ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Chitosan as Antimicrobial Agent:  Applications and Mode of Action

View Author Information
Department of Crop Protection and Department of Organic Chemistry, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
Cite this: Biomacromolecules 2003, 4, 6, 1457–1465
Publication Date (Web):September 3, 2003
https://doi.org/10.1021/bm034130m
Copyright © 2003 American Chemical Society

Article Views

18340

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (117 KB)

Abstract

Chitosan, a hydrophilic biopolymer industrially obtained by N-deacetylation of chitin, can be applied as an antimicrobial agent. The current review of 129 references describes the biological activity of several chitosan derivatives and the modes of action that have been postulated in the literature. It highlights the applications of chitosan as an antimicrobial agent against fungi, bacteria, and viruses and as an elicitor of plant defense mechanisms.

 Department of Crop Protection.

*

 To whom correspondence should be addressed. E-mail: [email protected]

 Department of Organic Chemistry.

Cited By

This article is cited by 2161 publications.

  1. Miao Yu, Kai Zhang, Xin Guo, Lu Qian. Effects of the Degree of Deacetylation on the Single-Molecule Mechanics of Chitosans. The Journal of Physical Chemistry B 2023, 127 (19) , 4261-4267. https://doi.org/10.1021/acs.jpcb.3c01661
  2. Julita Pachla, Rafał J. Kopiasz, Gabriela Marek, Waldemar Tomaszewski, Agnieszka Głogowska, Karolina Drężek, Sebastian Kowalczyk, Rafał Podgórski, Beata Butruk-Raszeja, Tomasz Ciach, Jolanta Mierzejewska, Andrzej Plichta, Ewa Augustynowicz-Kopeć, Dominik Jańczewski. Polytrimethylenimines: Highly Potent Antibacterial Agents with Activity and Toxicity Modulated by the Polymer Molecular Weight. Biomacromolecules 2023, 24 (5) , 2237-2249. https://doi.org/10.1021/acs.biomac.3c00139
  3. James Butler, Richard D. Handy, Mathew Upton, Alexandros Besinis. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS Nano 2023, 17 (8) , 7064-7092. https://doi.org/10.1021/acsnano.2c12488
  4. Xianda Liu, Tao Xu, Chunji Jiang, Yupei Li, Baihai Su, Weifeng Zhao, Changsheng Zhao. Ultraporous Polyquaternium-Carboxylated Chitosan Composite Hydrogel Spheres with Anticoagulant, Antibacterial, and Rapid Endotoxin Removal Profiles for Sepsis Treatment. Biomacromolecules 2022, 23 (9) , 3728-3742. https://doi.org/10.1021/acs.biomac.2c00583
  5. Suzan Fangary, Mohammad Abdel-Halim, Reem K. Fathalla, Raghda Hassan, Noha Farag, Matthias Engel, Samar Mansour, Salma N. Tammam. Nanoparticle Fraught Liposomes: A Platform for Increased Antibiotic Selectivity in Multidrug Resistant Bacteria. Molecular Pharmaceutics 2022, 19 (9) , 3163-3177. https://doi.org/10.1021/acs.molpharmaceut.2c00258
  6. Mohsen Khodadadi Yazdi, Mehrak Zare, Ali Khodadadi, Farzad Seidi, S. Mohammad Sajadi, Payam Zarrintaj, Ahmad Arefi, Mohammad Reza Saeb, Masoud Mozafari. Polydopamine Biomaterials for Skin Regeneration. ACS Biomaterials Science & Engineering 2022, 8 (6) , 2196-2219. https://doi.org/10.1021/acsbiomaterials.1c01436
  7. Renaud Passieux, Guillaume Sudre, Alexandra Montembault, Martine Renard, Agnès Hagege, Pierre Alcouffe, Ali Haddane, Marie Vandesteene, Nadège Boucard, Laurence Bordenave, Laurent David. Cytocompatibility / Antibacterial Activity Trade-off for Knittable Wet-Spun Chitosan Monofilaments Functionalized by the In Situ Incorporation of Cu2+ and Zn2+. ACS Biomaterials Science & Engineering 2022, 8 (4) , 1735-1748. https://doi.org/10.1021/acsbiomaterials.2c00079
  8. Patrícia I. F. Pinto, Sandra Magina, Enkhjargal Budjav, Paula C. R. Pinto, Falk Liebner, Dmitry Evtuguin. Cationization of Eucalyptus Kraft LignoBoost Lignin: Preparation, Properties, and Potential Applications. Industrial & Engineering Chemistry Research 2022, 61 (10) , 3503-3515. https://doi.org/10.1021/acs.iecr.1c04899
  9. Zhao Wei, Feng F. Hong, Zhangjun Cao, Sheng-Yin Zhao, Lin Chen. In Situ Fabrication of Nerve Growth Factor Encapsulated Chitosan Nanoparticles in Oxidized Bacterial Nanocellulose for Rat Sciatic Nerve Regeneration. Biomacromolecules 2021, 22 (12) , 4988-4999. https://doi.org/10.1021/acs.biomac.1c00947
  10. Ariel Riofrio, Tania Alcivar, Haci Baykara. Environmental and Economic Viability of Chitosan Production in Guayas-Ecuador: A Robust Investment and Life Cycle Analysis. ACS Omega 2021, 6 (36) , 23038-23051. https://doi.org/10.1021/acsomega.1c01672
  11. Chang-Sheng Wang, Nick Virgilio, Pierre J. Carreau, Marie-Claude Heuzey. Understanding the Effect of Conformational Rigidity on Rheological Behavior and Formation of Polysaccharide-Based Hybrid Hydrogels. Biomacromolecules 2021, 22 (9) , 4016-4026. https://doi.org/10.1021/acs.biomac.1c00803
  12. Bhuvaneshwari Balasubramaniam, Prateek, Sudhir Ranjan, Mohit Saraf, Prasenjit Kar, Surya Pratap Singh, Vijay Kumar Thakur, Anand Singh, Raju Kumar Gupta. Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacology & Translational Science 2021, 4 (1) , 8-54. https://doi.org/10.1021/acsptsci.0c00174
  13. Zhangyong Si, Zheng Hou, Yogesh Shankar Vikhe, Kishore Reddy Venkata Thappeta, Kalisvar Marimuthu, Partha Pratim De, Oon Tek Ng, Peng Li, Yabin Zhu, Kevin Pethe, Mary B. Chan-Park. Antimicrobial Effect of a Novel Chitosan Derivative and Its Synergistic Effect with Antibiotics. ACS Applied Materials & Interfaces 2021, 13 (2) , 3237-3245. https://doi.org/10.1021/acsami.0c20881
  14. Krishnaveni Iyyappan Dhanalekshmi, Manickam Janarthanam Umapathy, Paramanandham Magesan, Xiang Zhang. Biomaterial (Garlic and Chitosan)-Doped WO3-TiO2 Hybrid Nanocomposites: Their Solar Light Photocatalytic and Antibacterial Activities. ACS Omega 2020, 5 (49) , 31673-31683. https://doi.org/10.1021/acsomega.0c04154
  15. Shu-Jyuan Yang, Chung-Huan Huang, Jyh-Chin Yang, Chung-Hao Wang, Ming-Jium Shieh. Residence Time-Extended Nanoparticles by Magnetic Field Improve the Eradication Efficiency of Helicobacter pylori. ACS Applied Materials & Interfaces 2020, 12 (49) , 54316-54327. https://doi.org/10.1021/acsami.0c13101
  16. Zamani E.D. Cele, Anou M. Somboro, Daniel G. Amoako, Lindokuhle F. Ndlandla, Mohammed O. Balogun. Fluorinated Quaternary Chitosan Derivatives: Synthesis, Characterization, Antibacterial Activity, and Killing Kinetics. ACS Omega 2020, 5 (46) , 29657-29666. https://doi.org/10.1021/acsomega.0c01355
  17. Sara Heedy, Michaela E. Marshall, Juviarelli J. Pineda, Eric Pearlman, Albert F. Yee. Synergistic Antimicrobial Activity of a Nanopillar Surface on a Chitosan Hydrogel. ACS Applied Bio Materials 2020, 3 (11) , 8040-8048. https://doi.org/10.1021/acsabm.0c01110
  18. Yechan Won, Kazi Sadman, Gabrielle Stein, Fabrizio Sabba, Kenneth R. Shull, Kimberly A. Gray. Functionalizing a Polyelectrolyte Complex with Chitosan Derivatives to Tailor Membrane Surface Properties. Langmuir 2020, 36 (43) , 12784-12794. https://doi.org/10.1021/acs.langmuir.0c01032
  19. Junchao Huang, Martin Frauenlob, Yuki Shibata, Lei Wang, Tasuku Nakajima, Takayuki Nonoyama, Masumi Tsuda, Shinya Tanaka, Takayuki Kurokawa, Jian Ping Gong. Chitin-Based Double-Network Hydrogel as Potential Superficial Soft-Tissue-Repairing Materials. Biomacromolecules 2020, 21 (10) , 4220-4230. https://doi.org/10.1021/acs.biomac.0c01003
  20. Rahul Varma, Sugumar Vasudevan. Extraction, Characterization, and Antimicrobial Activity of Chitosan from Horse Mussel Modiolus modiolus. ACS Omega 2020, 5 (32) , 20224-20230. https://doi.org/10.1021/acsomega.0c01903
  21. Yajie Zhong, Huining Xiao, Farzad Seidi, Yongcan Jin. Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules 2020, 21 (8) , 2983-3006. https://doi.org/10.1021/acs.biomac.0c00760
  22. Yadong Wang, Tianyang Hou, Zhen Yang, Lina Zhao, Wei Wu, Weiben Yang, Nigel J.D. Graham. Nitrogen-Free Cationic Starch Flocculants: Flocculation Performance, Antibacterial Ability, and UF Membrane Fouling Control. ACS Applied Bio Materials 2020, 3 (5) , 2910-2919. https://doi.org/10.1021/acsabm.9b01129
  23. Vittorio Ferrara, Giovanni Zito, Giuseppe Arrabito, Sebastiano Cataldo, Michelangelo Scopelliti, Carla Giordano, Valeria Vetri, Bruno Pignataro. Aqueous Processed Biopolymer Interfaces for Single-Cell Microarrays. ACS Biomaterials Science & Engineering 2020, 6 (5) , 3174-3186. https://doi.org/10.1021/acsbiomaterials.9b01871
  24. Riwang Li, Zhen Lin, Qian Zhang, Yuhui Zhang, Yi Liu, Yang Lyu, Xinyang Li, Changren Zhou, Gang Wu, Ningjian Ao, Lihua Li. Injectable and In Situ-Formable Thiolated Chitosan-Coated Liposomal Hydrogels as Curcumin Carriers for Prevention of In Vivo Breast Cancer Recurrence. ACS Applied Materials & Interfaces 2020, 12 (15) , 17936-17948. https://doi.org/10.1021/acsami.9b21528
  25. L. Verónica Cabañas-Romero, Cristina Valls, Susana V. Valenzuela, M. Blanca Roncero, F. I. Javier Pastor, Pilar Diaz, Josefina Martínez. Bacterial Cellulose–Chitosan Paper with Antimicrobial and Antioxidant Activities. Biomacromolecules 2020, 21 (4) , 1568-1577. https://doi.org/10.1021/acs.biomac.0c00127
  26. Catharina Husteden, Falko Doberenz, Nathalie Goergen, Shashank Reddy Pinnapireddy, Christopher Janich, Andreas Langner, Frank Syrowatka, Alexandros Repanas, Frank Erdmann, Jarmila Jedelská, Udo Bakowsky, Thomas Groth, Christian Wölk. Contact-Triggered Lipofection from Multilayer Films Designed as Surfaces for in Situ Transfection Strategies in Tissue Engineering. ACS Applied Materials & Interfaces 2020, 12 (8) , 8963-8977. https://doi.org/10.1021/acsami.9b18968
  27. Liying Peng, Li Chang, Mengting Si, Jiuxiang Lin, Yan Wei, Shutao Wang, Hongliang Liu, Bing Han, Lei Jiang. Hydrogel-Coated Dental Device with Adhesion-Inhibiting and Colony-Suppressing Properties. ACS Applied Materials & Interfaces 2020, 12 (8) , 9718-9725. https://doi.org/10.1021/acsami.9b19873
  28. Haibin Yuan, Lin Chen, Feng F. Hong. A Biodegradable Antibacterial Nanocomposite Based on Oxidized Bacterial Nanocellulose for Rapid Hemostasis and Wound Healing. ACS Applied Materials & Interfaces 2020, 12 (3) , 3382-3392. https://doi.org/10.1021/acsami.9b17732
  29. Deepak Pathania Sarita Kumari . Nanocomposites Based on Biopolymer for Biomedical and Antibacterial Applications. 2020, 375-391. https://doi.org/10.1021/bk-2020-1353.ch015
  30. Joseph T. Buchman, Wade H. Elmer, Chuanxin Ma, Kaitlin M. Landy, Jason C. White, Christy L. Haynes. Chitosan-Coated Mesoporous Silica Nanoparticle Treatment of Citrullus lanatus (Watermelon): Enhanced Fungal Disease Suppression and Modulated Expression of Stress-Related Genes. ACS Sustainable Chemistry & Engineering 2019, 7 (24) , 19649-19659. https://doi.org/10.1021/acssuschemeng.9b04800
  31. Di Wang, Peifeng Lv, Liang Zhang, Shuqiao Yang, Yanxiang Gao. Structural and Functional Characterization of Laccase-Induced β-Lactoglobulin–Ferulic Acid–Chitosan Ternary Conjugates. Journal of Agricultural and Food Chemistry 2019, 67 (43) , 12054-12060. https://doi.org/10.1021/acs.jafc.9b04557
  32. Stuart S. Lichtenberg, Olga V. Tsyusko, Subba R. Palli, Jason M. Unrine. Uptake and Bioactivity of Chitosan/Double-Stranded RNA Polyplex Nanoparticles in Caenorhabditis elegans. Environmental Science & Technology 2019, 53 (7) , 3832-3840. https://doi.org/10.1021/acs.est.8b06560
  33. Chuanjiang He, Tingting Ye, Wenqi Teng, Zhi Fang, Wei-Shuyi Ruan, Guowu Liu, Hui Chen, Jizeng Sun, Lanlan Hui, Feng Sheng, Dingyi Pan, Chunming Yang, Yi Zheng, Meng-Bo Luo, Ke Yao, Ben Wang. Bioinspired Shear-Flow-Driven Layer-by-Layer in Situ Self-Assembly. ACS Nano 2019, 13 (2) , 1910-1922. https://doi.org/10.1021/acsnano.8b08151
  34. Linghan Meng, Fengwei Xie, Binjia Zhang, David K. Wang, Long Yu. Natural Biopolymer Alloys with Superior Mechanical Properties. ACS Sustainable Chemistry & Engineering 2019, 7 (2) , 2792-2802. https://doi.org/10.1021/acssuschemeng.8b06009
  35. Balaji Ramachandran Vignesh Muthuvijayan . Surface Engineering Approaches for Controlling Biofilms and Wound Infections. 2019, 101-123. https://doi.org/10.1021/bk-2019-1323.ch005
  36. Ke Luo, Ki-Baek Jeong, Sang-Mook You, Da-Hee Lee, Jong-Yun Jung, Young-Rok Kim. Surface-Engineered Starch Magnetic Microparticles for Highly Effective Separation of a Broad Range of Bacteria. ACS Sustainable Chemistry & Engineering 2018, 6 (10) , 13524-13531. https://doi.org/10.1021/acssuschemeng.8b03611
  37. Danila Merino, Andrea Y. Mansilla, Claudia A. Casalongué, Vera A. Alvarez. Preparation, Characterization, and In Vitro Testing of Nanoclay Antimicrobial Activities and Elicitor Capacity. Journal of Agricultural and Food Chemistry 2018, 66 (12) , 3101-3109. https://doi.org/10.1021/acs.jafc.8b00049
  38. Thiago B. Taketa, Danilo M. dos Santos, Anderson Fiamingo, Juliana M. Vaz, Marisa M. Beppu, Sérgio P. Campana-Filho, Robert E. Cohen, and Michael F. Rubner . Investigation of the Internal Chemical Composition of Chitosan-Based LbL Films by Depth-Profiling X-ray Photoelectron Spectroscopy (XPS) Analysis. Langmuir 2018, 34 (4) , 1429-1440. https://doi.org/10.1021/acs.langmuir.7b04104
  39. Priyanka Sahariah and Már Másson . Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017, 18 (11) , 3846-3868. https://doi.org/10.1021/acs.biomac.7b01058
  40. Bahareh Bahramian, Wojciech Chrzanowski, Alexey Kondyurin, Nicky Thomas, and Fariba Dehghani . Fabrication of Antimicrobial Poly(propylene carbonate) Film by Plasma Surface Modification. Industrial & Engineering Chemistry Research 2017, 56 (44) , 12578-12587. https://doi.org/10.1021/acs.iecr.7b01185
  41. Stacy Jones, Avijit Pramanik, Rajashekhar Kanchanapally, Bhanu Priya Viraka Nellore, Salma Begum, Carrie Sweet, and Paresh Chandra Ray . Multifunctional Three-Dimensional Chitosan/Gold Nanoparticle/Graphene Oxide Architecture for Separation, Label-Free SERS Identification of Pharmaceutical Contaminants, and Effective Killing of Superbugs. ACS Sustainable Chemistry & Engineering 2017, 5 (8) , 7175-7187. https://doi.org/10.1021/acssuschemeng.7b01351
  42. Vanessa Bertolino, Giuseppe Cavallaro, Giuseppe Lazzara, Stefana Milioto, and Filippo Parisi . Biopolymer-Targeted Adsorption onto Halloysite Nanotubes in Aqueous Media. Langmuir 2017, 33 (13) , 3317-3323. https://doi.org/10.1021/acs.langmuir.7b00600
  43. Man Li, Xiangmei Liu, Ziqiang Xu, K.W.K. Yeung, and Shuilin Wu . Dopamine Modified Organic–Inorganic Hybrid Coating for Antimicrobial and Osteogenesis. ACS Applied Materials & Interfaces 2016, 8 (49) , 33972-33981. https://doi.org/10.1021/acsami.6b09457
  44. Fanqin Ji, Lina You, Lei Wang, Zhikai Liu, Yajun Zhang, and Shanshan Lv . Layer-by-Layer Assembled Chitosan-Based Antibacterial Films with Improved Stability under Alkaline Conditions. Industrial & Engineering Chemistry Research 2016, 55 (40) , 10664-10670. https://doi.org/10.1021/acs.iecr.6b02080
  45. Fuze Jiang, Youdi Yang, Jiajia Weng, and Xiaogang Zhang . Layer-by-Layer Self-Assembly for Reinforcement of Aged Papers. Industrial & Engineering Chemistry Research 2016, 55 (40) , 10544-10554. https://doi.org/10.1021/acs.iecr.6b02988
  46. Debirupa Mitra, Min Li, Rong Wang, Zhihao Tang, En-Tang Kang, and Koon Gee Neoh . Scalable Aqueous-Based Process for Coating Polymer and Metal Substrates with Stable Quaternized Chitosan Antibacterial Coatings. Industrial & Engineering Chemistry Research 2016, 55 (36) , 9603-9613. https://doi.org/10.1021/acs.iecr.6b02201
  47. Mei-Chun Li, Qinglin Wu, Kunlin Song, H. N. Cheng, Shigehiko Suzuki, and Tingzhou Lei . Chitin Nanofibers as Reinforcing and Antimicrobial Agents in Carboxymethyl Cellulose Films: Influence of Partial Deacetylation. ACS Sustainable Chemistry & Engineering 2016, 4 (8) , 4385-4395. https://doi.org/10.1021/acssuschemeng.6b00981
  48. Isra H. Ali, Islam A. Khalil, and Ibrahim M. El-Sherbiny . Single-Dose Electrospun Nanoparticles-in-Nanofibers Wound Dressings with Enhanced Epithelialization, Collagen Deposition, and Granulation Properties. ACS Applied Materials & Interfaces 2016, 8 (23) , 14453-14469. https://doi.org/10.1021/acsami.6b04369
  49. Xiao-Yan Wang and Marie-Claude Heuzey . Chitosan-Based Conventional and Pickering Emulsions with Long-Term Stability. Langmuir 2016, 32 (4) , 929-936. https://doi.org/10.1021/acs.langmuir.5b03556
  50. Namrata Raman, Karen Marchillo, Myung-Ryul Lee, Angélica de L. Rodríguez López, David R. Andes, Sean P. Palecek, and David M. Lynn . Intraluminal Release of an Antifungal β-Peptide Enhances the Antifungal and Anti-Biofilm Activities of Multilayer-Coated Catheters in a Rat Model of Venous Catheter Infection. ACS Biomaterials Science & Engineering 2016, 2 (1) , 112-121. https://doi.org/10.1021/acsbiomaterials.5b00427
  51. Lydie Séon, Philippe Lavalle, Pierre Schaaf, and Fouzia Boulmedais . Polyelectrolyte Multilayers: A Versatile Tool for Preparing Antimicrobial Coatings. Langmuir 2015, 31 (47) , 12856-12872. https://doi.org/10.1021/acs.langmuir.5b02768
  52. Ana M. Díez-Pascual and Angel L. Díez-Vicente . Wound Healing Bionanocomposites Based on Castor Oil Polymeric Films Reinforced with Chitosan-Modified ZnO Nanoparticles. Biomacromolecules 2015, 16 (9) , 2631-2644. https://doi.org/10.1021/acs.biomac.5b00447
  53. Juliana dos Santos Gabriel, Marcio José Tiera, and Vera Aparecida de Oliveira Tiera . Synthesis, Characterization, and Antifungal Activities of Amphiphilic Derivatives of Diethylaminoethyl Chitosan against Aspergillus flavus. Journal of Agricultural and Food Chemistry 2015, 63 (24) , 5725-5731. https://doi.org/10.1021/acs.jafc.5b00278
  54. Yuan Liu, Changjun Zou, Xueling Yan, Renjie Xiao, Taiyang Wang, and Ming Li . β-Cyclodextrin Modified Natural Chitosan as a Green Inhibitor for Carbon Steel in Acid Solutions. Industrial & Engineering Chemistry Research 2015, 54 (21) , 5664-5672. https://doi.org/10.1021/acs.iecr.5b00930
  55. Yuki Takechi-Haraya, Kento Tanaka, Kohei Tsuji, Yasuo Asami, Hironori Izawa, Akira Shigenaga, Akira Otaka, Hiroyuki Saito, and Kohsaku Kawakami . Molecular Complex Composed of β-Cyclodextrin-Grafted Chitosan and pH-Sensitive Amphipathic Peptide for Enhancing Cellular Cholesterol Efflux under Acidic pH. Bioconjugate Chemistry 2015, 26 (3) , 572-581. https://doi.org/10.1021/acs.bioconjchem.5b00037
  56. Hyun-Su Lee, Sana S. Dastgheyb, Noreen J. Hickok, David M. Eckmann, and Russell J. Composto . Targeted Release of Tobramycin from a pH-Responsive Grafted Bilayer Challenged with S. aureus. Biomacromolecules 2015, 16 (2) , 650-659. https://doi.org/10.1021/bm501751v
  57. Guanbo Huang, Yibing Yin, Zeng Pan, Mingxi Chen, Lei Zhang, Yu Liu, Yongli Zhang, and Jianping Gao . Fabrication of 3D Photonic Crystals from Chitosan That Are Responsive to Organic Solvents. Biomacromolecules 2014, 15 (12) , 4396-4402. https://doi.org/10.1021/bm501374t
  58. Selcuk Poyraz, Idris Cerkez, Tung Shi Huang, Zhen Liu, Litao Kang, Jujie Luo, and Xinyu Zhang . One-Step Synthesis and Characterization of Polyaniline Nanofiber/Silver Nanoparticle Composite Networks as Antibacterial Agents. ACS Applied Materials & Interfaces 2014, 6 (22) , 20025-20034. https://doi.org/10.1021/am505571m
  59. Long Zhang, Chengyun Ning, Tian Zhou, Xiangmei Liu, K.W. K. Yeung, Tianjin Zhang, Zushun Xu, Xianbao Wang, Shuilin Wu, and Paul K. Chu . Polymeric Nanoarchitectures on Ti-Based Implants for Antibacterial Applications. ACS Applied Materials & Interfaces 2014, 6 (20) , 17323-17345. https://doi.org/10.1021/am5045604
  60. Yi Feng, Xiaocheng Lin, Huazhen Li, Lizhong He, Tam Sridhar, Akkihebbal K Suresh, Jayesh Bellare, and Huanting Wang . Synthesis and Characterization of Chitosan-Grafted BPPO Ultrafiltration Composite Membranes with Enhanced Antifouling and Antibacterial Properties. Industrial & Engineering Chemistry Research 2014, 53 (39) , 14974-14981. https://doi.org/10.1021/ie502599p
  61. Avik Khan, Stéphane Salmieri, Carole Fraschini, Jean Bouchard, Bernard Riedl, and Monique Lacroix . Genipin Cross-Linked Nanocomposite Films for the Immobilization of Antimicrobial Agent. ACS Applied Materials & Interfaces 2014, 6 (17) , 15232-15242. https://doi.org/10.1021/am503564m
  62. Chao Liu, Esben Thormann, Per M. Claesson, and Eric Tyrode . Surface Grafted Chitosan Gels. Part II. Gel Formation and Characterization. Langmuir 2014, 30 (29) , 8878-8888. https://doi.org/10.1021/la501319r
  63. Mir Morteza Sadat Ebrahimi and Holger Schönherr . Enzyme-Sensing Chitosan Hydrogels. Langmuir 2014, 30 (26) , 7842-7850. https://doi.org/10.1021/la501482u
  64. Hongyin Zhang, Lingling Ge, Keping Chen, Lina Zhao, and Xiaoyun Zhang . Enhanced Biocontrol Activity of Rhodotorula mucilaginosa Cultured in Media Containing Chitosan against Postharvest Diseases in Strawberries: Possible Mechanisms Underlying the Effect. Journal of Agricultural and Food Chemistry 2014, 62 (18) , 4214-4224. https://doi.org/10.1021/jf500065n
  65. Simon Duri and Chieu D. Tran . Enantiomeric Selective Adsorption of Amino Acid by Polysaccharide Composite Materials. Langmuir 2014, 30 (2) , 642-650. https://doi.org/10.1021/la404003t
  66. Yecheng He Baofeng Lin Haizhong Zou . Development of Calcium Carbonate Double-Coated with Chitosan-Adipic Acid as a Promising Antibacterial Filler. 2014, 121-138. https://doi.org/10.1021/bk-2014-1183.ch007
  67. Yi Gong, Ai Mei Zhu, Qiu Gen Zhang, Mei Ling Ye, Hai Tao Wang, and Qing Lin Liu . Preparation of Cell-Embedded Colloidosomes in an Oil-in-Water Emulsion. ACS Applied Materials & Interfaces 2013, 5 (21) , 10682-10689. https://doi.org/10.1021/am402787x
  68. Dae-Sung Lee and Jae-Young Je . Gallic Acid-Grafted-Chitosan Inhibits Foodborne Pathogens by a Membrane Damage Mechanism. Journal of Agricultural and Food Chemistry 2013, 61 (26) , 6574-6579. https://doi.org/10.1021/jf401254g
  69. Daniel Agudelo, Shohreh Nafisi, and Heidar-Ali Tajmir-Riahi . Encapsulation of Milk β-Lactoglobulin by Chitosan Nanoparticles. The Journal of Physical Chemistry B 2013, 117 (21) , 6403-6409. https://doi.org/10.1021/jp402573v
  70. Simon Duri and Chieu D. Tran . Supramolecular Composite Materials from Cellulose, Chitosan, and Cyclodextrin: Facile Preparation and Their Selective Inclusion Complex Formation with Endocrine Disruptors. Langmuir 2013, 29 (16) , 5037-5049. https://doi.org/10.1021/la3050016
  71. Shahid-ul-Islam, Mohammad Shahid, and Faqeer Mohammad . Green Chemistry Approaches to Develop Antimicrobial Textiles Based on Sustainable Biopolymers—A Review. Industrial & Engineering Chemistry Research 2013, 52 (15) , 5245-5260. https://doi.org/10.1021/ie303627x
  72. Maria I. Quintero-Villegas, Berit B. Aam, John Rupnow, Morten Sørlie, Vincent G. H. Eijsink, and Robert W. Hutkins . Adherence Inhibition of Enteropathogenic Escherichia coli by Chitooligosaccharides with Specific Degrees of Acetylation and Polymerization. Journal of Agricultural and Food Chemistry 2013, 61 (11) , 2748-2754. https://doi.org/10.1021/jf400103g
  73. Sriwanna Sanyakamdhorn, Daniel Agudelo, and Heidar-Ali Tajmir-Riahi . Encapsulation of Antitumor Drug Doxorubicin and Its Analogue by Chitosan Nanoparticles. Biomacromolecules 2013, 14 (2) , 557-563. https://doi.org/10.1021/bm3018577
  74. Melvin Blaze M. T., Artem Akhmetov, Berdan Aydin, Praneeth D. Edirisinghe, Gulsah Uygur, and Luke Hanley . Quantification of Antibiotic in Biofilm-Inhibiting Multilayers by 7.87 eV Laser Desorption Postionization MS Imaging. Analytical Chemistry 2012, 84 (21) , 9410-9415. https://doi.org/10.1021/ac302230e
  75. S. Carter Fox and Kevin J. Edgar . Staudinger Reduction Chemistry of Cellulose: Synthesis of Selectively O-Acylated 6-Amino-6-deoxy-cellulose. Biomacromolecules 2012, 13 (4) , 992-1001. https://doi.org/10.1021/bm2017004
  76. Sadhucharan Mallick, Shilpa Sharma, Madhuchanda Banerjee, Siddhartha Sankar Ghosh, Arun Chattopadhyay, and Anumita Paul . Iodine-Stabilized Cu Nanoparticle Chitosan Composite for Antibacterial Applications. ACS Applied Materials & Interfaces 2012, 4 (3) , 1313-1323. https://doi.org/10.1021/am201586w
  77. Yingchun He, Elisabeth Heine, Nina Keusgen, Helmut Keul, and Martin Möller . Synthesis and Characterization of Amphiphilic Monodisperse Compounds and Poly(ethylene imine)s: Influence of Their Microstructures on the Antimicrobial Properties. Biomacromolecules 2012, 13 (3) , 612-623. https://doi.org/10.1021/bm300033a
  78. Hyun-Su Lee, David M. Eckmann, Daeyeon Lee, Noreen J. Hickok, and Russell J. Composto . Symmetric pH-Dependent Swelling and Antibacterial Properties of Chitosan Brushes. Langmuir 2011, 27 (20) , 12458-12465. https://doi.org/10.1021/la202616u
  79. Neith Pacheco, Mónica Garnica-Gonzalez, Miquel Gimeno, Eduardo Bárzana, Stéphane Trombotto, Laurent David, and Keiko Shirai . Structural Characterization of Chitin and Chitosan Obtained by Biological and Chemical Methods. Biomacromolecules 2011, 12 (9) , 3285-3290. https://doi.org/10.1021/bm200750t
  80. Shuilin Wu, Xiangmei Liu, Amy Yeung, Kelvin W. K. Yeung, R. Y. T. Kao, Guosong Wu, Tao Hu, Zushun Xu, and Paul K. Chu . Plasma-Modified Biomaterials for Self-Antimicrobial Applications. ACS Applied Materials & Interfaces 2011, 3 (8) , 2851-2860. https://doi.org/10.1021/am2003944
  81. Michael T. Cook, George Tzortzis, Dimitris Charalampopoulos, and Vitaliy V. Khutoryanskiy . Production and Evaluation of Dry Alginate-Chitosan Microcapsules as an Enteric Delivery Vehicle for Probiotic Bacteria. Biomacromolecules 2011, 12 (7) , 2834-2840. https://doi.org/10.1021/bm200576h
  82. Wen Jing Yang, Tao Cai, Koon-Gee Neoh, and En-Tang Kang , Gary H. Dickinson and Serena Lay-Ming Teo , Daniel Rittschof . Biomimetic Anchors for Antifouling and Antibacterial Polymer Brushes on Stainless Steel. Langmuir 2011, 27 (11) , 7065-7076. https://doi.org/10.1021/la200620s
  83. Hiléia K. S. Souza, Maria do Pilar Gonçalves, and Javier Gómez . Effect of Chitosan Degradation on Its Interaction with β-Lactoglobulin. Biomacromolecules 2011, 12 (4) , 1015-1023. https://doi.org/10.1021/bm101356g
  84. L. John R. Foster, Kyle Thomson, Helder Marçal, Julian Butt, Stephanie L. Watson, and Denis Wakefield . Chitosan−Vancomysin Composite Biomaterial as a Laser Activated Surgical Adhesive with Regional Antimicrobial Activity. Biomacromolecules 2010, 11 (12) , 3563-3570. https://doi.org/10.1021/bm101028g
  85. Felippe J. Pavinatto, Luciano Caseli and Osvaldo N. Oliveira, Jr. . Chitosan in Nanostructured Thin Films. Biomacromolecules 2010, 11 (8) , 1897-1908. https://doi.org/10.1021/bm1004838
  86. Madhuchanda Banerjee, Sadhucharan Mallick, Anumita Paul, Arun Chattopadhyay and Siddhartha Sankar Ghosh . Heightened Reactive Oxygen Species Generation in the Antimicrobial Activity of a Three Component Iodinated Chitosan−Silver Nanoparticle Composite. Langmuir 2010, 26 (8) , 5901-5908. https://doi.org/10.1021/la9038528
  87. Adriana Pavinatto, Felippe J. Pavinatto, Ana Barros-Timmons and Osvaldo N. OliveiraJr. . Electrostatic Interactions Are Not Sufficient to Account for Chitosan Bioactivity. ACS Applied Materials & Interfaces 2010, 2 (1) , 246-251. https://doi.org/10.1021/am900665z
  88. Nicolas Bordenave, Stephane Grelier and Veronique Coma. Hydrophobization and Antimicrobial Activity of Chitosan and Paper-Based Packaging Material. Biomacromolecules 2010, 11 (1) , 88-96. https://doi.org/10.1021/bm9009528
  89. Jenny A. Lichter, Krystyn J. Van Vliet and Michael F. Rubner. Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform. Macromolecules 2009, 42 (22) , 8573-8586. https://doi.org/10.1021/ma901356s
  90. Uttam Manna, Sri Bharani and Satish Patil. Layer-by-Layer Self-Assembly of Modified Hyaluronic Acid/Chitosan Based on Hydrogen Bonding. Biomacromolecules 2009, 10 (9) , 2632-2639. https://doi.org/10.1021/bm9005535
  91. Felippe J. Pavinatto, Cauê P. Pacholatti, Érica A. Montanha, Luciano Caseli, Heurison S. Silva, Paulo B. Miranda, Tapani Viitala and Osvaldo N. Oliveira, Jr. . Cholesterol Mediates Chitosan Activity on Phospholipid Monolayers and Langmuir−Blodgett Films. Langmuir 2009, 25 (17) , 10051-10061. https://doi.org/10.1021/la901019p
  92. Zhilong Shi, K. G. Neoh, E. T. Kang, Chye Khoon Poh and Wilson Wang . Surface Functionalization of Titanium with Carboxymethyl Chitosan and Immobilized Bone Morphogenetic Protein-2 for Enhanced Osseointegration. Biomacromolecules 2009, 10 (6) , 1603-1611. https://doi.org/10.1021/bm900203w
  93. Nattharika Aumsuwan, Ryan C. Danyus, Sabine Heinhorst and Marek W. Urban . Attachment of Ampicillin to Expanded Poly(tetrafluoroethylene): Surface Reactions Leading to Inhibition of Microbial Growth. Biomacromolecules 2008, 9 (7) , 1712-1718. https://doi.org/10.1021/bm800176t
  94. Ioannis A. Sogias, Adrian C. Williams and Vitaliy V. Khutoryanskiy. Why is Chitosan Mucoadhesive?. Biomacromolecules 2008, 9 (7) , 1837-1842. https://doi.org/10.1021/bm800276d
  95. Guillaume Lamarque,, Géraldine Chaussard, and, Alain Domard. Thermodynamic Aspects of the Heterogeneous Deacetylation of β-Chitin:  Reaction Mechanisms. Biomacromolecules 2007, 8 (6) , 1942-1950. https://doi.org/10.1021/bm070021m
  96. Ying-Ling Liu,, Chih-Yuan Hsu,, Yu-Huei Su, and, Juin-Yih Lai. Chitosan−Silica Complex Membranes from Sulfonic Acid Functionalized Silica Nanoparticles for Pervaporation Dehydration of Ethanol−Water Solutions. Biomacromolecules 2005, 6 (1) , 368-373. https://doi.org/10.1021/bm049531w
  97. Yury A. Skorik,, Carlos A. R. Gomes,, Nina V. Podberezskaya,, Galina V. Romanenko,, Luiz F. Pinto, and, Yury G. Yatluk. Complexation Models of N-(2-Carboxyethyl)chitosans with Copper(II) Ions. Biomacromolecules 2005, 6 (1) , 189-195. https://doi.org/10.1021/bm049597r
  98. M. N. V. Ravi Kumar,, R. A. A. Muzzarelli,, C. Muzzarelli,, H. Sashiwa, and, A. J. Domb. Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews 2004, 104 (12) , 6017-6084. https://doi.org/10.1021/cr030441b
  99. Mohamed E. I. Badawy,, Entsar I. Rabea,, Tina M. Rogge,, Christian V. Stevens,, Guy Smagghe,, Walter Steurbaut, and, Monica Höfte. Synthesis and Fungicidal Activity of New N,O-Acyl Chitosan Derivatives. Biomacromolecules 2004, 5 (2) , 589-595. https://doi.org/10.1021/bm0344295
  100. Aiva Plotniece, Arkadij Sobolev, Claudiu T. Supuran, Fabrizio Carta, Fredrik Björkling, Henrik Franzyk, Jari Yli-Kauhaluoma, Koen Augustyns, Paul Cos, Linda De Vooght, Matthias Govaerts, Juliana Aizawa, Päivi Tammela, Raivis Žalubovskis. Selected strategies to fight pathogenic bacteria. Journal of Enzyme Inhibition and Medicinal Chemistry 2023, 38 (1) https://doi.org/10.1080/14756366.2022.2155816
Load more citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect