ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Purification of Porcine Brain Protein Phosphatase 2A Leucine Carboxyl Methyltransferase and Cloning of the Human Homologue,

View Author Information
Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
Cite this: Biochemistry 1999, 38, 50, 16539–16547
Publication Date (Web):November 19, 1999
https://doi.org/10.1021/bi991646a
Copyright © 1999 American Chemical Society

    Article Views

    786

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The carboxyl methyltransferase, which is claimed to exclusively methylate the carboxyl group of the C-terminal leucine residue of the catalytic subunit of protein phosphatase 2A (Leu309), was purified from porcine brain. On the basis of tryptic peptides, the cDNA encoding the human homologue was cloned. The cDNA of this gene encodes for a protein of 334 amino acids with a calculated Mr of 38 305 and a predicted pI of 5.72. Database screening reveals the presence of this protein in diverse phyla. Sequence analysis shows that the novel methyltransferase is distinct from other known protein methyltransferases, sharing only sequence motifs supposedly involved in the binding of adenosylmethionine. The recombinant protein expressed in bacteria is soluble and the biophysical, catalytic, and immunological properties are indistinguishable from the native enzyme. The methylation of PP2A by the recombinant protein is restricted to Leu309 of PP2AC. No direct effects on phosphatase activity changes were observed upon methylation of the dimeric or trimeric forms of PP2A.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     I.D.B. and J.G. are supported by HFSP (Human Frontiers Science Program) and the European Biomed2 program (BMH-CT98-3328). C.V.H. and E.W. are supported by FWO (Fonds Wetenschappelijk Onderzoek Vlaanderen). Financial support was also obtained by grants of GOA (Geconcerteerde OnderzoeksAktie) and IUAP (Inter Universitaire Attractiepool).

     The sequence described in this paper has been submitted to Genbank, Genbank Accession number AF037601.

    *

     Corresponding author:  Dr. Jozef Goris, Afdeling Biochemie, Departement Geneeskunde, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium. Telephone:  +32 16 345 794. Fax:  +32 16 345 995. E-mail:  [email protected].

    Cited By

    This article is cited by 118 publications.

    1. Florence Haut, Elentina K. Argyrousi, Ottavio Arancio. Re-Arranging the Puzzle between the Amyloid-Beta and Tau Pathology: An APP-Centric Approach. International Journal of Molecular Sciences 2024, 25 (1) , 259. https://doi.org/10.3390/ijms25010259
    2. Liesbeth Guffens, Rita Derua, Veerle Janssens. PME-1 sensitizes glioblastoma cells to oxidative stress-induced cell death by attenuating PP2A-B55α-mediated inactivation of MAPKAPK2-RIPK1 signaling. Cell Death Discovery 2023, 9 (1) https://doi.org/10.1038/s41420-023-01572-1
    3. Ying Chen, Gregory B. Craven, Roarke A. Kamber, Adolfo Cuesta, Serhii Zhersh, Yurii S. Moroz, Michael C. Bassik, Jack Taunton. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes. Nature Chemistry 2023, 15 (11) , 1616-1625. https://doi.org/10.1038/s41557-023-01281-3
    4. Sana Ando, Masashi Sakurai, Shusaku Shibutani, Nobuyuki Kimura, Nobuhiro Shimozawa, Yasuhiro Yasutomi, Ryotaro Yabe, Takashi Ohama, Koichi Sato. Age-related alterations in protein phosphatase 2A methylation levels in brains of cynomolgus monkeys: a pilot study. The Journal of Biochemistry 2023, 87 https://doi.org/10.1093/jb/mvad006
    5. Lokesh K. Saini, Malathi Bheri, Girdhar K. Pandey. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. 2023, 307-370. https://doi.org/10.1016/bs.apcsb.2022.11.003
    6. Jie Pan, Lisha Zhou, Chenyang Zhang, Qiang Xu, Yang Sun. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduction and Targeted Therapy 2022, 7 (1) https://doi.org/10.1038/s41392-022-01038-3
