ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES
RETURN TO ISSUEAccelerated Publicat...Accelerated PublicationNEXT

The Aβ Peptide of Alzheimer's Disease Directly Produces Hydrogen Peroxide through Metal Ion Reduction

View Author Information
Laboratory for Oxidation Biology, Genetics and Aging Unit, and Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts 02129, ZMBH−Center for Molecular Biology, Heidelberg, University of Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, and Genetics and Aging Unit and Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts 02129
Cite this: Biochemistry 1999, 38, 24, 7609–7616
Publication Date (Web):May 27, 1999
https://doi.org/10.1021/bi990438f
Copyright © 1999 American Chemical Society
Article Views
4308
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (97 KB)

Abstract

Oxidative stress markers characterize the neuropathology both of Alzheimer's disease and of amyloid-bearing transgenic mice. The neurotoxicity of amyloid Aβ peptides has been linked to peroxide generation in cell cultures by an unknown mechanism. We now show that human Aβ directly produces hydrogen peroxide (H2O2) by a mechanism that involves the reduction of metal ions, Fe(III) or Cu(II), setting up conditions for Fenton-type chemistry. Spectrophotometric experiments establish that the Aβ peptide reduces Fe(III) and Cu(II) to Fe(II) and Cu(I), respectively. Spectrochemical techniques are used to show that molecular oxygen is then trapped by Aβ and reduced to H2O2 in a reaction that is driven by substoichiometric amounts of Fe(II) or Cu(I). In the presence of Cu(II) or Fe(III), Aβ produces a positive thiobarbituric-reactive substance (TBARS) assay, compatible with the generation of the hydroxyl radical (OH·). The amounts of both reduced metal and TBARS reactivity are greatest when generated by Aβ1−42 ≫ Aβ1−40 > rat Aβ1−40, a chemical relationship that correlates with the participation of the native peptides in amyloid pathology. These findings indicate that the accumulation of Aβ could be a direct source of oxidative stress in Alzheimer's disease.

 This work was supported by funds from Prana Corp., NIH (1R29AG12686), Alliance for Aging Research (Paul Beeson Physician Faculty Scholar in Aging Research Award to A.I.B.), and the International Life Sciences Institute. X.H. is a recipient of a National Research Service Award (NIA).

 Genetics and Aging Unit and Department of Psychiatry, Massachusetts General Hospital.

§

 University of Heidelberg.

 Genetics and Aging Unit and Department of Neurology, Massachusetts General Hospital.

*

 Correspondence should be addressed to this author at the Laboratory for Oxidation Biology, Genetics and Aging Unit, Massachusetts General Hospital East, Building 149, 13th St., Charlestown, MA 02129. Phone:  617-726-8244. Fax:  617-724-9610. Email:  [email protected] helix.mgh.harvard.edu.

Cited By

This article is cited by 866 publications.

  1. Kelly L. Summers, Graham Roseman, Kevin M. Schilling, Natalia V. Dolgova, M. Jake Pushie, Dimosthenis Sokaras, Thomas Kroll, Hugh H. Harris, Glenn L. Millhauser, Ingrid J. Pickering, Graham N. George. Alzheimer’s Drug PBT2 Interacts with the Amyloid β 1–42 Peptide Differently than Other 8-Hydroxyquinoline Chelating Drugs. Inorganic Chemistry 2022, 61 (37) , 14626-14640. https://doi.org/10.1021/acs.inorgchem.2c01694
  2. Brijesh Singh Chauhan, Abhishek Rai, Avinash Kumar Sonkar, Kamini Tripathi, Sonal Upadhyay, Lallan Mishra, Saripella Srikrishna. Neuroprotective Activity of a Novel Synthetic Rhodamine-Based Hydrazone against Cu2+-Induced Alzheimer’s Disease in Drosophila. ACS Chemical Neuroscience 2022, 13 (10) , 1566-1579. https://doi.org/10.1021/acschemneuro.2c00144
  3. Ana P. Araujo de Oliveira, Victoria C. Romero Colmenares, Renata Diniz, Jennifer T. J. Freitas, Clara M. da Cruz, Eduardo B. Lages, Lucas A. M. Ferreira, Rafael P. Vieira, Heloisa Beraldo. Memantine-Derived Schiff Bases as Transdermal Prodrug Candidates. ACS Omega 2022, 7 (14) , 11678-11687. https://doi.org/10.1021/acsomega.1c06571
  4. Tao Chen, Yuanhong Min, Xiao Yang, Hao Gong, Xiaoying Tian, Li Liu, Yanhua Hou, Wensheng Fu. Designing CoS1.035 Nanoparticles Anchored on N-Doped Carbon Dodecahedron as Dual-Enzyme Mimics for the Colorimetric Detection of H2O2 and Glutathione. ACS Omega 2022, 7 (13) , 11135-11147. https://doi.org/10.1021/acsomega.1c07264
  5. Xinyu Li, Yiyu Zhang, Hui-wang Ai. Ratiometric Imaging of Mitochondrial Hydrogen Peroxide in Aβ42-Mediated Neurotoxicity. ACS Sensors 2022, 7 (3) , 722-729. https://doi.org/10.1021/acssensors.1c01381
  6. Jack Devonport, Nikolett Bodnár, Andrew McGown, Mahmoud Bukar Maina, Louise C. Serpell, Csilla Kállay, John Spencer, George E. Kostakis. Salpyran: A Cu(II) Selective Chelator with Therapeutic Potential. Inorganic Chemistry 2021, 60 (20) , 15310-15320. https://doi.org/10.1021/acs.inorgchem.1c01912
  7. Elena Álvarez-Marimon, Hiram Castillo-Michel, Juan Reyes-Herrera, Jofre Seira, Ester Aso, Margarita Carmona, Isidre Ferrer, Josep Cladera, Núria Benseny-Cases. Synchrotron X-ray Fluorescence and FTIR Signatures for Amyloid Fibrillary and Nonfibrillary Plaques. ACS Chemical Neuroscience 2021, 12 (11) , 1961-1971. https://doi.org/10.1021/acschemneuro.1c00048
  8. Rajsekhar Roy, Krishnangsu Pradhan, Juhee Khan, Gaurav Das, Nabanita Mukherjee, Durba Das, Surajit Ghosh. Human Serum Albumin-Inspired Glycopeptide-Based Multifunctional Inhibitor of Amyloid-β Toxicity. ACS Omega 2020, 5 (30) , 18628-18641. https://doi.org/10.1021/acsomega.0c01028
  9. Nalini Vijay Gorantla, Vinod G. Landge, Pramod Gudigenahally Nagaraju, Poornima Priyadarshini CG, Ekambaram Balaraman, Subashchandrabose Chinnathambi. Molecular Cobalt(II) Complexes for Tau Polymerization in Alzheimer’s Disease. ACS Omega 2019, 4 (16) , 16702-16714. https://doi.org/10.1021/acsomega.9b00692
  10. Bowen Yang, Yu Chen, Jianlin Shi. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews 2019, 119 (8) , 4881-4985. https://doi.org/10.1021/acs.chemrev.8b00626
  11. Jie Wang, Yingqian Wang, Xiaoxia Hu, Chunli Zhu, Qinqin Ma, Ling Liang, Zhihao Li, Quan Yuan. Dual-Aptamer-Conjugated Molecular Modulator for Detecting Bioactive Metal Ions and Inhibiting Metal-Mediated Protein Aggregation. Analytical Chemistry 2019, 91 (1) , 823-829. https://doi.org/10.1021/acs.analchem.8b03007
  12. Ankita Sarkar, Kushal Sengupta, Sudipta Chatterjee, Manas Seal, Peter Faller, Somdatta Ghosh Dey, Abhishek Dey. Metal Binding to Aβ Peptides Inhibits Interaction with Cytochrome c: Insights from Abiological Constructs. ACS Omega 2018, 3 (10) , 13994-14003. https://doi.org/10.1021/acsomega.8b01736
  13. Paul Girvan, Xiangyu Teng, Nicholas J. Brooks, Geoffrey S. Baldwin, Liming Ying. Redox Kinetics of the Amyloid-β-Cu Complex and Its Biological Implications. Biochemistry 2018, 57 (43) , 6228-6233. https://doi.org/10.1021/acs.biochem.8b00133
  14. Limin Zhang, Yang Tian. Designing Recognition Molecules and Tailoring Functional Surfaces for In Vivo Monitoring of Small Molecules in the Brain. Accounts of Chemical Research 2018, 51 (3) , 688-696. https://doi.org/10.1021/acs.accounts.7b00543
  15. Pei Kun R. Tay, Peter Q. Nguyen, and Neel S. Joshi . A Synthetic Circuit for Mercury Bioremediation Using Self-Assembling Functional Amyloids. ACS Synthetic Biology 2017, 6 (10) , 1841-1850. https://doi.org/10.1021/acssynbio.7b00137
  16. Yeu-Ching Shi, Tzu-Ming Pan, and Vivian Hsiu-Chuan Liao . Monascin from Monascus-Fermented Products Reduces Oxidative Stress and Amyloid-β Toxicity via DAF-16/FOXO in Caenorhabditis elegans. Journal of Agricultural and Food Chemistry 2016, 64 (38) , 7114-7120. https://doi.org/10.1021/acs.jafc.6b02779
  17. Rong Sheng, Li Tang, Liu Jiang, Lingjuan Hong, Ying Shi, Naiming Zhou, and Yongzhou Hu . Novel 1-Phenyl-3-hydroxy-4-pyridinone Derivatives as Multifunctional Agents for the Therapy of Alzheimer’s Disease. ACS Chemical Neuroscience 2016, 7 (1) , 69-81. https://doi.org/10.1021/acschemneuro.5b00224
  18. Alexey Potapov, Wai-Ming Yau, Rodolfo Ghirlando, Kent R. Thurber, and Robert Tycko . Successive Stages of Amyloid-β Self-Assembly Characterized by Solid-State Nuclear Magnetic Resonance with Dynamic Nuclear Polarization. Journal of the American Chemical Society 2015, 137 (25) , 8294-8307. https://doi.org/10.1021/jacs.5b04843
  19. Xiangtao Kong, Zhi Zhao, Xin Lei, Bingbing Zhang, Dongxu Dai, and Ling Jiang . Interaction of Metal Ions with the His13-His14 Sequence Relevant to Alzheimer’s Disease. The Journal of Physical Chemistry A 2015, 119 (14) , 3528-3534. https://doi.org/10.1021/acs.jpca.5b01443
  20. Núria Benseny-Cases, Oxana Klementieva, Marine Cotte, Isidre Ferrer, and Josep Cladera . Microspectroscopy (μFTIR) Reveals Co-localization of Lipid Oxidation and Amyloid Plaques in Human Alzheimer Disease Brains. Analytical Chemistry 2014, 86 (24) , 12047-12054. https://doi.org/10.1021/ac502667b
  21. Gulshan R. Walke, Srikanth Rapole, and Prasad P. Kulkarni . Cisplatin Inhibits the Formation of a Reactive Intermediate during Copper-Catalyzed Oxidation of Amyloid β Peptide. Inorganic Chemistry 2014, 53 (19) , 10003-10005. https://doi.org/10.1021/ic5007764
  22. Linyi Zhu, Yuchun Han, Chengqian He, Xu Huang, and Yilin Wang . Disaggregation Ability of Different Chelating Molecules on Copper Ion-Triggered Amyloid Fibers. The Journal of Physical Chemistry B 2014, 118 (31) , 9298-9305. https://doi.org/10.1021/jp503282m
  23. Giovanni La Penna, Christelle Hureau, Oliviero Andreussi, and Peter Faller . Identifying, By First-Principles Simulations, Cu[Amyloid-β] Species Making Fenton-Type Reactions in Alzheimer’s Disease. The Journal of Physical Chemistry B 2013, 117 (51) , 16455-16467. https://doi.org/10.1021/jp410046w
  24. Tatiana Stoilova, Laura Colombo, Gianluigi Forloni, Fabrizio Tagliavini, and Mario Salmona . A New Face for Old Antibiotics: Tetracyclines in Treatment of Amyloidoses. Journal of Medicinal Chemistry 2013, 56 (15) , 5987-6006. https://doi.org/10.1021/jm400161p
  25. Chuanjun Lu, Yueyan Guo, Jun Yan, Zonghua Luo, Hai-Bin Luo, Ming Yan, Ling Huang, and Xingshu Li . Design, Synthesis, and Evaluation of Multitarget-Directed Resveratrol Derivatives for the Treatment of Alzheimer’s Disease. Journal of Medicinal Chemistry 2013, 56 (14) , 5843-5859. https://doi.org/10.1021/jm400567s
  26. Jie Geng, Meng Li, Li Wu, Jinsong Ren, and Xiaogang Qu . Liberation of Copper from Amyloid Plaques: Making a Risk Factor Useful for Alzheimer’s Disease Treatment. Journal of Medicinal Chemistry 2012, 55 (21) , 9146-9155. https://doi.org/10.1021/jm3003813
  27. I. W. Hamley . The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chemical Reviews 2012, 112 (10) , 5147-5192. https://doi.org/10.1021/cr3000994
  28. Peter J. Crouch and Kevin J. Barnham . Therapeutic Redistribution of Metal Ions To Treat Alzheimer’s Disease. Accounts of Chemical Research 2012, 45 (9) , 1604-1611. https://doi.org/10.1021/ar300074t
  29. Jiyeong Chun, Ghibom Bhak, Sang-Gil Lee, Ji-Hye Lee, Daekyun Lee, Kookheon Char, and Seung R. Paik . κ-Casein-Based Hierarchical Suprastructures and Their Use for Selective Temporal and Spatial Control over Neuronal Differentiation. Biomacromolecules 2012, 13 (9) , 2731-2738. https://doi.org/10.1021/bm300692k
  30. Gözde Eskici and Paul H. Axelsen . Copper and Oxidative Stress in the Pathogenesis of Alzheimer’s Disease. Biochemistry 2012, 51 (32) , 6289-6311. https://doi.org/10.1021/bi3006169
  31. Jeppe T. Pedersen, Christelle Hureau, Lars Hemmingsen, Niels H. H. Heegaard, Jesper Østergaard, Milan Vašák, and Peter Faller . Rapid Exchange of Metal between Zn7–Metallothionein-3 and Amyloid-β Peptide Promotes Amyloid-Related Structural Changes. Biochemistry 2012, 51 (8) , 1697-1706. https://doi.org/10.1021/bi201774z
  32. Debajyoti Pramanik, Chandradeep Ghosh, and Somdatta Ghosh Dey . Heme–Cu Bound Aβ Peptides: Spectroscopic Characterization, Reactivity, and Relevance to Alzheimer’s Disease. Journal of the American Chemical Society 2011, 133 (39) , 15545-15552. https://doi.org/10.1021/ja204628b
  33. Byong-kyu Shin and Sunil Saxena . Substantial Contribution of the Two Imidazole Rings of the His13−His14 Dyad to Cu(II) Binding in Amyloid-β(1−16) at Physiological pH and Its Significance. The Journal of Physical Chemistry A 2011, 115 (34) , 9590-9602. https://doi.org/10.1021/jp200379m
  34. Qiang Wang, Nick H. Werstiuk, James R. Kramer, and Russell A. Bell . Effects of Cu Ions and Explicit Water Molecules on the Copper Binding Domain of Amyloid Precursor Protein APP(131–189): A Molecular Dynamics Study. The Journal of Physical Chemistry B 2011, 115 (29) , 9224-9235. https://doi.org/10.1021/jp200260e
  35. Sudhakar Parthasarathy, Fei Long, Yifat Miller, Yiling Xiao, Dan McElheny, Kent Thurber, Buyong Ma, Ruth Nussinov, and Yoshitaka Ishii . Molecular-Level Examination of Cu2+ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer’s β by Solid-State NMR Spectroscopy. Journal of the American Chemical Society 2011, 133 (10) , 3390-3400. https://doi.org/10.1021/ja1072178
  36. Heather A. Feaga, Richard C. Maduka, Monique N. Foster, and Veronika A. Szalai . Affinity of Cu+ for the Copper-Binding Domain of the Amyloid-β Peptide of Alzheimer’s Disease. Inorganic Chemistry 2011, 50 (5) , 1614-1618. https://doi.org/10.1021/ic100967s
  37. Debajyoti Pramanik and Somdatta Ghosh Dey. Active Site Environment of Heme-Bound Amyloid β Peptide Associated with Alzheimer’s Disease. Journal of the American Chemical Society 2011, 133 (1) , 81-87. https://doi.org/10.1021/ja1084578
  38. Mukesh Maheshwari, Jessica K. Roberts, Brent DeSutter, Karen T. Duong, Joseph Tingling, Janelle N. Fawver, Hayley E. Schall, Michael Kahle, and Ian V. J. Murray. Hydralazine Modifies Aβ Fibril Formation and Prevents Modification by Lipids in Vitro. Biochemistry 2010, 49 (49) , 10371-10380. https://doi.org/10.1021/bi101249p
  39. Hailin Zheng, Moussa B. H. Youdim, and Mati Fridkin . Selective Acetylcholinesterase Inhibitor Activated by Acetylcholinesterase Releases an Active Chelator with Neurorescuing and Anti-Amyloid Activities. ACS Chemical Neuroscience 2010, 1 (11) , 737-746. https://doi.org/10.1021/cn100069c
  40. Chengshan Wang, Lin Liu, Lin Zhang, Yong Peng, and Feimeng Zhou. Redox Reactions of the α-Synuclein−Cu2+ Complex and Their Effects on Neuronal Cell Viability. Biochemistry 2010, 49 (37) , 8134-8142. https://doi.org/10.1021/bi1010909
  41. Dianlu Jiang, Xiangjun Li, Lin Liu, Gargey B. Yagnik and Feimeng Zhou. Reaction Rates and Mechanism of the Ascorbic Acid Oxidation by Molecular Oxygen Facilitated by Cu(II)-Containing Amyloid-β Complexes and Aggregates. The Journal of Physical Chemistry B 2010, 114 (14) , 4896-4903. https://doi.org/10.1021/jp9095375
  42. Drew S. Folk and Katherine J. Franz. A Prochelator Activated by β-Secretase Inhibits Aβ Aggregation and Suppresses Copper-Induced Reactive Oxygen Species Formation. Journal of the American Chemical Society 2010, 132 (14) , 4994-4995. https://doi.org/10.1021/ja100943r
  43. Andreana C. Leskovjan, Ariane Kretlow and Lisa M. Miller . Fourier Transform Infrared Imaging Showing Reduced Unsaturated Lipid Content in the Hippocampus of a Mouse Model of Alzheimer’s Disease. Analytical Chemistry 2010, 82 (7) , 2711-2716. https://doi.org/10.1021/ac1002728
  44. George J. Brewer. Risks of Copper and Iron Toxicity during Aging in Humans. Chemical Research in Toxicology 2010, 23 (2) , 319-326. https://doi.org/10.1021/tx900338d
  45. Małgorzata Rózga and Wojciech Bal. The Cu(II)/Aβ/Human Serum Albumin Model of Control Mechanism for Copper-Related Amyloid Neurotoxicity. Chemical Research in Toxicology 2010, 23 (2) , 298-308. https://doi.org/10.1021/tx900358j
  46. Katherine Ann Price, Aphrodite Caragounis, Brett M. Paterson, Gulay Filiz, Irene Volitakis, Colin L. Masters, Kevin J. Barnham, Paul S. Donnelly, Peter J. Crouch and Anthony R. White . Sustained Activation of Glial Cell Epidermal Growth Factor Receptor by Bis(thiosemicarbazonato) Metal Complexes Is Associated with Inhibition of Protein Tyrosine Phosphatase Activity. Journal of Medicinal Chemistry 2009, 52 (21) , 6606-6620. https://doi.org/10.1021/jm9007938
  47. Lauren E. Scott and Chris Orvig. Medicinal Inorganic Chemistry Approaches to Passivation and Removal of Aberrant Metal Ions in Disease. Chemical Reviews 2009, 109 (10) , 4885-4910. https://doi.org/10.1021/cr9000176
  48. Richard S. Glass, Gordon L. Hug, Christian Schöneich, George S. Wilson, Larisa Kuznetsova, Tang-man Lee, Malika Ammam, Edward Lorance, Thomas Nauser, Gary S. Nichol and Takuhei Yamamoto. Neighboring Amide Participation in Thioether Oxidation: Relevance to Biological Oxidation. Journal of the American Chemical Society 2009, 131 (38) , 13791-13805. https://doi.org/10.1021/ja904895u
  49. Pei-Teh Chang, Fan-Lu Kung, Rahul Subhash Talekar, Chien-Shu Chen, Shin-Yu Lai, Hsueh-Yun Lee and Ji-Wang Chern. An Improved Screening Model To Identify Inhibitors Targeting Zinc-Enhanced Amyloid Aggregation. Analytical Chemistry 2009, 81 (16) , 6944-6951. https://doi.org/10.1021/ac901011e
  50. Anat Elmann, Sharon Mordechay, Miriam Rindner, Olga Larkov, Meital Elkabetz and Uzi Ravid . Protective Effects of the Essential Oil of Salvia fruticosa and Its Constituents on Astrocytic Susceptibility to Hydrogen Peroxide-Induced Cell Death. Journal of Agricultural and Food Chemistry 2009, 57 (15) , 6636-6641. https://doi.org/10.1021/jf901162f
  51. Tingting Chen, Xiaoyong Wang, Yafeng He, Changli Zhang, Ziyi Wu, Kuo Liao, Jianjun Wang and Zijian Guo . Effects of Cyclen and Cyclam on Zinc(II)- and Copper(II)-Induced Amyloid β-Peptide Aggregation and Neurotoxicity. Inorganic Chemistry 2009, 48 (13) , 5801-5809. https://doi.org/10.1021/ic900025x
  52. Rozena Baruch-Suchodolsky and Bilha Fischer. Aβ40, either Soluble or Aggregated, Is a Remarkably Potent Antioxidant in Cell-Free Oxidative Systems. Biochemistry 2009, 48 (20) , 4354-4370. https://doi.org/10.1021/bi802361k
  53. Joon Seok Lee, Jungki Ryu and Chan Beum Park. High-Throughput Analysis of Alzheimer’s β-Amyloid Aggregation Using a Microfluidic Self-Assembly of Monomersf. Analytical Chemistry 2009, 81 (7) , 2751-2759. https://doi.org/10.1021/ac802701z
  54. Cristina Rodríguez-Rodríguez, Natalia Sánchez de Groot, Albert Rimola, Ángel Álvarez-Larena, Vega Lloveras, José Vidal-Gancedo, Salvador Ventura, Josep Vendrell, Mariona Sodupe and Pilar González-Duarte . Design, Selection, and Characterization of Thioflavin-Based Intercalation Compounds with Metal Chelating Properties for Application in Alzheimer’s Disease. Journal of the American Chemical Society 2009, 131 (4) , 1436-1451. https://doi.org/10.1021/ja806062g
  55. Rebecca C. Nadal, Stephen E. J. Rigby and John H. Viles. Amyloid β−Cu2+ Complexes in both Monomeric and Fibrillar Forms Do Not Generate H2O2 Catalytically but Quench Hydroxyl Radicals. Biochemistry 2008, 47 (44) , 11653-11664. https://doi.org/10.1021/bi8011093
  56. Rozena Baruch-Suchodolsky and Bilha Fischer. Soluble Amyloid β1−28−Copper(I)/Copper(II)/Iron(II) Complexes Are Potent Antioxidants in Cell-Free Systems. Biochemistry 2008, 47 (30) , 7796-7806. https://doi.org/10.1021/bi800114g
  57. Manjeet Singh, Madeleine Arseneault, Thomas Sanderson, Ven Murthy and Charles Ramassamy. Challenges for Research on Polyphenols from Foods in Alzheimer’s Disease: Bioavailability, Metabolism, and Cellular and Molecular Mechanisms. Journal of Agricultural and Food Chemistry 2008, 56 (13) , 4855-4873. https://doi.org/10.1021/jf0735073
  58. Lanying Q. Hatcher, Lian Hong, William D. Bush, Tessa Carducci and John D. Simon. Quantification of the Binding Constant of Copper(II) to the Amyloid-Beta Peptide. The Journal of Physical Chemistry B 2008, 112 (27) , 8160-8164. https://doi.org/10.1021/jp710806s
  59. Jungki Ryu, Koyeli Girigoswami, Chanki Ha, Sook Hee Ku and Chan Beum Park. Influence of Multiple Metal Ions on β-Amyloid Aggregation and Dissociation on a Solid Surface. Biochemistry 2008, 47 (19) , 5328-5335. https://doi.org/10.1021/bi800012e
  60. Jesse W. Karr and Veronika A. Szalai. Cu(II) Binding to Monomeric, Oligomeric, and Fibrillar Forms of the Alzheimer’s Disease Amyloid-β Peptide. Biochemistry 2008, 47 (17) , 5006-5016. https://doi.org/10.1021/bi702423h
  61. Dan Blat, Lev Weiner, Moussa B. H. Youdim and Mati Fridkin. A Novel Iron-Chelating Derivative of the Neuroprotective Peptide NAPVSIPQ Shows Superior Antioxidant and Antineurodegenerative Capabilities. Journal of Medicinal Chemistry 2008, 51 (1) , 126-134. https://doi.org/10.1021/jm070800l
  62. Lawrence M. Sayre, George Perry and Mark A. Smith . Oxidative Stress and Neurotoxicity. Chemical Research in Toxicology 2008, 21 (1) , 172-188. https://doi.org/10.1021/tx700210j
  63. Tim Storr,, Michael Merkel,, George X. Song-Zhao,, Lauren E. Scott,, David E. Green,, Meryn L. Bowen,, Katherine H. Thompson,, Brian O. Patrick,, Harvey J. Schugar, and, Chris Orvig. Synthesis, Characterization, and Metal Coordinating Ability of Multifunctional Carbohydrate-Containing Compounds for Alzheimer's Therapy. Journal of the American Chemical Society 2007, 129 (23) , 7453-7463. https://doi.org/10.1021/ja068965r
  64. Elena Gaggelli,, Henryk Kozlowski,, Daniela Valensin, and, Gianni Valensin. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis). Chemical Reviews 2006, 106 (6) , 1995-2044. https://doi.org/10.1021/cr040410w
  65. Jesse W. Karr,, Lauren J. Kaupp, and, Veronika A. Szalai. Amyloid-β Binds Cu2+ in a Mononuclear Metal Ion Binding Site. Journal of the American Chemical Society 2004, 126 (41) , 13534-13538. https://doi.org/10.1021/ja0488028
  66. Kiyoshi Fukuhara,, Ikuo Nakanishi,, Hisao Kansui,, Etsuko Sugiyama,, Mitsuhiro Kimura,, Tomokazu Shimada,, Shiro Urano,, Kentaro Yamaguchi, and, Naoki Miyata. Enhanced Radical-Scavenging Activity of a Planar Catechin Analogue. Journal of the American Chemical Society 2002, 124 (21) , 5952-5953. https://doi.org/10.1021/ja0178259
  67. Sudipta Bag, Mouli Konar, Pritam Roy, Sunando DasGupta, Swagata Dasgupta. Homocysteine thiolactone and H 2 O 2 induce amino acid modifications and alter the fibrillation propensity of the Aβ 25–35 peptide. FEBS Letters 2023, 24 https://doi.org/10.1002/1873-3468.14583
  68. Ricardo Cerón, Mariana Peimbert, Arturo Rojo-Domínguez, Hugo Nájera. Hen lysozyme fibrillogenesis, molten globule intermediate and effect of copper salts. Journal of Biomolecular Structure and Dynamics 2023, 41 (2) , 423-434. https://doi.org/10.1080/07391102.2021.2006090
  69. Yanahi Posadas, Víctor E. López-Guerrero, Trinidad Arcos-López, Richard I. Sayler, Carolina Sánchez-López, José Segovia, Claudia Perez-Cruz, Liliana Quintanar. The role of d-block metal ions in neurodegenerative diseases. 2023, 575-628. https://doi.org/10.1016/B978-0-12-823144-9.00115-1
  70. Ran Xiao, Rui Liang, Yun-hui Cai, Jie Dong, Lin Zhang. Computational screening for new neuroprotective ingredients against Alzheimer's disease from bilberry by cheminformatics approaches. Frontiers in Nutrition 2022, 9 https://doi.org/10.3389/fnut.2022.1061552
  71. Ying Xu, Ting Deng, Linjiang Xie, Tao Qin, Tao Sun. Neuroprotective effects of hawthorn leaf flavonoids in Aβ 25–35 ‐induced Alzheimer's disease model. Phytotherapy Research 2022, https://doi.org/10.1002/ptr.7690
  72. Stefania Merighi, Manuela Nigro, Alessia Travagli, Stefania Gessi. Microglia and Alzheimer’s Disease. International Journal of Molecular Sciences 2022, 23 (21) , 12990. https://doi.org/10.3390/ijms232112990
  73. Gaewyn Ellison, Lelinh Duong, Ashley Hollings, Daryl Howard, Connie Jackaman, Mark J Hackett. Characterising murine hippocampal iron homeostasis, in relation to markers of brain inflammation and metabolism, during ageing. Metallomics 2022, 14 (10) https://doi.org/10.1093/mtomcs/mfac064
  74. Amit Pal, Giselle Cerchiaro, Isha Rani, Mariacarla Ventriglia, Mauro Rongioletti, Antonio Longobardi, Rosanna Squitti. Iron in Alzheimer’s Disease: From Physiology to Disease Disabilities. Biomolecules 2022, 12 (9) , 1248. https://doi.org/10.3390/biom12091248
  75. Yunhui Cai, Ran Xiao, Yadan Zhang, Diya Xu, Ni Wang, Mengze Han, Yili Zhang, Lin Zhang, Wenhua Zhou. DHPA Protects SH-SY5Y Cells from Oxidative Stress-Induced Apoptosis via Mitochondria Apoptosis and the Keap1/Nrf2/HO-1 Signaling Pathway. Antioxidants 2022, 11 (9) , 1794. https://doi.org/10.3390/antiox11091794
  76. Jingjing Lin, Hanhan Li, Jingxuan Guo, Yue Xu, Hua Li, Jun Yan, Yuxin Wang, Haiyan Chen, Zhenwei Yuan. Potential of fluorescent nanoprobe in diagnosis and treatment of Alzheimer's disease. Nanomedicine 2022, 17 (17) , 1191-1211. https://doi.org/10.2217/nnm-2022-0022
  77. Bernhard Michalke. Review about Powerful Combinations of Advanced and Hyphenated Sample Introduction Techniques with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for Elucidating Trace Element Species in Pathologic Conditions on a Molecular Level. International Journal of Molecular Sciences 2022, 23 (11) , 6109. https://doi.org/10.3390/ijms23116109
  78. Kizhakke P. Anupama, Olakkaran Shilpa, Anet Antony, Shamprasad V. Raghu, Hunasanahally P. Gurushankara. Jatamansinol from Nardostachys jatamansi (D.Don) DC. Protects Aβ42-Induced Neurotoxicity in Alzheimer's Disease Drosophila Model. NeuroToxicology 2022, 90 , 62-78. https://doi.org/10.1016/j.neuro.2022.02.011
  79. Tianzhong Li, Xueyan Hou, Yu Qi, Xiaohan Duan, Pengcheng Yan, Haoru Zhu, Zhongjian Xie, Han Zhang. Nanomaterials for neurodegenerative diseases: Molecular mechanisms guided design and applications. Nano Research 2022, 15 (4) , 3299-3322. https://doi.org/10.1007/s12274-021-3865-2
  80. Ping Kwan, Amy Ho, Larry Baum. Effects of Deferasirox in Alzheimer’s Disease and Tauopathy Animal Models. Biomolecules 2022, 12 (3) , 365. https://doi.org/10.3390/biom12030365
  81. Shaohui Wang, Yao Jiang, Yabo Liu, Qianhui Liu, Hongwei Sun, Mengjie Mei, Xiaomei Liao. Ferroptosis promotes microtubule-associated protein tau aggregation via GSK-3β activation and proteasome inhibition. Molecular Neurobiology 2022, 59 (3) , 1486-1501. https://doi.org/10.1007/s12035-022-02731-8
  82. Talia Ho, Soha Ahmadi, Kagan Kerman. Do glutathione and copper interact to modify Alzheimer's disease pathogenesis?. Free Radical Biology and Medicine 2022, 181 , 180-196. https://doi.org/10.1016/j.freeradbiomed.2022.01.025
  83. Suchitra Mitra, Kallol Talukdar, Pallavi Prasad, Sandeep K. Misra, Shabana Khan, Joshua S. Sharp, Jonah W. Jurss, Saumen Chakraborty. Rational Design of a Cu Chelator That Mitigates Cu‐Induced ROS Production by Amyloid Beta. ChemBioChem 2022, 23 (4) https://doi.org/10.1002/cbic.202100485
  84. Gundars Goldsteins, Vili Hakosalo, Merja Jaronen, Meike Hedwig Keuters, Šárka Lehtonen, Jari Koistinaho. CNS Redox Homeostasis and Dysfunction in Neurodegenerative Diseases. Antioxidants 2022, 11 (2) , 405. https://doi.org/10.3390/antiox11020405
  85. Boris Decourt, Gary X D’Souza, Jiong Shi, Aaron Ritter, Jasmin Suazo, Marwan N Sabbagh. The Cause of Alzheimer’s Disease: The Theory of Multipathology Convergence to Chronic Neuronal Stress. Aging and disease 2022, 13 (1) , 37. https://doi.org/10.14336/AD.2021.0529
  86. M. Vijay Kumar, Kartik Bhairu Khot. Application and Efficacy of Nanoparticle-Based Therapy Among Neurodegenerative Diseases. 2022, 163-176. https://doi.org/10.1007/978-981-16-6703-9_10
  87. Hailin Zheng, Tamar Amit, Orit Bar-Am, Mati Fridkin, Silvia A. Mandel, Moussa B. H. Youdim. From Anti-Parkinson’s Drug Rasagiline to Novel Multitarget Iron Chelators with Acetylcholinesterase and Monoamine Oxidase Inhibitory and Neuroprotective Properties for Alzheimer’s Disease. 2022, 3167-3192. https://doi.org/10.1007/978-3-030-62059-2_234
  88. Gaewyn Ellison, Ashley L. Hollings, Mark J. Hackett. A review of the “metallome” within neurons and glia, as revealed by elemental mapping of brain tissue. BBA Advances 2022, 2 , 100038. https://doi.org/10.1016/j.bbadva.2021.100038
  89. Md. Jakaria, Abdel Ali Belaidi, Ashley I. Bush, Scott Ayton. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. Journal of Neurochemistry 2021, 159 (5) , 804-825. https://doi.org/10.1111/jnc.15519
  90. Claudia Riccardi, Filomena Napolitano, Daniela Montesarchio, Simone Sampaolo, Mariarosa Anna Beatrice Melone. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021, 13 (11) , 1897. https://doi.org/10.3390/pharmaceutics13111897
  91. Silvia Gleitze, Andrea Paula-Lima, Marco T. Núñez, Cecilia Hidalgo. The calcium–iron connection in ferroptosis-mediated neuronal death. Free Radical Biology and Medicine 2021, 175 , 28-41. https://doi.org/10.1016/j.freeradbiomed.2021.08.231
  92. Andrew Tsatsanis, Andrew N. McCorkindale, Bruce X. Wong, Ellis Patrick, Tim M. Ryan, Robert W. Evans, Ashley I. Bush, Greg T. Sutherland, Asipu Sivaprasadarao, Boris Guennewig, James A. Duce. The acute phase protein lactoferrin is a key feature of Alzheimer’s disease and predictor of Aβ burden through induction of APP amyloidogenic processing. Molecular Psychiatry 2021, 26 (10) , 5516-5531. https://doi.org/10.1038/s41380-021-01248-1
  93. Elena Tamagno, Michela Guglielmotto, Valeria Vasciaveo, Massimo Tabaton. Oxidative Stress and Beta Amyloid in Alzheimer’s Disease. Which Comes First: The Chicken or the Egg?. Antioxidants 2021, 10 (9) , 1479. https://doi.org/10.3390/antiox10091479
  94. Parveen Salahuddin, Rizwan Hasan Khan, Mohammad Furkan, Vladimir N. Uversky, Zeyaul Islam, Munazza Tamkeen Fatima. Mechanisms of amyloid proteins aggregation and their inhibition by antibodies, small molecule inhibitors, nano-particles and nano-bodies. International Journal of Biological Macromolecules 2021, 186 , 580-590. https://doi.org/10.1016/j.ijbiomac.2021.07.056
  95. Emma Crnich, Rachel Lullo, Amber Tabaka, Mallory A. Havens, Daniel S. Kissel. Interactions of copper and copper chelate compounds with the amyloid beta peptide: An investigation into electrochemistry, reactive oxygen species and peptide aggregation. Journal of Inorganic Biochemistry 2021, 222 , 111493. https://doi.org/10.1016/j.jinorgbio.2021.111493
  96. Erhuan Zang, Bin Qiu, Namuhan Chen, Caifeng Li, Qian Liu, Min Zhang, Yuchao Liu, Minhui Li. Xanthoceras sorbifolium Bunge: A Review on Botany, Phytochemistry, Pharmacology, and Applications. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.708549
  97. Chanchal Sharma, Sang Ryong Kim. Linking Oxidative Stress and Proteinopathy in Alzheimer’s Disease. Antioxidants 2021, 10 (8) , 1231. https://doi.org/10.3390/antiox10081231
  98. Rabeea D. Abdel‐Rahim, Mohammed Y. Emran, Adham M. Nagiub, Osman A. Farghaly, Mahmoud A. Taher. Silver nanowire size‐dependent effect on the catalytic activity and potential sensing of H 2 O 2. Electrochemical Science Advances 2021, 1 (3) https://doi.org/10.1002/elsa.202000031
  99. Bernhard Michalke, Achim Berthele, Vivek Venkataramani. Simultaneous Quantification and Speciation of Trace Metals in Paired Serum and CSF Samples by Size Exclusion Chromatography–Inductively Coupled Plasma–Dynamic Reaction Cell–Mass Spectrometry (SEC-DRC-ICP-MS). International Journal of Molecular Sciences 2021, 22 (16) , 8892. https://doi.org/10.3390/ijms22168892
  100. George E C Thomas, Angeliki Zarkali, Mina Ryten, Karin Shmueli, Ana Luisa Gil-Martinez, Louise-Ann Leyland, Peter McColgan, Julio Acosta-Cabronero, Andrew J Lees, Rimona S Weil. Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson’s disease. Brain 2021, 144 (6) , 1787-1798. https://doi.org/10.1093/brain/awab084
Load more citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE