. Frank, Debabrata Mukhopadhyay, David M. Briscoe. CD40-induced transcriptional activation of vascular endothelial growth factor involves a 68-bp region of the promoter containing a CpG island. American Journal of Physiology-Renal Physiology 2004, 287 (3) , F512-F520. https://doi.org/10.1152/ajprenal.00070.2004
    79. Stella Carro, Anna Bergo, Mauro Mengoni, Angela Bachi, Gianfranco Badaracco, Charlotte Kilstrup-Nielsen, Nicoletta Landsberger. A Novel Protein, Xenopus p20, Influences the Stability of MeCP2 through Direct Interaction. Journal of Biological Chemistry 2004, 279 (24) , 25623-25631. https://doi.org/10.1074/jbc.M402571200
    80. Jeffrey L. Neul, Huda Y. Zoghbi. Rett Syndrome: A Prototypical Neurodevelopmental Disorder. The Neuroscientist 2004, 10 (2) , 118-128. https://doi.org/10.1177/1073858403260995
    81. Nicholas L Adkins, Meagan Watts, Philippe T Georgel. To the 30-nm chromatin fiber and beyond. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 2004, 1677 (1-3) , 12-23. https://doi.org/10.1016/j.bbaexp.2003.09.013
    82. Alexander Kagansky, Lita Freeman, Dmitry Lukyanov, Alexander Strunnikov. Histone Tail-independent Chromatin Binding Activity of Recombinant Cohesin Holocomplex. Journal of Biological Chemistry 2004, 279 (5) , 3382-3388. https://doi.org/10.1074/jbc.M306078200
    83. Mitsuru Okuwaki, Alain Verreault. Maintenance DNA Methylation of Nucleosome Core Particles. Journal of Biological Chemistry 2004, 279 (4) , 2904-2912. https://doi.org/10.1074/jbc.M310111200
    84. Simon P Chandler, Pushpa Kansagra, Mark C Hirst. Fragile X (CGG)n repeats induce a transcriptional repression in cis upon a linked promoter: Evidence for a chromatin mediated effect. BMC Molecular Biology 2003, 4 (1) https://doi.org/10.1186/1471-2199-4-3
    85. S. Kriaucionis, A. Bird. DNA methylation and Rett syndrome. Human Molecular Genetics 2003, 12 (suppl 2) , R221-R227. https://doi.org/10.1093/hmg/ddg286
    86. E. Smeets, E. Schollen, U. Moog, G. Matthijs, J. Herbergs, H. Smeets, L. Curfs, C. Schrander‐Stumpel, J.P. Fryns. Rett syndrome in adolescent and adult females: Clinical and molecular genetic findings. American Journal of Medical Genetics Part A 2003, 122A (3) , 227-233. https://doi.org/10.1002/ajmg.a.20321
    87. Gabriel Miltenberger-Miltenyi, Franco Laccone. Mutations and polymorphisms in the human methyl CpG-binding protein MECP2. Human Mutation 2003, 22 (2) , 107-115. https://doi.org/10.1002/humu.10243
    88. Philippe T. Georgel, Rachel A. Horowitz-Scherer, Nick Adkins, Christopher L. Woodcock, Paul A. Wade, Jeffrey C. Hansen. Chromatin Compaction by Human MeCP2. Journal of Biological Chemistry 2003, 278 (34) , 32181-32188. https://doi.org/10.1074/jbc.M305308200
    89. Francesca L. Conforti, Rosalucia Mazzei, Angela Magariello, Alessandra Patitucci, Anna L. Gabriele, Maria Muglia, Aldo Quattrone, Agata Fiumara, Rita Barone, Lorenzo Pavone, Rita Nisticò, Loredana Mangone. Mutation analysis of the MECP2 gene in patients with Rett syndrome. American Journal of Medical Genetics Part A 2003, 117A (2) , 184-187. https://doi.org/10.1002/ajmg.a.10898
    90. Fe Lobo‐Menendez, Khalid Sossey‐Alaoui, Jennifer M. Bell, Susan A. Copeland‐Yates, Sara M. Plank, Stewart O. Sanford, Cindy Skinner, Richard J. Simensen, Richard J. Schroer, Ron C. Michaelis. Absence of MeCP2 mutations in patients from the South Carolina autism project. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 2003, 117B (1) , 97-101. https://doi.org/10.1002/ajmg.b.10016
    91. Schahram Akbarian. The Neurobiology of Rett Syndrome. The Neuroscientist 2003, 9 (1) , 57-63. https://doi.org/10.1177/1073858402239591
    92. Mona D. Shahbazian, Huda Y. Zoghbi. Rett Syndrome and MeCP2: Linking Epigenetics and Neuronal Function. The American Journal of Human Genetics 2002, 71 (6) , 1259-1272. https://doi.org/10.1086/345360
    93. Anita Krithivas, Masahiro Fujimuro, Magdalena Weidner, David B. Young, S. Diane Hayward. Protein Interactions Targeting the Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus to Cell Chromosomes. Journal of Virology 2002, 76 (22) , 11596-11604. https://doi.org/10.1128/JVI.76.22.11596-11604.2002
    94. Fyodor D. Urnov. Methylation and the Genome: the Power of a Small Amendment. The Journal of Nutrition 2002, 132 (8) , 2450S-2456S. https://doi.org/10.1093/jn/132.8.2450S
    95. Fyodor D. Urnov, Alan P. Wolffe. The Nucleus. 2002, 47-83. https://doi.org/10.1016/B978-012174597-4.50005-3
    96. Anne Moncla, Arlette Kpebe, Chantal Missirian, Josette Mancini, Laurent Villard. Polymorphisms in the C-terminal domain of MECP2 in mentally handicapped boys: implications for genetic counselling. European Journal of Human Genetics 2002, 10 (1) , 86-89. https://doi.org/10.1038/sj.ejhg.5200761
    97. Sara Hammer, Naghmeh Dorrani, Joanna Dragich, Shinichi Kudo, Carolyn Schanen. The phenotypic consequences of MECP2 mutations extend beyond rett syndrome. Mental Retardation and Developmental Disabilities Research Reviews 2002, 8 (2) , 94-98. https://doi.org/10.1002/mrdd.10023
    98. Ignatia B. Van den Veyver, Huda Y. Zoghbi. Genetic basis of rett syndrome. Mental Retardation and Developmental Disabilities Research Reviews 2002, 8 (2) , 82-86. https://doi.org/10.1002/mrdd.10025
    99. Bruria Ben Zeev, Yuval Yaron, N. Carolyn Schanen, Haika Wolf, Nathan Brandt, Nathan Ginot, Ruth Shomrat, Avi Orr-Urtreger. . Journal of Child Neurology 2002, 17 (1) , 20. https://doi.org/10.1177/088307380201700105
    100. Xinsheng Nan, Adrian Bird. The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome. Brain and Development 2001, 23 , S32-S37. https://doi.org/10.1016/S0387-7604(01)00333-3
    Load all citations

    Biochemistry

    Cite this: Biochemistry 1999, 38, 22, 7008–7018
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi990224y
    Published May 8, 1999
    Copyright © 1999 American Chemical Society

    Article Views

    822

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.