    7. Terrance J. Haanen, Caitlin M. O'Connor, Goutham Narla. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. Journal of Biological Chemistry 2022, 298 (12) , 102656. https://doi.org/10.1016/j.jbc.2022.102656
    8. Yitong Li, Vijaya Kumar Balakrishnan, Michael Rowse, Cheng-Guo Wu, Anastasia Phoebe Bravos, Vikash K Yadav, Ylva Ivarsson, Stefan Strack, Irina V Novikova, Yongna Xing. Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition. eLife 2022, 11 https://doi.org/10.7554/eLife.79736
    9. Scott P. Lyons, Elora C. Greiner, Lauren E. Cressey, Mark E. Adamo, Arminja N. Kettenbach. Regulation of PP2A, PP4, and PP6 holoenzyme assembly by carboxyl-terminal methylation. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-02456-z
    10. Malathi Bheri, Swati Mahiwal, Sibaji K. Sanyal, Girdhar K. Pandey. Plant protein phosphatases: What do we know about their mechanism of action?. The FEBS Journal 2021, 288 (3) , 756-785. https://doi.org/10.1111/febs.15454
    11. Shunta Ikeda, Shunya Tsuji, Takashi Ohama, Koichi Sato. Involvement of PP2A methylation in the adipogenic differentiation of bone marrow-derived mesenchymal stem cell. The Journal of Biochemistry 2020, 168 (6) , 643-650. https://doi.org/10.1093/jb/mvaa077
    12. Isha Nasa, Arminja N. Kettenbach. Effects of carboxyl-terminal methylation on holoenzyme function of the PP2A subfamily. Biochemical Society Transactions 2020, 48 (5) , 2015-2027. https://doi.org/10.1042/BST20200177
    13. Leah C. Beauchamp, Xiang M. Liu, Amelia Sedjahtera, Mirjana Bogeski, Laura J. Vella, Ashley I. Bush, Paul A. Adlard, Kevin J. Barnham. S-Adenosylmethionine Rescues Cognitive Deficits in the rTg4510 Animal Model by Stabilizing Protein Phosphatase 2A and Reducing Phosphorylated Tau. Journal of Alzheimer's Disease 2020, 77 (4) , 1705-1715. https://doi.org/10.3233/JAD-200756
    14. Ingrid E. Frohner, Ingrid Mudrak, Stephanie Kronlachner, Stefan Schüchner, Egon Ogris. Antibodies recognizing the C terminus of PP2A catalytic subunit are unsuitable for evaluating PP2A activity and holoenzyme composition. Science Signaling 2020, 13 (616) https://doi.org/10.1126/scisignal.aax6490
    15. Cuiqing Zhao, Liming Liu, Qi Liu, Fengyuan Li, Lihua Zhang, Fenxia Zhu, Tuo Shao, Shirish Barve, Yiping Chen, Xiaokun Li, Craig J. McClain, Wenke Feng. Fibroblast growth factor 21 is required for the therapeutic effects of Lactobacillus rhamnosus GG against fructose-induced fatty liver in mice. Molecular Metabolism 2019, 29 , 145-157. https://doi.org/10.1016/j.molmet.2019.08.020
    16. Deepika Raman, Shazib Pervaiz. Redox inhibition of protein phosphatase PP2A: Potential implications in oncogenesis and its progression. Redox Biology 2019, 27 , 101105. https://doi.org/10.1016/j.redox.2019.101105
    17. I.S. Elgenaidi, J.P. Spiers. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target?. Pharmacology & Therapeutics 2019, 198 , 68-89. https://doi.org/10.1016/j.pharmthera.2019.02.011
    18. Wesal Habbab, Imad Aoudé, Freshteh Palangi, Sara Abdulla, Tariq Ahmed. The Anti-Tumor Agent Sodium Selenate Decreases Methylated PP2A, Increases GSK3βY216 Phosphorylation, Including Tau Disease Epitopes and Reduces Neuronal Excitability in SHSY-5Y Neurons. International Journal of Molecular Sciences 2019, 20 (4) , 844. https://doi.org/10.3390/ijms20040844
    19. Sara Reynhout, Sandra Jansen, Dorien Haesen, Siska van Belle, Sonja A. de Munnik, Ernie M.H.F. Bongers, Jolanda H. Schieving, Carlo Marcelis, Jeanne Amiel, Marlène Rio, Heather Mclaughlin, Roger Ladda, Susan Sell, Marjolein Kriek, Cacha M.P.C.D. Peeters-Scholte, Paulien A. Terhal, Koen L. van Gassen, Nienke Verbeek, Sonja Henry, Jessica Scott Schwoerer, Saleem Malik, Nicole Revencu, Carlos R. Ferreira, Ellen Macnamara, Hilde M.H. Braakman, Elise Brimble, Maura R.Z. Ruzhnikov, Matias Wagner, Philip Harrer, Dagmar Wieczorek, Alma Kuechler, Barak Tziperman, Ortal Barel, Bert B.A. de Vries, Christopher T. Gordon, Veerle Janssens, Lisenka E.L.M. Vissers. De Novo Mutations Affecting the Catalytic Cα Subunit of PP2A, PPP2CA, Cause Syndromic Intellectual Disability Resembling Other PP2A-Related Neurodevelopmental Disorders. The American Journal of Human Genetics 2019, 104 (1) , 139-156. https://doi.org/10.1016/j.ajhg.2018.12.002
    20. Takashi Ohama. The multiple functions of protein phosphatase 6. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2019, 1866 (1) , 74-82. https://doi.org/10.1016/j.bbamcr.2018.07.015
    21. Rathinasamy Baskaran, Bharath Kumar Velmurugan. Protein phosphatase 2A as therapeutic targets in various disease models. Life Sciences 2018, 210 , 40-46. https://doi.org/10.1016/j.lfs.2018.08.063
    22. Ryotaro Yabe, Shunya Tsuji, Satoru Mochida, Tsuyoshi Ikehara, Tatsuya Usui, Takashi Ohama, Koichi Sato. A stable association with PME ‐1 may be dispensable for PP 2A demethylation – implications for the detection of PP 2A methylation and immunoprecipitation. FEBS Open Bio 2018, 8 (9) , 1486-1496. https://doi.org/10.1002/2211-5463.12485
    23. David L. Brautigan, Shirish Shenolikar. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annual Review of Biochemistry 2018, 87 (1) , 921-964. https://doi.org/10.1146/annurev-biochem-062917-012332
    24. Jocelyn A. Lee, Zhengqi Wang, Danielle Sambo, Kevin D. Bunting, David C. Pallas. Global loss of leucine carboxyl methyltransferase-1 causes severe defects in fetal liver hematopoiesis. Journal of Biological Chemistry 2018, 293 (25) , 9636-9650. https://doi.org/10.1074/jbc.RA118.002012
    25. Anastasia Sacharidou, Ken L. Chambliss, Victoria Ulrich, Jane E. Salmon, Yu-Min Shen, Joachim Herz, David Y. Hui, Lance S. Terada, Philip W. Shaul, Chieko Mineo. Antiphospholipid antibodies induce thrombosis by PP2A activation via apoER2-Dab2-SHC1 complex formation in endothelium. Blood 2018, 131 (19) , 2097-2110. https://doi.org/10.1182/blood-2017-11-814681
    26. Caitlin M. O’Connor, Abbey Perl, Daniel Leonard, Jaya Sangodkar, Goutham Narla. Therapeutic targeting of PP2A. The International Journal of Biochemistry & Cell Biology 2018, 96 , 182-193. https://doi.org/10.1016/j.biocel.2017.10.008
    27. Ha Yin Lee, Yoko Itahana, Stefan Schuechner, Masahiro Fukuda, H. Shawn Je, Egon Ogris, David M. Virshup, Koji Itahana. Ca 2+ -dependent demethylation of phosphatase PP2Ac promotes glucose deprivation–induced cell death independently of inhibiting glycolysis. Science Signaling 2018, 11 (512) https://doi.org/10.1126/scisignal.aam7893
    28. Scott L. Melideo, Jun Yong Ha, Jeffry B. Stock. Leucine Carboxyl Methyltransferase. 2018, 2845-2854. https://doi.org/10.1007/978-3-319-67199-4_101594
    29. Jin Gao, Catherine M. Cahill, Xudong Huang, Joshua L. Roffman, Stefania Lamon-Fava, Maurizio Fava, David Mischoulon, Jack T. Rogers. S-Adenosyl Methionine and Transmethylation Pathways in Neuropsychiatric Diseases Throughout Life. Neurotherapeutics 2018, 15 (1) , 156-175. https://doi.org/10.1007/s13311-017-0593-0
    30. Cheng-Guo Wu, Aiping Zheng, Li Jiang, Michael Rowse, Vitali Stanevich, Hui Chen, Yitong Li, Kenneth A. Satyshur, Benjamin Johnson, Ting-Jia Gu, Zuojia Liu, Yongna Xing. Methylation-regulated decommissioning of multimeric PP2A complexes. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-02405-3
    31. Maeve Kiely, David R. Adams, Sheri L. Hayes, Rosemary O'Connor, George S. Baillie, Patrick A. Kiely. RACK1 stabilises the activity of PP2A to regulate the transformed phenotype in mammary epithelial cells. Cellular Signalling 2017, 35 , 290-300. https://doi.org/10.1016/j.cellsig.2016.09.001
    32. Kamalakannan Palanichamy, Suman Kanji, Nicolaus Gordon, Krishnan Thirumoorthy, John R. Jacob, Kevin T. Litzenberg, Disha Patel, Arnab Chakravarti. NNMT Silencing Activates Tumor Suppressor PP2A, Inactivates Oncogenic STKs, and Inhibits Tumor Forming Ability. Clinical Cancer Research 2017, 23 (9) , 2325-2334. https://doi.org/10.1158/1078-0432.CCR-16-1323
    33. Amanpreet Kaur, Jukka Westermarck. Regulation of protein phosphatase 2A (PP2A) tumor suppressor function by PME-1. Biochemical Society Transactions 2016, 44 (6) , 1683-1693. https://doi.org/10.1042/BST20160161
    34. Juyeon Hwang, Jocelyn A. Lee, David C. Pallas. Leucine Carboxyl Methyltransferase 1 (LCMT-1) Methylates Protein Phosphatase 4 (PP4) and Protein Phosphatase 6 (PP6) and Differentially Regulates the Stable Formation of Different PP4 Holoenzymes. Journal of Biological Chemistry 2016, 291 (40) , 21008-21019. https://doi.org/10.1074/jbc.M116.739920
    35. Guido Durian, Moona Rahikainen, Sara Alegre, Mikael Brosché, Saijaliisa Kangasjärvi. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants. Frontiers in Plant Science 2016, 7 https://doi.org/10.3389/fpls.2016.00812
    36. Muluneh Tamiru, Hiroki Takagi, Akira Abe, Takao Yokota, Hiroyuki Kanzaki, Haruko Okamoto, Hiromasa Saitoh, Hideyuki Takahashi, Koki Fujisaki, Kaori Oikawa, Aiko Uemura, Satoshi Natsume, Yusuke Jikumaru, Hideyuki Matsuura, Kenji Umemura, Matthew J. Terry, Ryohei Terauchi. A chloroplast‐localized protein LESION AND LAMINA BENDING affects defence and growth responses in rice. New Phytologist 2016, 210 (4) , 1282-1297. https://doi.org/10.1111/nph.13864
    37. Russell E. Nicholls, Jean-Marie Sontag, Hong Zhang, Agnieszka Staniszewski, Shijun Yan, Carla Y. Kim, Michael Yim, Caitlin M. Woodruff, Erland Arning, Brandi Wasek, Deqi Yin, Teodoro Bottiglieri, Estelle Sontag, Eric R. Kandel, Ottavio Arancio. PP2A methylation controls sensitivity and resistance to β-amyloid–induced cognitive and electrophysiological impairments. Proceedings of the National Academy of Sciences 2016, 113 (12) , 3347-3352. https://doi.org/10.1073/pnas.1521018113
    38. Jaya Sangodkar, Caroline C. Farrington, Kimberly McClinch, Matthew D. Galsky, David B. Kastrinsky, Goutham Narla. All roads lead to PP 2A: exploiting the therapeutic potential of this phosphatase. The FEBS Journal 2016, 283 (6) , 1004-1024. https://doi.org/10.1111/febs.13573
    39. Scott L. Melideo, Jun Yong Ha, Jeffry B. Stock. Leucine Carboxyl Methyltransferase. 2016, 1-10. https://doi.org/10.1007/978-1-4614-6438-9_101594-1
    40. Ryotaro Yabe, Akane Miura, Tatsuya Usui, Ingrid Mudrak, Egon Ogris, Takashi Ohama, Koichi Sato, . Protein Phosphatase Methyl-Esterase PME-1 Protects Protein Phosphatase 2A from Ubiquitin/Proteasome Degradation. PLOS ONE 2015, 10 (12) , e0145226. https://doi.org/10.1371/journal.pone.0145226
    41. Ying Gu, Mansoureh Barzegar, Xin Chen, Yang Wu, Chaowei Shang, Elahe Mahdavian, Brian A. Salvatore, Shanxiang Jiang, Shile Huang. Fusarochromanone-induced reactive oxygen species results in activation of JNK cascade and cell death by inhibiting protein phosphatases 2A and 5. Oncotarget 2015, 6 (39) , 42322-42333. https://doi.org/10.18632/oncotarget.5996
    42. Xiaoyu Xia, Ankur Gholkar, Silvia Senese, Jorge Z Torres. A LCMT1-PME-1 methylation equilibrium controls mitotic spindle size. Cell Cycle 2015, 14 (12) , 1938-1947. https://doi.org/10.1080/15384101.2015.1026487
    43. Yixuan Wang, Riyun Yang, Jianlan Gu, Xiaomin Yin, Nana Jin, Shutao Xie, Yifan Wang, Huanhuan Chang, Wei Qian, Jianhua Shi, Khalid Iqbal, Cheng-Xin Gong, Chun Cheng, Fei Liu. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiology of Aging 2015, 36 (1) , 188-200. https://doi.org/10.1016/j.neurobiolaging.2014.07.035
    44. Dorien Haesen, Ward Sents, Katleen Lemaire, Yana Hoorne, Veerle Janssens. The Basic Biology of PP2A in Hematologic Cells and Malignancies. Frontiers in Oncology 2014, 4 https://doi.org/10.3389/fonc.2014.00347
    45. CATHRINE LILLO, AMR R. A. KATAYA, BEHZAD HEIDARI, MARIA T. CREIGHTON, DUGASSA NEMIE‐FEYISSA, ZEKARIAS GINBOT, ELSE M. JONASSEN. Protein phosphatases PP 2A, PP 4 and PP 6: mediators and regulators in development and responses to environmental cues. Plant, Cell & Environment 2014, 37 (12) , 2631-2648. https://doi.org/10.1111/pce.12364
    46. Jean-Marie Sontag, Brandi Wasek, Goce Taleski, Josephine Smith, Erland Arning, Estelle Sontag, Teodoro Bottiglieri. Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brain of methylenetetrahydrofolate reductase (MTHFR) deficient mice. Frontiers in Aging Neuroscience 2014, 6 https://doi.org/10.3389/fnagi.2014.00214
    47. Christian Löw, Esben M. Quistgaard, Michael Kovermann, Madhanagopal Anandapadamanaban, Jochen Balbach, Pär Nordlund. Structural basis for PTPA interaction with the invariant C-terminal tail of PP2A. Biological Chemistry 2014, 395 (7-8) , 881-889. https://doi.org/10.1515/hsz-2014-0106
    48. Chia-Wei Lee, Fu-Chia Yang, Hsin-Yun Chang, Hanyi Chou, Bertrand Chin-Ming Tan, Sheng-Chung Lee. Interaction between Salt-inducible Kinase 2 and Protein Phosphatase 2A Regulates the Activity of Calcium/Calmodulin-dependent Protein Kinase I and Protein Phosphatase Methylesterase-1. Journal of Biological Chemistry 2014, 289 (30) , 21108-21119. https://doi.org/10.1074/jbc.M113.540229
    49. Jean-Marie Sontag, Estelle Sontag. Protein phosphatase 2A dysfunction in Alzheimer’s disease. Frontiers in Molecular Neuroscience 2014, 7 https://doi.org/10.3389/fnmol.2014.00016
    50. Till F. Schäberle, Mahsa Mir Mohseni, Friederike Lohr, Alexander Schmitz, Gabriele M. König. Function of the Loading Module in CorI and of the O -Methyltransferase CorH in Vinyl Carbamate Biosynthesis of the Antibiotic Corallopyronin A. Antimicrobial Agents and Chemotherapy 2014, 58 (2) , 950-956. https://doi.org/10.1128/AAC.01894-13
    51. Michael R. Longman, Antonella Ranieri, Metin Avkiran, Andrew K. Snabaitis, . Regulation of PP2AC Carboxylmethylation and Cellular Localisation by Inhibitory Class G-Protein Coupled Receptors in Cardiomyocytes. PLoS ONE 2014, 9 (1) , e86234. https://doi.org/10.1371/journal.pone.0086234
    52. Kennen B. MacKay, Yiping Tu, Stephen G. Young, Steven G. Clarke, . Circumventing Embryonic Lethality with Lcmt1 Deficiency: Generation of Hypomorphic Lcmt1 Mice with Reduced Protein Phosphatase 2A Methyltransferase Expression and Defects in Insulin Signaling. PLoS ONE 2013, 8 (6) , e65967. https://doi.org/10.1371/journal.pone.0065967
    53. Maradumane L. Mohan, Babal K. Jha, Manveen K. Gupta, Neelakantan T. Vasudevan, Elizabeth E. Martelli, John David Mosinski, Sathyamangla V. Naga Prasad. Phosphoinositide 3-Kinase γ Inhibits Cardiac GSK-3 Independently of Akt. Science Signaling 2013, 6 (259) https://doi.org/10.1126/scisignal.2003308
    54. Ludovic Martin, Xenia Latypova, Cornelia M. Wilson, Amandine Magnaudeix, Marie-Laure Perrin, Faraj Terro. Tau protein phosphatases in Alzheimer's disease: The leading role of PP2A. Ageing Research Reviews 2013, 12 (1) , 39-49. https://doi.org/10.1016/j.arr.2012.06.008
    55. Cui-cui Yang, Xue-xian Kuai, Ya-li Li, Li Zhang, Jian-chun Yu, Lin Li, Lan Zhang. Cornel Iridoid Glycoside Attenuates Tau Hyperphosphorylation by Inhibition of PP2A Demethylation. Evidence-Based Complementary and Alternative Medicine 2013, 2013 , 1-9. https://doi.org/10.1155/2013/108486
    56. Sara H. Mokhtar, Maha M. Bakhuraysah, David S. Cram, Steven Petratos. The Beta-Amyloid Protein of Alzheimer’s Disease: Communication Breakdown by Modifying the Neuronal Cytoskeleton. International Journal of Alzheimer's Disease 2013, 2013 , 1-15. https://doi.org/10.1155/2013/910502
    57. Caroline Lambrecht, Dorien Haesen, Ward Sents, Elitsa Ivanova, Veerle Janssens. Structure, Regulation, and Pharmacological Modulation of PP2A Phosphatases. 2013, 283-305. https://doi.org/10.1007/978-1-62703-562-0_17
    58. Ward Sents, Elitsa Ivanova, Caroline Lambrecht, Dorien Haesen, Veerle Janssens. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. The FEBS Journal 2013, 280 (2) , 644-661. https://doi.org/10.1111/j.1742-4658.2012.08579.x
    59. María F. Montenegro, Magali Sáez-Ayala, Antonio Piñero-Madrona, Juan Cabezas-Herrera, José Neptuno Rodríguez-López, . Reactivation of the Tumour Suppressor RASSF1A in Breast Cancer by Simultaneous Targeting of DNA and E2F1 Methylation. PLoS ONE 2012, 7 (12) , e52231. https://doi.org/10.1371/journal.pone.0052231
    60. Anjaneyulu Kowluru, Andrea Matti. Hyperactivation of protein phosphatase 2A in models of glucolipotoxicity and diabetes: Potential mechanisms and functional consequences. Biochemical Pharmacology 2012, 84 (5) , 591-597. https://doi.org/10.1016/j.bcp.2012.05.003
    61. Xiu-Qing Yao, Xia-Chun Li, Xiao-Xue Zhang, Yang-Yang Yin, Bin Liu, Dan-Ju Luo, Qun Wang, Jian-Zhi Wang, Gong-Ping Liu. Glycogen synthase kinase‐3β regulates leucine‐309 demethylation of protein phosphatase‐2A via PPMT1 and PME‐1. FEBS Letters 2012, 586 (16) , 2522-2528. https://doi.org/10.1016/j.febslet.2012.06.018
    62. Jennifer B. Jackson, David C. Pallas. Circumventing Cellular Control of PP2A by Methylation Promotes Transformation in an Akt-Dependent Manner. Neoplasia 2012, 14 (7) , 585-599. https://doi.org/10.1593/neo.12768
    63. Dries Castermans, Ils Somers, Johan Kriel, Wendy Louwet, Stefaan Wera, Matthias Versele, Veerle Janssens, Johan M Thevelein. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Research 2012, 22 (6) , 1058-1077. https://doi.org/10.1038/cr.2012.20
    64. Julien Guergnon, Angélique N. Godet, Amandine Galioot, Pierre Barthélémy Falanga, Jean-Hervé Colle, Xavier Cayla, Alphonse Garcia. PP2A targeting by viral proteins: A widespread biological strategy from DNA/RNA tumor viruses to HIV-1. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2011, 1812 (11) , 1498-1507. https://doi.org/10.1016/j.bbadis.2011.07.001
    65. Andrew M. Slupe, Ronald A. Merrill, Stefan Strack. Determinants for Substrate Specificity of Protein Phosphatase 2A. Enzyme Research 2011, 2011 , 1-8. https://doi.org/10.4061/2011/398751
    66. Rima Obeid, Jennifer Schlundt, Natalia Umanskaya, Wolfgang Herrmann, Markus Herrmann. Folate is related to phosphorylated neurofilament‐H and P‐tau (Ser396) in rat brain. Journal of Neurochemistry 2011, 117 (6) , 1047-1054. https://doi.org/10.1111/j.1471-4159.2011.07280.x
    67. Megumi Kato, Yuhei Araiso, Akiko Noma, Asuteka Nagao, Tsutomu Suzuki, Ryuichiro Ishitani, Osamu Nureki. Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification. Nucleic Acids Research 2011, 39 (4) , 1576-1585. https://doi.org/10.1093/nar/gkq919
    68. Vitali Stanevich, Li Jiang, Kenneth A. Satyshur, Yongfeng Li, Philip D. Jeffrey, Zhu Li, Patrick Menden, Martin F. Semmelhack, Yongna Xing. The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1. Molecular Cell 2011, 41 (3) , 331-342. https://doi.org/10.1016/j.molcel.2010.12.030
    69. Maurice Israël, Laurent Schwartz. The metabolic advantage of tumor cells. Molecular Cancer 2011, 10 (1) , 70. https://doi.org/10.1186/1476-4598-10-70
    70. Gregory Kranias, Lauren F. Watt, Helen Carpenter, Jeff Holst, Russell Ludowyke, Stefan Strack, Alistair T.R. Sim, Nicole M. Verrills. Protein phosphatase 2A carboxymethylation and regulatory B subunits differentially regulate mast cell degranulation. Cellular Signalling 2010, 22 (12) , 1882-1890. https://doi.org/10.1016/j.cellsig.2010.07.017
    71. Teodoro Bottiglieri, Edward Reynolds. Folate and Neurological Disease. 2009, 355-380. https://doi.org/10.1201/9781420071252-c14
    72. Zhu Li, Jeffry B. Stock. Protein carboxyl methylation and the biochemistry of memory. Biological Chemistry 2009, 390 (11) https://doi.org/10.1515/BC.2009.133
    73. Yigong Shi. Serine/Threonine Phosphatases: Mechanism through Structure. Cell 2009, 139 (3) , 468-484. https://doi.org/10.1016/j.cell.2009.10.006
    74. Jun-Xiang Shan, Mei-Zhen Zhu, Min Shi, Ji-Ping Gao, Hong-Xuan Lin. Fine mapping and candidate gene analysis of spd6, responsible for small panicle and dwarfness in wild rice (Oryza rufipogon Griff.). Theoretical and Applied Genetics 2009, 119 (5) , 827-836. https://doi.org/10.1007/s00122-009-1092-4
    75. Yoko Suzuki, Akiko Noma, Tsutomu Suzuki, Ryuichiro Ishitani, Osamu Nureki. Structural basis of tRNA modification with CO2 fixation and methylation by wybutosine synthesizing enzyme TYW4†. Nucleic Acids Research 2009, 37 (9) , 2910-2925. https://doi.org/10.1093/nar/gkp158
    76. YiGong Shi. Assembly and structure of protein phosphatase 2A. Science in China Series C: Life Sciences 2009, 52 (2) , 135-146. https://doi.org/10.1007/s11427-009-0018-3
    77. Jean-Marie Sontag, Viyada Nunbhakdi-Craig, Lisa Montgomery, Erland Arning, Teodoro Bottiglieri, Estelle Sontag. Folate Deficiency Induces In Vitro and Mouse Brain Region-Specific Downregulation of Leucine Carboxyl Methyltransferase-1 and Protein Phosphatase 2A Bα Subunit Expression That Correlate with Enhanced Tau Phosphorylation. The Journal of Neuroscience 2008, 28 (45) , 11477-11487. https://doi.org/10.1523/JNEUROSCI.2816-08.2008
    78. Silvia Ortega-Gutiérrez, Donmienne Leung, Scott Ficarro, Eric C. Peters, Benjamin F. Cravatt, . Targeted Disruption of the PME-1 Gene Causes Loss of Demethylated PP2A and Perinatal Lethality in Mice. PLoS ONE 2008, 3 (7) , e2486. https://doi.org/10.1371/journal.pone.0002486
    79. Maxfield P. Flynn, Evelyn T. Maizels, Amelia B. Karlsson, Thomas McAvoy, Jung-Hyuck Ahn, Angus C. Nairn, Mary Hunzicker-Dunn. Luteinizing Hormone Receptor Activation in Ovarian Granulosa Cells Promotes Protein Kinase A-Dependent Dephosphorylation of Microtubule-Associated Protein 2D. Molecular Endocrinology 2008, 22 (7) , 1695-1710. https://doi.org/10.1210/me.2007-0457
    80. Yongna Xing, Zhu Li, Yu Chen, Jeffry B. Stock, Philip D. Jeffrey, Yigong Shi. Structural Mechanism of Demethylation and Inactivation of Protein Phosphatase 2A. Cell 2008, 133 (1) , 154-163. https://doi.org/10.1016/j.cell.2008.02.041
    81. Veerle Janssens, Sari Longin, Jozef Goris. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends in Biochemical Sciences 2008, 33 (3) , 113-121. https://doi.org/10.1016/j.tibs.2007.12.004
    82. Anjaneyulu Kowluru. Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic ? cell. Biochemical Pharmacology 2008, 75 (2) , 335-345. https://doi.org/10.1016/j.bcp.2007.06.035
    83. Sari Longin, Karen Zwaenepoel, Ellen Martens, Justin V. Louis, Evelien Rondelez, Jozef Goris, Veerle Janssens. Spatial control of protein phosphatase 2A (de)methylation. Experimental Cell Research 2008, 314 (1) , 68-81. https://doi.org/10.1016/j.yexcr.2007.07.030
    84. Jocelyn A. Lee, David C. Pallas. Leucine Carboxyl Methyltransferase-1 Is Necessary for Normal Progression through Mitosis in Mammalian Cells. Journal of Biological Chemistry 2007, 282 (42) , 30974-30984. https://doi.org/10.1074/jbc.M704861200
    85. Sari Longin, Karen Zwaenepoel, Justin V. Louis, Stephen Dilworth, Jozef Goris, Veerle Janssens. Selection of Protein Phosphatase 2A Regulatory Subunits Is Mediated by the C Terminus of the Catalytic Subunit. Journal of Biological Chemistry 2007, 282 (37) , 26971-26980. https://doi.org/10.1074/jbc.M704059200
    86. Jonathan H. Dennis, Hua-Ying Fan, Sheila M. Reynolds, Guocheng Yuan, James C. Meldrim, Daniel J. Richter, Daniel G. Peterson, Oliver J. Rando, William S. Noble, Robert E. Kingston. Independent and complementary methods for large-scale structural analysis of mammalian chromatin. Genome Research 2007, 17 (6) , 928-939. https://doi.org/10.1101/gr.5636607
    87. Sunny J.-S. Yoo, Joan M. Boylan, David L. Brautigan, Philip A. Gruppuso. Subunit composition and developmental regulation of hepatic protein phosphatase 2A (PP2A). Archives of Biochemistry and Biophysics 2007, 461 (2) , 186-193. https://doi.org/10.1016/j.abb.2007.02.019
    88. Estelle Sontag, Viyada Nunbhakdi-Craig, Jean-Marie Sontag, Ramon Diaz-Arrastia, Egon Ogris, Sanjana Dayal, Steven R. Lentz, Erland Arning, Teodoro Bottiglieri. Protein Phosphatase 2A Methyltransferase Links Homocysteine Metabolism with Tau and Amyloid Precursor Protein Regulation. The Journal of Neuroscience 2007, 27 (11) , 2751-2759. https://doi.org/10.1523/JNEUROSCI.3316-06.2007
    89. Tsuyoshi Ikehara, Satsuki Ikehara, Shihoko Imamura, Fukiko Shinjo, Takeshi Yasumoto. Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit (PR55/B). Biochemical and Biophysical Research Communications 2007, 354 (4) , 1052-1057. https://doi.org/10.1016/j.bbrc.2007.01.085
    90. Tineke Lauwaet, Barbara J. Davids, Ascención Torres-Escobar, Shanda R. Birkeland, Michael J. Cipriano, Sarah P. Preheim, Daniel Palm, Staffan G. Svärd, Andrew G. McArthur, Frances D. Gillin. Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Molecular and Biochemical Parasitology 2007, 152 (1) , 80-89. https://doi.org/10.1016/j.molbiopara.2006.12.001
    91. Nicolas Leulliot, Giorgia Vicentini, Jan Jordens, Sophie Quevillon-Cheruel, Marc Schiltz, David Barford, Herman Van Tilbeurgh, Jozef Goris. Crystal Structure of the PP2A Phosphatase Activator: Implications for Its PP2A-Specific PPIase Activity. Molecular Cell 2006, 23 (3) , 413-424. https://doi.org/10.1016/j.molcel.2006.07.008
    92. Katarzyna Lechward, Ewa Sugajska, Ivo de Baere, Jozef Goris, Brian A. Hemmings, Stanislaw Zolnierowicz. Interaction of nucleoredoxin with protein phosphatase 2A. FEBS Letters 2006, 580 (15) , 3631-3637. https://doi.org/10.1016/j.febslet.2006.04.101
    93. Jan Jordens, Veerle Janssens, Sari Longin, Ilse Stevens, Ellen Martens, Geert Bultynck, Yves Engelborghs, Eveline Lescrinier, Etienne Waelkens, Jozef Goris, Christine Van Hoof. The Protein Phosphatase 2A Phosphatase Activator Is a Novel Peptidyl-Prolyl cis/trans-Isomerase. Journal of Biological Chemistry 2006, 281 (10) , 6349-6357. https://doi.org/10.1074/jbc.M507760200
    94. Sari Longin, Jozef Goris. 11 Reversible methylation of protein phosphatase 2A. 2006, 303-324. https://doi.org/10.1016/S1874-6047(06)80013-2
    95. Clare M. O'Connor. 13 Protein L-isoaspartyl, D-aspartyl O-methyltransferases: Catalysts for protein repair. 2006, 385-433. https://doi.org/10.1016/S1874-6047(06)80015-6
    96. Anjaneyulu Kowluru. Novel regulatory roles for protein phosphatase-2A in the islet β cell. Biochemical Pharmacology 2005, 69 (12) , 1681-1691. https://doi.org/10.1016/j.bcp.2005.03.018
    97. Estelle Sontag, Christa Hladik, Lisa Montgomery, Ampa Luangpirom, Ingrid Mudrak, Egon Ogris, Charles L. White. Downregulation of Protein Phosphatase 2A Carboxyl Methylation and Methyltransferase May Contribute to Alzheimer Disease Pathogenesis. Journal of Neuropathology & Experimental Neurology 2004, 63 (10) , 1080-1091. https://doi.org/10.1093/jnen/63.10.1080
    98. Nicolas Leulliot, Sophie Quevillon-Cheruel, Isabelle Sorel, Ines Li de La Sierra-Gallay, Bruno Collinet, Marc Graille, Karine Blondeau, Nabila Bettache, Anne Poupon, Joël Janin, Herman van Tilbeurgh. Structure of Protein Phosphatase Methyltransferase 1 (PPM1), a Leucine Carboxyl Methyltransferase Involved in the Regulation of Protein Phosphatase 2A Activity. Journal of Biological Chemistry 2004, 279 (9) , 8351-8358. https://doi.org/10.1074/jbc.M311484200
    99. Francois H.T. Duong, Magdalena Filipowicz, Marco Tripodi, Nicola La Monica, Markus H. Heim. Hepatitis C virus inhibits interferon signaling through up-regulation of protein phosphatase 2A. Gastroenterology 2004, 126 (1) , 263-277. https://doi.org/10.1053/j.gastro.2003.10.076
    100. Soren Prag, Josephine C Adams. Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals. BMC Bioinformatics 2003, 4 (1) https://doi.org/10.1186/1471-2105-4-42
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect