ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Exploring the Molecular Adhesion of Ocular Mucins

View Author Information
Mucin Research Group, Bristol Eye Hospital, University of Bristol, Bristol, BS1 2LX, U.K.; and H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, U.K.
Cite this: Biomacromolecules 2001, 2, 2, 498–503
Publication Date (Web):March 29, 2001
https://doi.org/10.1021/bm000145y
Copyright © 2001 American Chemical Society
Article Views
467
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (136 KB)

Abstract

Mucins have been ascribed both pro- and anti-adhesive functions. To clarify how both functions can be embodied in the same molecule we studied the interaction of human ocular mucins with mica and with mucins deposited on mica. Adhesion energy and forces of interaction were evaluated as a function of speed of approach, dwell time at maximum extension, and presence of divalent cations in the imaging buffer. Mucins were tethered to an AFM gold-coated tip. Repeated cycles of approach and retract to mica revealed a large number of adhesions in each cycle. Adhesion energy (0.2−48 aJ) and detachment forces (0.1−4 nN) increased with the addition of Ni(II) ions, and with lengthening dwell time. Speed of approach made little difference to the interactions. Most detachments occurred less than 40 nm from the surface. Inter-detachment distances reflected the major periodicities of the mica basal plane. Short distances of interaction, magnitude of detachment forces, and imaging of mucins on SAM all suggest deformable compact mucin aggregates on the AFM tip. Inter-detachment distances suggest a large degree of interpenetration between neighboring molecules. Tip-tethered mucins did not adhere to mucins deposited on mica. This phenomenon is analogous with the nonadherence of the mucin gels on lids and on cornea during blinking.

*

 Corresponding author. Division of Ophthalmology, Bristol Eye Hospital, Bristol BS1 2LX, UK. Telephone:  + 44 117 928 48 53. Fax:  +44 117 925 14 21. E-mail:  [email protected]

 Mucin Research Group, Bristol Eye Hospital, University of Bristol.

 H.H. Wills Physics Laboratory, University of Bristol,

Cited By

This article is cited by 36 publications.

  1. Benjamin T. Käsdorf, Florian Weber, Georgia Petrou, Vaibhav Srivastava, Thomas Crouzier, and Oliver Lieleg . Mucin-Inspired Lubrication on Hydrophobic Surfaces. Biomacromolecules 2017, 18 (8) , 2454-2462. https://doi.org/10.1021/acs.biomac.7b00605
  2. Carleen M. Bowers, David A. Carlson, Monica Rivera, Robert L. Clark, and Eric J. Toone . Effect of Compressive Force on Unbinding Specific Protein–Ligand Complexes with Force Spectroscopy. The Journal of Physical Chemistry B 2013, 117 (17) , 4755-4762. https://doi.org/10.1021/jp309393s
  3. Gleb E. Yakubov, Aristeidis Papagiannopoulos, Elodie Rat and Thomas A. Waigh. Charge and Interfacial Behavior of Short Side-Chain Heavily Glycosylated Porcine Stomach Mucin. Biomacromolecules 2007, 8 (12) , 3791-3799. https://doi.org/10.1021/bm700721c
  4. Mohammad Firoznezhad, Rita Abi-Rached, Federica Fulgheri, Matteo Aroffu, Francisco-Javier Leyva-Jiménez, María de la Luz Cádiz Gurrea, Maria Cristina Meloni, Francesco Corrias, Elvira Escribano-Ferrer, Josè Esteban Peris, Maria Letizia Manca, Maria Manconi. Design and in vitro effectiveness evaluation of Echium amoenum extract loaded in bioadhesive phospholipid vesicles tailored for mucosal delivery. International Journal of Pharmaceutics 2023, 14 , 122650. https://doi.org/10.1016/j.ijpharm.2023.122650
  5. S.A. Rodrigues, C. Pradal, L. Yu, K.J. Steadman, J.R. Stokes, G.E. Yakubov. Creating polysaccharide-protein complexes to control aqueous lubrication. Food Hydrocolloids 2021, 119 , 106826. https://doi.org/10.1016/j.foodhyd.2021.106826
  6. M. Elizabeth Fini, Shinwu Jeong, Haiyan Gong, Rafael Martinez-Carrasco, Nora M.V. Laver, Minako Hijikata, Naoto Keicho, Pablo Argüeso. Membrane-associated mucins of the ocular surface: New genes, new protein functions and new biological roles in human and mouse. Progress in Retinal and Eye Research 2020, 75 , 100777. https://doi.org/10.1016/j.preteyeres.2019.100777
  7. K. S. Avetisov, N. A. Bakhchieva, S. E. Avetisov, I. A. Novikov, A. V. Golovchenko, A. V. Shitikova. Atomic force microscopy in the study of anterior eye segment structures. Vestnik oftal'mologii 2020, 136 (1) , 103. https://doi.org/10.17116/oftalma2020136011103
  8. David Mallinson, Alexander B. Mullen, Dimitrios A. Lamprou. Probing polydopamine adhesion to protein and polymer films: microscopic and spectroscopic evaluation. Journal of Materials Science 2018, 53 (5) , 3198-3209. https://doi.org/10.1007/s10853-017-1806-y
  9. Jan Busk Madsen, Kirsi I. Pakkanen, Lars Duelund, Birte Svensson, Maher Abou Hachem, Seunghwan Lee. A Simplified Chromatographic Approach to Purify Commercially Available Bovine Submaxillary Mucins (BSM). Preparative Biochemistry and Biotechnology 2015, 45 (1) , 84-99. https://doi.org/10.1080/10826068.2014.887583
  10. Aachal Kotecha, Gloria Roberti, Federick Fitzke. Ultrastructural Imaging. 2015, 666-673. https://doi.org/10.1016/B978-0-7020-5193-7.00065-0
  11. Nikolaos Nikogeorgos, Petr Efler, A. Basak Kayitmazer, Seunghwan Lee. “Bio-glues” to enhance slipperiness of mucins: improved lubricity and wear resistance of porcine gastric mucin (PGM) layers assisted by mucoadhesion with chitosan. Soft Matter 2015, 11 (3) , 489-498. https://doi.org/10.1039/C4SM02021A
  12. Nikolaos Nikogeorgos, Jan Busk Madsen, Seunghwan Lee. Influence of impurities and contact scale on the lubricating properties of bovine submaxillary mucin (BSM) films on a hydrophobic surface. Colloids and Surfaces B: Biointerfaces 2014, 122 , 760-766. https://doi.org/10.1016/j.colsurfb.2014.08.017
  13. Yuanyuan Shan, Qi Xu, Meihu Ma. Mg2+ binding affects the structure and activity of ovomucin. International Journal of Biological Macromolecules 2014, 70 , 230-235. https://doi.org/10.1016/j.ijbiomac.2014.06.056
  14. Bernardo Yañez-Soto, Mark J. Mannis, Ivan R. Schwab, Jennifer Y. Li, Brian C. Leonard, Nicholas L. Abbott, Christopher J. Murphy. Interfacial Phenomena and the Ocular Surface. The Ocular Surface 2014, 12 (3) , 178-201. https://doi.org/10.1016/j.jtos.2014.01.004
  15. Monica Berry, Anthony Corfield. Structure and Properties of Mucins. 2014, 133-158. https://doi.org/10.1002/9781118794203.ch06
  16. Pablo Argüeso. Glycobiology of the ocular surface: mucins and lectins. Japanese Journal of Ophthalmology 2013, 57 (2) , 150-155. https://doi.org/10.1007/s10384-012-0228-2
  17. Kiminori Ushida, Takeomi Murata. Materials Science and Engineering of Mucin. 2013, 115-159. https://doi.org/10.1016/B978-0-444-62615-8.00004-7
  18. Monica Berry, Anthony P. Corfield, Terence J. McMaster. Mucins: a dynamic biology. Soft Matter 2013, 9 (6) , 1740-1743. https://doi.org/10.1039/C2SM26453F
  19. Marit Sletmoen, Gjertrud Maurstad, Catherine Taylor Nordgård, Kurt Ingar Draget, Bjørn Torger Stokke. Oligoguluronate induced competitive displacement of mucin–alginate interactions: relevance for mucolytic function. Soft Matter 2012, 8 (32) , 8413. https://doi.org/10.1039/c2sm26256h
  20. Bogdan Belgorodsky, Eyal Drug, Ludmila Fadeev, Netta Hendler, Elad Mentovich, Michael Gozin. Mucin Complexes of Nanomaterials: First Biochemical Encounter. Small 2010, 6 (2) , 262-269. https://doi.org/10.1002/smll.200900637
  21. M. Berry. Ocular Mucins. 2010, 184-193. https://doi.org/10.1016/B978-0-12-374203-2.00054-3
  22. Ana Guzman-Aranguez, Pablo Argüeso. Structure and Biological Roles of Mucin-type O-glycans at the Ocular Surface. The Ocular Surface 2010, 8 (1) , 8-17. https://doi.org/10.1016/S1542-0124(12)70213-6
  23. Xiaohui Zhang, Felix Rico, Amy J. Xu, Vincent T. Moy. Atomic Force Microscopy of Protein–Protein Interactions. 2009, 555-570. https://doi.org/10.1007/978-0-387-76497-9_19
  24. Iuliana Aprodu, Monica Soncini, Alberto Redaelli. Interaction forces and interface properties of KIF1A kinesin-αβ tubulin complex assessed by molecular dynamics. Journal of Biomechanics 2008, 41 (15) , 3196-3201. https://doi.org/10.1016/j.jbiomech.2008.08.014
  25. Chih-Kung Lee, Yu-Ming Wang, Long-Sun Huang, Shiming Lin. Atomic force microscopy: Determination of unbinding force, off rate and energy barrier for protein–ligand interaction. Micron 2007, 38 (5) , 446-461. https://doi.org/10.1016/j.micron.2006.06.014
  26. Friedrich P. Paulsen, Monica S. Berry. Mucins and TFF peptides of the tear film and lacrimal apparatus. Progress in Histochemistry and Cytochemistry 2006, 41 (1) , 1-53. https://doi.org/10.1016/j.proghi.2006.03.001
  27. Rama Bansil, Bradley S. Turner. Mucin structure, aggregation, physiological functions and biomedical applications. Current Opinion in Colloid & Interface Science 2006, 11 (2-3) , 164-170. https://doi.org/10.1016/j.cocis.2005.11.001
  28. Friedrich Paulsen. Cell and Molecular Biology of Human Lacrimal Gland and Nasolacrimal Duct Mucins. 2006, 229-279. https://doi.org/10.1016/S0074-7696(06)49005-7
  29. R. Maheshwari, Aruna Dhathathreyan. Mucin at solution/air and solid/solution interfaces. Journal of Colloid and Interface Science 2006, 293 (2) , 263-269. https://doi.org/10.1016/j.jcis.2005.06.058
  30. Hans-Jürgen Butt, Brunero Cappella, Michael Kappl. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports 2005, 59 (1-6) , 1-152. https://doi.org/10.1016/j.surfrep.2005.08.003
  31. Debra J Brayshaw, Monica Berry, Terence J McMaster. Reducing a polymer to its subunits as an aid to molecular mapping. Nanotechnology 2004, 15 (11) , 1391-1396. https://doi.org/10.1088/0957-4484/15/11/001
  32. Debra J Brayshaw, Monica Berry, Terence J McMaster. Molecular adsorption: early stage surface exploration. Ultramicroscopy 2004, 100 (3-4) , 145-151. https://doi.org/10.1016/j.ultramic.2003.11.003
  33. N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, R. Lal. Elasticity and Adhesion Force Mapping Reveals Real-Time Clustering of Growth Factor Receptors and Associated Changes in Local Cellular Rheological Properties. Biophysical Journal 2004, 86 (3) , 1753-1762. https://doi.org/10.1016/S0006-3495(04)74243-5
  34. Catherine Taylor, Adrian Allen, Peter W. Dettmar, Jeffrey P. Pearson. The Gel Matrix of Gastric Mucus Is Maintained by a Complex Interplay of Transient and Nontransient Associations. Biomacromolecules 2003, 4 (4) , 922-927. https://doi.org/10.1021/bm025767t
  35. Michael J. Doughty. Impact of brief exposure to balanced salts solution or cetylpyridinium chloride on the surface appearance of the rabbit corneal epithelium – a scanning electron microscopy study. Current Eye Research 2003, 26 (6) , 335-346. https://doi.org/10.1076/ceyr.26.5.335.15441
  36. A.N. Round, M. Berry, T.J. McMaster, S. Stoll, D. Gowers, A.P. Corfield, M.J. Miles. Heterogeneity and Persistence Length in Human Ocular Mucins. Biophysical Journal 2002, 83 (3) , 1661-1670. https://doi.org/10.1016/S0006-3495(02)73934-9

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE